
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 4283–4294
December 6-10, 2023 ©2023 Association for Computational Linguistics

HadSkip: Homotopic and Adaptive Layer Skipping of Pre-trained
Language Models for Efficient Inference

Haoyu Wang§, Yaqing Wang†, Tianci Liu§, Tuo Zhao∗, and Jing Gao§
§Purdue University, West Lafayette, IN, USA

†Google Research, New York, NY, USA
∗Georgia Institute of Technology, Atlanta, GA, USA

§{wang5346,liu3351,jinggao}@purdue.edu,
†yaqingwang@google.com,
∗tourzhao@gatech.edu

Abstract

Pre-trained language models (LMs) have
brought remarkable performance to numerous
NLP tasks. However, they require significant
resources and entail high computational costs
for inference, making it challenging to deploy
them in real-world and real-time systems. Ex-
isting early exiting methods aim to reduce com-
putational complexity by selecting the layer at
which to exit, but suffer from the limitation
that they have to sequentially traverse through
all layers prior to the selected exit layer, which
lacks flexibility and degrades their performance.
To solve this problem, we propose a homotopic
and adaptive layer skipping fine-tuning method
named HadSkip. HadSkip adaptively selects
the layers to skip based on a predefined budget.
Specifically, we introduce a learnable gate be-
fore each layer of the LM to determine whether
the current layer should be skipped. To tackle
various challenges in training brought by dis-
crete gates and budget constraints, we propose
a fine-grained initialization strategy and homo-
topic optimization strategy. We conduct exten-
sive experiments on the GLUE benchmark, and
experimental results demonstrate the proposed
HadSkip outperforms all state-of-the-art base-
lines significantly.

1 Introduction
Pre-trained language models (LMs), such as
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and DeBERTa (He et al., 2020), have sig-
nificantly improved performance across various
natural language processing (NLP) tasks, includ-
ing paraphrase identification (Wang et al., 2021),
natural language inference (Jiang and de Marneffe,
2019), sentiment classification (Gao et al., 2019),
and so on. Pre-trained LMs are typically built by
stacking transformer (Vaswani et al., 2017) layers
or their variants, where the self-attention mecha-
nism within each layer often exhibits high compu-
tational complexity. Consequently, the inference
complexity of pre-trained LMs has been a bottle-

neck for deploying them in latency-sensitive or
latency-constrained scenarios (Xin et al., 2020).

To comply with the demand for inference-
efficient models, several approaches have been
proposed to accelerate pre-trained LM inference.
These methods include weight quantization (Zafrir
et al., 2019; Kim et al., 2021), pruning (Liu et al.,
2021), knowledge distillation (Sanh et al., 2019;
Jiao et al., 2019), and early exiting (Xin et al., 2020;
Zhou et al., 2020; Xin et al., 2021). Among them,
early exiting methods become more appealing as
they do not rely on specific hardware support, such
as custom chips (Liu et al., 2023) or GPUs, and
they do not require training an efficient model from
scratch on large pre-training corpora, thus provid-
ing a more cost-effective solution. Early exiting
methods attach a classifier to each transformer layer
and aim to determine if the model should exit (stop
inference) from the current layer based on a crite-
rion or learned decision. Both the backbone model
and the classifiers are jointly trained in the fine-
tuning stage.

Although early exiting methods enable the selec-
tion of a layer to exit based on the input sequence,
they still require the input to pass through the trans-
former layers sequentially before exiting. This pre-
vents the model from choosing desired uncontigu-
ous layers. For example, with a 2-layer budget, for
some input sequences, choosing the second and
fifth layers of the model could achieve the most su-
perior performance. However, early exiting meth-
ods can only traverse the layers sequentially and
exit at most at the second layer, thereby missing out
on the optimal combination of the second and fifth
layers and potentially leading to degraded model
accuracy as a result of suboptimal layer selection.

To address this issue, we propose a homotopic
and adaptive layer skipping fine-tuning method
named HadSkip. The proposed HadSkip selects
which layers can be skipped based on the diffi-
culty of input sequences and pre-defined budget.

