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Abstract

Pre-trained language models greatly improve
the performance of various tasks but at a cost of
high computation overhead. To facilitate prac-
tical applications, there are mainly two lines of
research to accelerate model inference: model
compression and dynamic computation (e.g.,
dynamic token pruning). Existing works ei-
ther adopt these methods individually or simply
apply dynamic computation approaches upon
a compressed small language model. We ar-
gue that they are sub-optimal since the two
approaches are separately designed so the com-
pressed model may not be tailored for dynamic
computation. To tackle this problem and make
compressed small language models faster, we
propose Length-Adaptive Distillation, a two-
stage knowledge distillation framework that
aims to produce a customized small language
model for dynamic token pruning. In the gen-
eral distillation stage, we enforce the student
to mimic and reconstruct the teacher’s output
based on the dynamically pruned representa-
tions. Then in the task-specific distillation
stage, the student is further accustomed to to-
ken pruning while absorbing the task-specific
knowledge. Experimental results on GLUE
benchmark demonstrate that our method can
make the small language model more cus-
tomized for dynamic token pruning and achieve
better speed-performance trade-off.

1 Introduction

With the rapid progress of pre-trained language
models (PLMs) (Devlin et al., 2019; Liu et al.,
2019; Brown et al., 2020), dramatic improvement
has been achieved in a wide range of natural lan-
guage understanding and generation tasks. De-
spite the remarkable performance those PLMs have

∗ Corresponding author: Dongyan Zhao.

achieved, they generally suffer from high compu-
tation overhead, which prevents them from being
deployed into resource-scarce applications. Hence,
there is an urgent need to accelerate inference speed
while minimizing performance degradation.

To achieve this goal, great efforts have been
made, among which model compression and dy-
namic computation are two major lines of research
with different mechanisms. Model compression
approaches typically convert the large model into
a smaller one with reduced layer number and hid-
den dimension, while the computation graph of the
compressed small model is fixed during inference.
One of the effective approaches to achieve this
goal is knowledge distillation from a large teacher
model to a small student model (Jiao et al., 2020a;
Wang et al., 2021; Liu et al., 2022a). As for dy-
namic computation methods, they don’t change
the architecture of the given language model and
dynamically prune its computation graph during
inference instead. There are two perspectives in dy-
namic computation for transformer-based (Vaswani
et al., 2017) language models: depth-level early ex-
iting (Liu et al., 2020; Xin et al., 2020; Zhou et al.,
2020) and width-level token pruning (Goyal et al.,
2020; Kim and Cho, 2021; Kim et al., 2021). We
focus on token pruning methods in this paper.

Since these two groups of methods achieve in-
ference acceleration from two orthogonal perspec-
tives, a natural idea is to combine them together to
obtain faster inference speed. The simplest way to
combine them is the pipeline approach (Kim and
Cho, 2021; Guskin et al., 2021, 2022): preparing a
compressed small language model first and apply-
ing dynamic computation algorithm upon it next.
Though proved effective, we argue that the pipeline
approach is sub-optimal since model compression
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and dynamic computation procedures are individu-
ally designed and may not be compatible with each
other that much. As a result, the potential of such
an approach has not been fully exploited.

To address this issue and achieve better
speed-performance trade-off, we propose a novel
knowledge distillation framework named Length-
Adaptive Distillation (abbr. LAD) that transfers
the knowledge from the large language model to
a small language model while helping the small
model to get adapted to dynamic token pruning.
Drawing inspirations from Jiao et al. (2020b), we
adopt a two-stage distillation paradigm where a
general-purpose small language model is first dis-
tilled on large-scale general corpora and then task-
specific knowledge is injected on task-specific
datasets. In general distillation, we mainly con-
sider two issues: (1) how to transfer high-quality
general knowledge from the teacher and (2) how
to customize the student model for dynamic token
pruning. For (1), we propose to transfer token-
level knowledge of two types: hidden represen-
tations that encode the contextual semantic infor-
mation of tokens and attention dependency that is
generally adopted as the indication of token im-
portance (Goyal et al., 2020; Kim and Cho, 2021)
for token pruning. The alignment of hidden repre-
sentations between the teacher and the student is
achieved by contrastive distillation and the match-
ing of attention dependency is fulfilled by mean
square error. While for (2), we employ a teacher
with an unpruned computation graph to teach a
student with dynamic token pruning where the im-
portance of tokens is measured by the attention
scores, and the retention configuration is sampled
from a uniform distribution. As only the unpruned
tokens have their representations in the student’s
last layer, we train the student by enforcing the
remaining token representations to be close to the
teacher’s corresponding representations as well as
to reconstruct the complete token representations
of the teacher’s. Then in task-specific distillation,
we first employ data augmentation to enlarge the
task datasets, then distill the student following the
dynamic token pruning setting used in general dis-
tillation but transfer more task-relevant knowledge
by enforcing the sentence embedding of the student
to be close to the teacher via contrastive distillation.