4283



Specifically, we introduce a binary learnable gate
before each transformer layer of the LM to control
whether the model can skip the current layer. This
allows the model to use different gate values for dif-
ferent input sequences, satisfying the inference bud-
get requirements. However, learning binary gates
is a non-trivial task. The binary gates are discrete
and it is difficult to optimize by gradient-based op-
timizers directly. Besides, the presence of a budget
constraint can lead to early optimization collapse,
particularly when the budget value is small. To
tackle them, we design an elaborated three-stage
training strategy to tackle this challenge. The first
stage finetunes the backbone model and uses it to
initialize the transformer layers. Next, these trans-
former layers are frozen and the gate parameters are
initialized. In the third stage, the transformer layers
and gates are trained jointly. To compute the gra-
dient of gates, we employ a second-order gradient
approximation method ReinMax (Liu et al., 2023).
Further, we propose a homotopic optimization strat-
egy, which converts the optimization process into
a sequence of problems ranging from a large bud-
get to a small budget. On one hand, this ensures
a smoother and more stable optimization process.
On the other hand, it avoids skipping a large num-
ber of layers at the beginning of training and losing
valuable information from the pre-trained model.

The contributions of the paper are summarized
as follows: 1) We propose a homotopic and adap-
tive layer skipping fine-tuning method to acceler-
ate the inference of pre-trained LMs. It is more
flexible and economical compared to existing LM
inference acceleration methods. 2) We design a
three-stage and homotopic optimization strategy.
This strategy makes the optimization more stable
and easier to solve. 3) We conduct extensive exper-
iments on the GLUE benchmark. Results show that
the proposed HadSkip outperforms baselines sig-
nificantly and achieves a good efficiency-accuracy
trade-off, e.g., preserving 95.7% of BERT’s perfor-
mance with only half the layers on average.

2 Related Work
Existing approaches for accelerating the inference
of pre-trained language models can be broadly cat-
egorized into two types: 1) model compression-
based methods and 2) early exiting based methods.
The proposed method is more relevant to early ex-
iting based methods, which are discussed in more
detail as follows. The discussion about the model
compression-based methods can be found in the

appendix.
Early exiting methods enable the production

of inference-efficient models for specific infer-
ence budgets during the fine-tuning stage. These
methods draw inspiration from adaptive computa-
tion (Graves, 2016) techniques in recurrent neural
networks and BranchyNet (Teerapittayanon et al.,
2016) in computer vision. The fundamental con-
cept behind early exiting methods is to identify
the layer at which to exit early, rather than sequen-
tially passing through all layers. Based on the cri-
teria of choosing the exiting layer, they can be
organized into three strategies. The first is score-
based early exiting. (Liu et al., 2020; Xin et al.,
2020; Kaya et al., 2019) use the entropy of the
prediction probability and the maximum of the pre-
dicted distribution as the score for exit determina-
tion respectively. The second is learning to exit.
BERxiT (Xin et al., 2021) used a fully connected
layer right after each layer to produce decisions if
the model needs to exit from the current layer. The
third is patience-based early exiting. For example,
PABEE (Zhou et al., 2020), SENTEE (Li et al.,
2021) and LeeBERT (Zhu, 2021) were designed
to use scores of multiple layers to determine if the
model could exit. Recently, PCEE-BERT (Zhang
et al., 2022) also combined the score-based method
with the patience-based early exiting method to im-
prove accuracy. Despite these advancements, early
exiting methods still require sequential traversal
through multiple layers. However, for many input
sequences, the optimal layers for inference could
be non-contiguous. This lack of flexibility in early
exiting methods can limit their performance. To
address this limitation, inspired by BlockDrop (Wu
et al., 2018), we propose a homotopic and adaptive
layer skipping fine-tuning method named HadSkip,
which can dynamically select which layers can be
skipped based on the difficulty of input sequences
and the pre-defined budget. Concurrently, Smart-
BERT (Hu et al., 2023) proposes to combine layer
skipping and early exiting based on cross-layer con-
trastive learning.

3 Preliminaries
In this section, we first introduce the architecture of
the pre-trained language model (PLM) and analyze
its complexity for inference.
3.1 Pre-trained Language Model
A pre-trained language model usually consists of
embedding layers, multiple transformer layers, and
an output layer. Specifically, for an input sequence

4284



x, we obtain its corresponding embedding first:

e = etoken(x) + epos(x) + eseg(x),

where etoken, epos, and eseg are the token embed-
ding layer, position embedding layer and segment
embedding layer respectively. Then the embedding
e will be fed into transformer layers, which can be
formulated as h0 = e and

hi = fi(hi−1; θi), i = 1, 2, ..., L, (1)

where hi, θi, and fi are the output, parameters,
and mapping function of the i-th transformer layer
respectively. In the end, the output of the last trans-
former layer passes the output layer and generates
logits, which can be represented as o = fout(hL).
3.2 Inference Complexity
The inference complexity consists of the complex-
ity of three parts: 1) embedding layers, 2) trans-
former layers, and 3) the output layer. The time
complexity of both the embedding layers and the
output layer is approximatelyO(d3). The complex-
ity of transformer layers is O(4md2L + m2dL),
where m represents the sequence length, d denotes
the embedding dimensionality, and L signifies the
number of transformer layers. Based on the analy-
sis, it is evident that the complexity of transformer
layers significantly exceeds that of the embedding
layers and the output layer. Hence, this paper pro-
poses to skip some transformer layers to reduce
inference complexity, leveraging the expected num-
ber of transformer layers as a budget.
4 Methodology
Given an L-layer pre-trained language
model (PLM) and a training set D = {(xi, yi)}ni=1,
where xi is the input sequence, yi is the corre-
sponding label and n is the number of training
data, the aim is to train a model f(xi)→ yi which
can be efficient for inference while preserving the
model performance.
4.1 Overview
To enhance model inference efficiency, we pro-
pose a homotopic and adaptive layer skipping fine-
tuning method named HadSkip, which is shown in
Fig. 1. The motivation behind HadSkip is to reduce
the complexity of transformer layers by adaptively
skipping certain layers based on the input sequence.
We introduce gated transformer layers in which a
binary gate is incorporated into each transformer
layer to determine whether the current layer should
be skipped (Section 4.2). Additionally, to address
the non-differentiable nature of the binary gates and

meet the budget contraint, we propose a three-stage
optimization strategy in Section 4.3.
4.2 Gated Transformer Layer
Based on the analysis in Section 3.2, we identify
that the transformer layers are the bottleneck in
terms of inference complexity. Since the difficulty
of input sequences can vary due to factors such
as vocabulary, sequence length, and rhetoric, it is
unnecessary to utilize all L transformer layers for
every input sequence. Using a smaller number of
transformer layers may already yield accurate pre-
diction results for certain simple sequences. There-
fore, motivated by (Wu et al., 2018), we propose
a gated transformer layer that adaptively selects
layers to enhance inference efficiency.

Specifically, we introduce a binary gate before
feeding input into each transformer layer. This
gate determines whether the current transformer
layer should be bypassed based on the output of the
previous layer. Formally, the forward propagation
can be represented as

h0 = e,hi = fi(hi−1; θi) · gi + hi−1 · (1− gi),

where gi = B(g(hi−1;ωi)) ∈ {0, 1} is the binary
gate, B(·) : R → {0, 1} is a binarized function,
g(·) is a one hidden layer feed-forward network,
and ωi is the gate parameter. If the value of gate gi
is 1, then hi = fi(hi−1; θi), indicating that the cur-
rent i-th transformer layer is preserved; otherwise,
it is skipped.
4.3 Optimization Strategy
Considering a language model composed of
stacked gated transformer layers, we need to im-
pose a constraint on the maximum number of used
layers, which should be approximately equal to a
specified budget. The optimization problem can be
formally defined as follows:

min
Θ

1

n

∑

j

ℓ(f(xj ; Θ))

s.t.E[gi] ≈
1

nL

n∑

j=1

L∑

i=1

gji = s, (2)

where Θ is the collection of model parameters con-
sisting of transformer layer parameters, gate pa-
rameters, embedding layer parameters and output
layer parameters, gji is the gate of i-th transformer
layer with respect to input sequence xj , ℓ(·) is the
loss function, the specific form of which will be
demonstrated in Section 4.3 in detail, and s is the
pre-given budget. The mean square error is em-
ployed as a penalty term in the problem in Eqn. 2,