We conduct experiments on GLUE bench-
mark (Wang et al., 2018). We first prove that
our knowledge distillation method outperforms ad-

vanced knowledge distillation methods on a stan-
dard setting (i.e., without token pruning). More-
over, we prove that with the help of the customized
length-adaptive distillation, our methods success-
fully take advantage of both model compression
and dynamic computation, and achieve dramati-
cally better speed-performance trade-off compared
with the pipeline approach. We release our imple-
mentation to facilitate future research1.

To sum up, our contributions are three folds:
• We propose a two-stage knowledge distillation

framework LAD that effectively combines model
compression and dynamic computation to achieve
faster speedup in inference.
• We customize a small language model for dy-

namic token pruning by cast a length-adaptive set-
ting on the student and enforcing it to mimic and
reconstruct the teacher’s representations.
• We conduct comprehensive experiments on

the GLUE benchmark and verify that our method
can achieve a superior speed-performance trade-off
compared with other methods.

2 Related Work

2.1 Language Model Compression
There are various methods to compress a large
language model into a small one including prun-
ing (Fan et al., 2019; Gordon et al., 2020), quan-
tization (Zafrir et al., 2019; Shen et al., 2020; Bai
et al., 2021), weight sharing (Dehghani et al., 2018;
Lan et al., 2019), knowledge distillation (Hinton
et al., 2015; Sanh et al., 2019; Jiao et al., 2020b)
and so on. We focus on knowledge distillation in
this paper, where a large model acts as the teacher
and transfers its knowledge to a smaller student
model. Jiao et al. (2020b) proposed general-then-
task-specific distillation framework and transferred
the knowledge in hidden states, attention matri-
ces, and output logits in different distillation stages.
Wang et al. (2020b, 2021) matched the attention
dependencies derived from the query, the key and
the value vectors in the self-attention module. Sun
et al. (2020); Fu et al. (2021) employed contrastive
distillation to match the hidden states. Park et al.
(2021); Liu et al. (2022a) structured the knowledge
as the relations of hidden states and enforced the
relations between the teacher and the student to
be consistent. Compared with existing works, our
method not only addresses the issue of improving
the performance of small language models with

1https://github.com/EMNLP-LAD/LAD
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fixed computation graphs as they did, but also en-
dows the small language model with good adapta-
tion ability for dynamic token pruning to achieve
improved inference efficiency.

2.2 Dynamic Computation

Different from language model compression meth-
ods that produce a small model with fixed compu-
tation graph, dynamic computation approaches fix
the model architecture and achieve inference ac-
celeration by dynamically pruning its computation
graph (Han et al., 2021). Liu et al. (2020); Xin
et al. (2020); Zhou et al. (2020) studied depth-level
early exiting where samples with different diffi-
culty are output from different layers (i.e., the more
difficult the sample is, the more layers it would
go through before getting its final output). While
(Goyal et al., 2020; Kim and Cho, 2021; Kim et al.,
2021; Ye et al., 2021; Guan et al., 2022; Modarressi
et al., 2022; Liang et al., 2023) proposed width-
level token pruning where unimportant tokens are
progressively removed as the calculation goes from
shallow to deep layers. Among the two lines of
research, we focus on token pruning approaches.
Recently, Guskin et al. (2021, 2022) explored the
combination of dynamic token pruning and model
compression to make more aggressive acceleration
by simply applying token pruning upon a given
compressed language model in a pipeline manner.
Different from these works, we highlight the im-
portance the adaptation from a fixed computation
graph to a dynamic one for small language models,
and propose a knowledge distillation framework to
fulfill this goal.

3 Methodology

Our framework adopts a two-stage knowledge dis-
tillation paradigm (Jiao et al., 2020b) where a ran-
domly initialized small language model is first dis-
tilled with general knowledge, and is then taught
with task-specific knowledge. Along with the dis-
tillation process, the student not only absorbs the
knowledge transferred from the teacher, but also
gets adapted to dynamic token pruning. After the
two distillation stages, we employ evolutionary
search (Cai et al., 2019; Wang et al., 2020a; Kim
and Cho, 2021) to obtain a set of length configu-
rations for token pruning with different speedups.
In the following subsections, we first introduce our
knowledge distillation algorithms in general and
task-specific distillation stages, then demonstrate

how to apply token pruning upon our model.

3.1 General Distillation

General distillation aims to transfer the general
knowledge held in a pre-trained language model
(i.e., RoBERTabase) to a randomly initialized small
language model that has fewer layers and hidden
dimensions with large-scale open-domain corpora
(i.e., Wikipedia). Existing works (Sanh et al., 2019;
Jiao et al., 2020b; Sun et al., 2020; Wang et al.,
2021) have designed various effective algorithms
by considering different knowledge sources, knowl-
edge types, distance metrics, etc. However, they all
focus on improving the evaluation performance of
the student model in downstream tasks with fixed
computation graphs. When directly adapting ex-
isting models to dynamic token pruning (Kim and
Cho, 2021), we find that these models get poor
performance when we adopt an aggressive prun-
ing ratio. Therefore, to effectively combine model
compression and dynamic token pruning to achieve
a better speed-performance trade-off, we propose
a novel distillation algorithm that not only trans-
fers high-quality knowledge to the student but also
helps the student to get adapted to dynamic token
pruning, especially to a high-pruning extent. We
first introduce what form of knowledge we prepare
to transfer and how to transfer, then we present how
to effectively get the student adapted to dynamic
token pruning.

3.1.1 Knowledge Transfer
One of the vital problems in knowledge distilla-
tion is knowledge transfer. In transformer distil-
lation, hidden representations (Jiao et al., 2020b),
attention dependencies (Wang et al., 2020b), rela-
tions among representations (Park et al., 2021) all
have been considered as useful knowledge to be
transferred. Drawing on existing works, we first
consider the hidden representations as the funda-
mental knowledge that mainly guides the learning
of a student. Besides, considering that a majority
of dynamic token pruning approaches (Goyal et al.,
2020; Kim and Cho, 2021; Kim et al., 2021) have
demonstrated that the attention scores derived from
attention matrices of self-attention mechanism can
act as a good indicator for token importance. There-
fore, to produce a customized student model for
token pruning, we additionally involve attention
dependencies as the knowledge to be transferred.

To elaborate on our design in knowledge trans-
fer, we first briefly describe the calculations of the
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Figure 1: Illustration of general distillation in LAD. For an input text, the student has two branches of calculation:
(1) the standard forward pass without token pruning on the left and (2) the forward pass with token pruning on
the right. For the left part, we align the output of its last layer to the teacher’s penultimate layer using Lori. For
the right part, we not only align the student’s remaining representations after token pruning to the corresponding
representations of the teacher in the penultimate layer using Lalign, but also encourage the remaining representations
to reconstruct the representations of the whole input with the help of the teacher’s last layer as decoder using Lrec.

transformer model together with some necessary
notations. Formally, given a sequence of input
text, a sub-word tokenizer first splits it into n to-
kens x = [w1, w2, . . . , wn]. Then through an em-
bedding layer, each token in x is converted as a
dense vector through a lookup table, resulting in
H0 = [h0

1,h
0
2, . . . ,h

0
n] where h0

i ∈ Rd. Then,
the output of the embedding layer is passed to L
stacked transformer (Vaswani et al., 2017) layers
which are mainly comprised of a multi-head self-
attention module and a position-wise feed-forward
network. The self-attention module produces the
attention matrices Al ∈ Rh×n×n that encodes the
dependencies among the input tokens using h atten-
tion heads. The output of the l-th layer is denoted
as H l = [hl

1,h
l
2, . . . ,h

l
n].

With these notations, we now go back to the
knowledge distillation setting. Given a teacher
model with Lt layers and a student model with
Ls layers, we feed the same text into them
and can obtain the corresponding output hidden
states {H l

t}Lt
l=0, {H l

s}Ls
l=0 and attention matrices

{Al
t}Lt

l=1, {Al
s}Ls

l=1. We suppose the student’s ls-th
layer is aligned with the teacher’s lt-th layer, then
the outputs of the student (i.e., H ls

s and Als
s ) should

be close to the teacher’s (i.e., H lt
t and Alt

t ). For
aligning hidden states, instead of aligning sentence-
level representations (Sun et al., 2020), we assume
that token-level representations are more suitable
for general distillation since they contain more fine-

grained knowledge. Drawing inspirations from
contrastive learning (Chen et al., 2020; He et al.,
2020; Tian et al., 2019), we design a contrastive
objective to achieve this goal. For a hidden repre-
sentation of the student hls

s,i, we first conduct linear
projection to get zls

s,i ∈ Rd that have the same hid-
den dimensions as the teacher model. The positive
representation that it is enforced to match is the
corresponding teacher’s representation hlt

t,i, while
there remain multiple choices for the negatives.
Different from previous works that utilize the rep-
resentations of tokens in the same input of text as
negatives (Tao et al., 2022), we found that simply
using randomly sampled token representations per-
forms better. As demonstrated by previous works
that contrastive learning requires a large number of
negatives, we employ a memory queue (He et al.,
2020) M = {hlt

t,j}mj=1 with memory size m to
avoid the unaffordable memory cost brought by
in-batch negatives with enlarged batch size (Chen
et al., 2020). Then the token-level contrastive dis-
tillation objective for x is formulated as:

Jhid = −
n∑

i=1

log
exp(s(zls

s,i,h
lt
t,i)/τ)∑

h
lt
t,j∈M

exp(s(zls
s,i,h

lt
t,j)/τ)

,

(1)
where τ is the temperature and s(·) denotes cosine
similarity. Different from He et al. (2020) that
using momentum encoder to make the stored rep-
resentations stable and consistent during training,
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we find that directly using the fixed teacher’s repre-
sentations without the help of momentum encoder
yield better performance as the representations are
naturally consistent. While for aligning attention
dependencies, we follow Jiao et al. (2020b) to op-
timize the mean square error (MSE) between the
attention matrices of the teacher and the student:

Jatt = −MSE(Als
s ,A

lt
t ). (2)

The overall objective for knowledge transfer is:

J (H ls
s ,Als

s ,H
lt
t ,A

lt
t ) =Jhid(H

ls
s ,H lt

t )

+Jatt(A
ls
s ,A

lt
t ).

(3)

3.1.2 Length-Adaptive Distillation
Based on the design of knowledge transfer, we
then focus on the second goal: how to effectively
get the student accustomed to token pruning while
transferring general knowledge. We achieve this
goal by employing a teacher without token pruning
to teach the student with dynamic token pruning.

Token Pruning In the standard setting of dy-
namic token pruning, there are two major issues:
how to measure the importance of tokens in each
layer and how to decide the number of tokens main-
tained in each layer. We follow the typical solution
where the importance measurement is the sum of
attention scores a token received from other tokens
within a sentence (Goyal et al., 2020) and the length
configuration for token pruning is obtained by sam-
pling from a pre-defined range in training and using
evolutionary search (Cai et al., 2019; Wang et al.,
2020a; Kim and Cho, 2021) in inference. Given
an input sequence, we first sample a length con-
figuration N = [n1, n2, . . . , nLs ] for the student
with ratio r with the sampling strategy proposed
by Kim and Cho (2021) where nl denotes the num-
ber of tokens maintained in the l-th layer of the
student. Hereby, the output of the student on its
top layer only contains nLs token representations
ĤLs

s = [ĥLs
z1 , ĥ

Ls
z2 , . . . , ĥ

Ls
znLs

] and the correspond-

ing attention matrices ÂLs
s formed by them, where

Z = {z1, z2, . . . , znLs
} is the original indices of

the remaining tokens. Based on Z , we can also
extract the corresponding teacher’s hidden states
in the teacher’s lt-th layer Ĥ lt

t from H lt
t and then

calculate the attention matrices Âlt
t with them.

Training Based on the pruned student’s repre-
sentations, we propose two objectives that aim to
get the student accustomed to token pruning. The

first one encourages the remaining representations
of the student to recover the representations of the
whole input. To achieve this goal, we first con-
struct the masked input which is the concatenation
of two parts: (1) the remaining representations in
the student’s top layer after pruning, and (2) the
query of the pruned representations constructed by
adding the positional embedding of the pruned po-
sitions and the embedding of the mask token [M]
token. The masked input is linearly projected to
fit the hidden dimensions of the teacher. Then, we
need to reconstruct the representations based on
the masked input through a decoder. Instead of
initializing a new decoder to predict the pruned
tokens (Liu and Shao, 2022), we propose to take
advantage of the teacher model by borrowing its
last transformer layer as the decoder. This design
not only enjoys the good ability of representation
learning of the pre-trained teacher but also reduces
the number of parameters that need to be optimized.
The borrowed decoder is frozen during the training
of the student. We denote the reconstructed outputs
as H̃s and Ãs, and form the reconstruction loss as:

Lrec = J (H̃s, Ãs,H
Lt
t ,ALt

t ) (4)

The second one is to align the remaining repre-
sentations of the student with the corresponding
ones of the teacher. Notice that in Eq. 3.1.2 we
feed the representations of the Ls-th layer of the
student to the last layer of the teacher, implicitly
aligning the student’s Ls-th layer with the Lt−1-th
layer. Therefore, we form the alignment loss as:

Lalign = J (ĤLs
s , ÂLs

s , ĤLt−1
t , ÂLt−1

t ). (5)

In addition to the two objectives that aim to get
the student accustomed to token pruning, we also
transfer the knowledge without token pruning to
stabilize training:

Lori = J (HLs
s ,ALs

s ,HLt−1
t ,ALt−1

t ). (6)

The overall objective for general distillation is the
weighted sum of the three objectives:

LGD = λ1Lori + λ2Lalign + λ3Lrec. (7)

We name the model produced by general distilla-
tion as LADGD.

3.2 Task-Specific Distillation
Based on the model LADGD produced by general
distillation, we inject task-specific knowledge with
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the task-specific teacher, while further improving
the customization for dynamic token pruning under
the prediction mode of the task (e.g., classification).
This distillation stage is on the training set of a
downstream task. As the labeled task data is usu-
ally far less than general corpora, we follow Jiao
et al. (2020b); Liu et al. (2022b) to conduct data
augmentation (DA) to enlarge the task data. We fo-
cus on classification tasks in this paper, therefore in
task-specific distillation, we focus on transferring
the knowledge held in the start token (e.g., <s> in
RoBERTa) instead of considering all tokens. Sim-
ilar to general distillation, we sample the length
configuration for token pruning with the same ra-
tio r as general distillation for the student while
keeping the teacher unpruned. The (projected) rep-
resentations of the start token of the student and the
teacher are denoted as ẑLs

s,0 and hLt
t,0. We employ

contrastive distillation to transfer the knowledge
with the help of the memory queue:

LTD = − log
exp(s(ẑLs

s,0,h
Lt
t,0)/τ)∑

hj∈M exp(s(ẑLs
s,0,hj)/τ)

. (8)

After distillation with Eq. 3.2, we fine-tune the
model to finally adapted it to downstream tasks.
We denote the model produced by task-specific dis-
tillation as LADTD or LADTD w/ DA depending
on whether the training set of the task is augmented.

3.3 Configuration Search for Token Pruning
Given a small student model produced by our
two-stage knowledge distillation framework, ac-
celeration through dynamic token pruning can
be achieved given a length configuration N =
[n1, n2, . . . , nLs ] where nl denotes the number of
remained tokens in layer l. Naturally, there is a
trade-off between accuracy and efficiency with
various choices of N and we need to find a se-
ries of optimal length configurations to facilitate
various application scenarios. We achieve this
goal by conducting evolutionary search (Cai et al.,
2019) following Kim and Cho (2021). Specifi-
cally, we first initialize the candidate set of length
configurations by random sampling, then itera-
tively construct new configurations by mutation
and crossover operations and update the candi-
date set if some newly constructed configurations
achieve better accuracy-efficiency trade-off. After
searching, we obtain a set of optimal length config-
urations S = {N ∗

1 ,N ∗
2 , . . . ,N ∗

m} that lies in the
accuracy-efficiency Pareto frontier. In our experi-

ments, we manually select one length configuration
that achieves good accuracy as well as considerable
speed-up from S and report the results.

4 Experiment

4.1 Datasets and Metrics
We conduct experiments on 8 generally adopted
tasks from GLUE benchmark (Wang et al., 2018)
following previous work (Jiao et al., 2020b; Wang
et al., 2021), including 2 single sentence tasks:SST-
2 (Socher et al., 2013), CoLA (Warstadt et al.,
2019), and 6 text pair tasks: MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), RTE (Ben-
tivogli et al., 2009), MRPC (Dolan and Brockett,
2005), STS-B (Cer et al., 2017), QQP (Chen et al.,
2018). As for performance metrics, we report
Spearman’s rank correlation coefficient (Spear) on
STS-B, Matthews correlation coefficient (Mcc) on
CoLA, and accuracy (Acc) on the other 5 tasks. To
evaluate the inference efficiency, we use FLOPs as
the metric and employ torchprofile 2 as the tool to
calculate following Kim and Cho (2021).

4.2 Implementation Details
We adopt RoBERTa-base (Liu et al., 2019) as
the teacher model and utilize a small transformer
model with 6 layers, 384 hidden dimensions and
12 attention heads as the student following Wang
et al. (2021). We conduct two-stage knowledge dis-
tillation. In general distillation, we prepare English
Wikipedia and BookCorpus (Zhu et al., 2015) as the
training corpora and set the max sequence length as
128. We set the size of memory queue m = 16384,
the temperature τ = 0.07, the weights for different
loss terms λ1 = 1.0, λ2 = λ3 = 0.5. We randomly
sample the token pruning ratio r from {0.1, 0.2, . . . ,
0.7} for each training instance for length-adaptive
distillation. We use AdamW (Loshchilov and Hut-
ter, 2017) as the optimizer and train the student
model with a batch size of 256, the learning rate as
6e-4, the maximum training steps as 400k, and the
warmup ratio as 0.01. In task-specific distillation,
we prepare two types of datasets: the original train-
ing set of each task, and their augmentation version
where each sample is augmented using contextual
world replacement with the same data augmenta-
tion setting of Jiao et al. (2020b). The hyperparam-
eters m, τ and r are the same as general distillation.
When using the original training sets, we train the
student with a batch size of 32, the learning rate

2https://github.com/zhijian-liu/torchprofile.
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Model
SST-2 MRPC RTE STS-B MNLI-m QNLI QQP CoLA

Acc S↑ Acc S↑ Acc S↑ Spear S↑ Acc S↑ Acc S↑ Acc S↑ Mcc S↑
Pre-trained Language Models without Token Pruning

BERTbase 92.8 0.2× 90.3 0.2× 61.0 0.2× 88.4 0.2× 84.6 0.2× 91.3 0.2× 91.2 0.2× 56.8 0.2×
RoBERTabase 94.8 0.2× 90.2 0.2× 78.7 0.2× 91.2 0.2× 87.6 0.2× 92.8 0.2× 91.9 0.2× 63.6 0.2×

General Distillation Models without Token Pruning

TinyBERT 88.7 1.0× 87.3 1.0× 67.2 1.0× 88.1 1.0× 81.0 1.0× 89.1 1.0× 90.0 1.0× 36.5 1.0×
MiniLMv2 90.9 1.0× 86.8 1.0× 66.1 1.0× 88.1 1.0× 81.9 1.0× 89.6 1.0× 90.3 1.0× 40.7 1.0×
LADGD 91.6 1.0× 88.7 1.0× 67.9 1.0× 88.5 1.0× 82.3 1.0× 90.2 1.0× 90.7 1.0× 41.0 1.0×
LADTD 93.7 1.0× 89.2 1.0× 68.6 1.0× 88.2 1.0× 84.8 1.0× 91.1 1.0× 91.7 1.0× 44.7 1.0×
LADTD w/ DA 93.5 1.0× 90.2 1.0× 69.7 1.0× 89.4 1.0× 86.2 1.0× 91.5 1.0× 91.7 1.0× 50.9 1.0×

General Distillation Models with Token Pruning

TinyBERT 88.5 5.4× 84.7 3.3× 52.3 6.4× 87.3 3.6× 80.5 2.6× 88.0 2.8× 89.7 3.3× 35.1 8.9×
MiniLMv2 89.5 5.7× 84.5 3.4× 57.7 6.2× 87.6 3.6× 81.0 2.7× 88.3 2.8× 90.2 3.5× 40.3 8.6×
LADGD 90.4 5.8× 87.5 3.5× 63.5 7.8× 88.1 3.7× 81.5 2.8× 89.5 2.8× 90.5 3.8× 40.8 8.7×

Task-specific Distillation / Adaptation Models with Token Pruning

TinyBERT w/ Ada 88.6 6.2× 85.1 4.0× 60.6 6.3× 87.4 3.2× 80.0 2.7× 88.1 3.2× 89.7 4.0× 36.7 8.4×
MiniLMv2 w/ Ada 91.2 6.3× 85.3 4.1× 59.6 6.3× 87.6 3.7× 81.2 2.8× 88.1 2.9× 90.2 3.7× 39.1 8.2×
LADTD 93.0 6.1× 87.0 4.1× 65.3 5.8× 87.9 4.0× 84.2 4.1× 90.2 3.9× 91.4 5.9× 44.8 8.9×
LADTD w/ DA 93.3 7.2× 89.9 4.9× 67.1 8.0× 89.1 4.9× 85.6 4.5× 90.2 4.3× 91.4 6.1× 47.6 8.9×

Table 1: Performance and speedup (S↑) on GLUE benchmark. LADGD denotes the model produced by gen-
eral distillation, LADTD denotes the model produced by general and task-specific distillation, DA denotes data
augmentation for the task dataset, and Ada denotes the adaptive training baseline benchmarking against LADTD.

as 3e-5, the maximum training epochs as 50 for
CoLA and 20 for other tasks, and the warmup ra-
tio as 0.1. When on the augmented training sets,
the batch size is 256, the learning rate is 1e-4, the
warmup ratio is 0.06, and the maximum training
epochs are the same as on the original training sets.
In the following fine-tuning stage, we choose the
learning rate from {1e-6, 2e-6, 3e-6} and the batch
size from {16, 32}. For dynamic token pruning, we
use the same configuration of evolutionary search
as Kim and Cho (2021).

4.3 Baseline Methods

Baselines for General Distillation The first
group of baselines is pure model compression meth-
ods using advanced knowledge distillation tech-
niques. We implement TinyBERT (Jiao et al.,
2020b) and MiniLMv2 (Wang et al., 2021), two
representative knowledge distillation methods, un-
der the same distillation setting (i.e., model size,
training data, optimization hyperparameters, etc.)
as ours. We compare two perspectives with these
baselines: (1) the standard evaluation of model
performance (i.e., fine-tuning on each task and
testing without token pruning) and (2) the speed-
performance trade-off under dynamic token prun-
ing without any types of adaptation.

Baselines for Task-Specific Distillation The
second type of baseline is the adaptation ap-

proach which adapts a given language model to
dynamic token pruning. Following pipeline ap-
proaches (Guskin et al., 2021, 2022) that apply
dynamic token pruning upon compressed small lan-
guage models, we adopt the sandwich rule and
inplace distillation (Yu and Huang, 2019) used in
LAT (Kim and Cho, 2021) as the baseline (denoted
as Ada) to be compared with our task-specific dis-
tillation method.

4.4 Overall Performance
We provide the overall evaluation results of the
performance and the speedup of our method and
baselines in Table 1. First, it can be observed from
the second block that under standard evaluation set-
ting (i.e., without token pruning), our model with
general distillation (i.e., LADGD) consistently out-
performs advanced general distillation methods on
all tasks. With task-specific distillation and data
augmentation, the performance can be further im-
proved. Then we compare the performance of gen-
erally distilled models under the same token prun-
ing setting in the third block. We find that LADGD

can still outperform baselines on both performance
and inference speedup under the selected pruning
configurations. Finally, we compare the perfor-
mance of our task-specific distillation method with
existing pipeline approaches with adaptation to to-
ken pruning in the bottom block. It can be seen
that LADTD not only achieves better performance
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Figure 2: The speed-performance curves on four tasks.

compared with LADGD but also outperforms base-
lines. With data augmentation, we achieve dramati-
cally better performance, where we achieve 6.1×
speedup while improving the performance by 2.1%
on average compared with static inference without
token pruning using LADGD.

4.5 Discussions
There are several critical designs in our frame-
work. We analyze these designs by drawing speed-
performance curves under different settings on four
representative tasks. We choose two low-resource
tasks MRPC and RTE, one moderate-resource task
QNLI, and one high-resource task MNLI.

General Distillation In general distillation, we
introduce three objectives Lori, Lalign and Lrec

weighted by λ1, λ2, λ3 to jointly transfer general
knowledge and get the student accustomed to to-
ken pruning. We first study the influence of differ-
ent choices of these weights and find that setting
λ1 = λ2 + λ3 and λ2 = λ3 yield the best perfor-
mance. Furthermore, we study the effectiveness
of these objectives and plot Figure 2. Here we
focus on the curves corresponding to the top 5 la-
bels on the legend. Among these models, there are
two models that are not obtained from specifically
designed training for token pruning: MiniLMv2
and LADGD w/o align,rec. Compared with these
two baselines, we find the introduction of Lalign

and Lrec both improve the performance under to-
ken pruning and the combination of them performs
better, verifying that our proposed length-adaptive
distillation effectively help the student get accus-
tomed to token pruning. It can also be observed
that the improvement of our general distillation
method over baselines under token pruning is more
considerable on low-resource tasks (i.e., MRPC
and RTE). The reason lies in that the fine-tuning
steps on high-resource tasks are much more than on
low-resource tasks, weakening the fitness for token
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Figure 3: The speed-performance curves of different
pruning ratio on MRPC.

pruning learned by our general distillation. This
issue can be well addressed by our task-specific
distillation algorithm discussed in the following.

Task-Specific Distillation Based on the gen-
erally distilled model, we further conduct task-
specific distillation on the training sets of down-
stream tasks with or without data augmentation
(DA). From Figure 2 we find that task-specific dis-
tillation brings substantial improvement for all the
tasks to a different extent. For low-resource tasks
(i.e., MRPC and RTE), although LADTD signifi-
cantly outperforms the baselines trained with no
specification for token pruning (i.e., MiniLMv2 and
LADGD w/o align,rec), it makes a slight improve-
ment over LADGD due to limited task data. Hence
with data augmentation, LADTD w/ DA performs
dramatically better than LADTD. While for tasks
with moderate or abundant amounts of instances
(i.e., QNLI and MNLI), we find that LADTD brings
considerable improvement and data augmentation
is sort of the icing on the cake. These findings
verify the effectiveness of task-specific distillation
and prove that data augmentation is a solution to
the data scarcity issue on low-resource tasks.
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The Choice of Pruning Ratio Recall that in both
general and task-specific distillation, the student is
applied with token pruning with ratio r. To explore
the effect of the ratio as well as to find the best
choice, we adopt r ∈ {0.3, 0.5, 0.7} in both gen-
eral and task-specific distillation on MRPC. It can
be observed from Figure 3 that the larger r is, the
better speed-performance trade-off can be achieved
whether the training set is augmented or not. More
surprisingly, we also find that training with a larger
pruning ratio brings consistent improvement at all
speedups, which indicates that token pruning can
be considered a kind of regularization in distillation
that helps the student learn better.

5 Conclusion

In this paper, we propose a two-stage knowledge
distillation framework LAD that transfers general
and task-specific knowledge to the student while
helping the student to get adapted to dynamic token
pruning. We conduct comprehensive experiments
on the GLUE benchmark. The evaluation results
prove that our method can effectively take advan-
tage of model compression and dynamic compu-
tation and achieve a superior speed-performance
trade-off for inference acceleration.

Limitations

We achieve superior speed-performance trade-off
in inference acceleration by a two-stage knowledge
distillation framework. In the first general distilla-
tion stage, in order to jointly transfer the general
knowledge and get the student accustomed to dy-
namic token pruning, we introduce two calculation
branches for the student. This design implies that
the student needs to do two forward passes in one
training iteration, increasing the computation over-
head in training. In the future, we plan to explore
how to unify the two computation branches to im-
prove training efficiency.
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