4285



resulting in the following formulation:

min
Θ

1

n

∑

j

ℓ(f(xj ; Θ)) + β

(
1

nL

n∑

j=1

L∑

i=1

gji − s

)2

, (3)

where β is a hyper-parameter. However, because of
the non-differentiability of gji , the optimization pro-
cess can easily converge to a suboptimal solution,
making it challenging to solve directly. Addition-
ally, due to the budget constraint, the model might
prioritize skipping a significant number of layers
first to meet the constraint. This behavior may lead
to unstable optimization, and a loss of knowledge
learned during the pretraining phase, which is usu-
ally stored in the first several layers of the model.
To handle this problem, we propose a three-stage
optimization strategy. In the initial two stages, we
aim to find a good initialization for the HadSkip,
while in the third stage, we propose the utilization
of a homotopic optimization method, which en-
ables learning of the gate values. The subsequent
sections will provide an introduction to each of
these three stages.
• Stage I: Initialize Transformer Layer Parame-
ters. Since transformer layer parameters are real-
valued, they are generally easier to optimize com-
pared to gate parameters. The discrepancy in opti-
mization difficulty poses a challenge for model con-
vergence. Motivated by this observation, we pro-
pose separate initialization design for transformer
layer parameters and for gate parameters respec-
tively. This section focuses on the initialization of
transformer layer parameters. Specifically, we re-
strict our consideration to a vanilla language model
fv(·) comprising transformer layers in order to
avoid non-differentiable operations. The training
process for fv involves standard fine-tuning of a
language model, which can be formulated as

min
Θv

1

n

∑

j

ℓt(fv(x
j ; Θv), y

j), (4)

where ℓt(·, ·) denotes the task-specific loss func-
tion, such as cross-entropy for classification, and
Θv represents the parameters of fv, comprising
transformer layer parameters, embedding layer pa-
rameters, and output layer parameters. The learned
Θv is utilized to initialize the corresponding param-
eters of the model f , denoted as Θ\{ωi}Li=1 ← Θv.
• Stage II: Initialize Gate Parameters. Following
the initialization of transformer layer parameters,
we freeze the parameters Θ\{ωi}Li=1 and relax the
original optimization problem in Eqn. 2 to achieve
a coarse-grained initialization for gate parameters.

The expectation constraint is omitted and we solve
the following optimization problem:

min
{ωi}Li=1

1

n

∑

j

ℓ(f(xj ; Θ)).

To handle the non-differentiable problem, previ-
ous work usually leverages straight-through estima-
tion (STE) (Bengio et al., 2013) to obtain approx-
imate gradients. However, we observe that STE,
although a first-order approximation (Liu et al.,
2023), still presents challenges in stable backpropa-
gation and may result in model collapse. To address
this issue, we employ a second-order gradient ap-
proximation method called ReinMax (Liu et al.,
2023). It integrates Heun’s Method to approximate
the gradient of B(·), which is shown in Algorithm 1
in the Appendix.
• Stage III: Train LM and Gate Jointly. Fol-
lowing the completion of the first two stages, the
proposed model has achieved a favorable initializa-
tion, and the gradient estimation is stable. However,
in cases where the budget is limited and requires
the LM to skip multiple layers, the substantial dif-
ference in model capacity leads to significant per-
formance degradation. To alleviate this problem,
we propose a homotopic optimization strategy that
incorporates knowledge distillation. The knowl-
edge distillation borrows knowledge from a fine-
tuned vanilla LM to guide the proposed HadSkip
learning via regularizing the consistency between
their hidden representation and output predictions.
Additionally, the homotopic optimization strategy
utilizes a greedy method to facilitate smoother op-
timization.
• Knowledge Distillation. We incorporate the fol-
lowing distillation losses into consideration: 1) the
distillation loss of prediction Lp, 2) the distillation
loss of hidden representations Lh, 3) the distilla-
tion loss of attention Latt, and 4) the distillation
loss of embedding layer Lemb. Further elaboration
on the distillation losses and the total loss can be
found in Section B in the appendix.
• Homotopic Optimization Strategy. While lever-
aging initialization and knowledge distillation can
enhance the performance of HadSkip, optimizing
the model remains challenging due to the signif-
icant capacity and representation power disparity
between f and fv. To address this issue, we pro-
pose a homotopic optimization strategy that trans-
forms the optimization into a sequence of problems,
gradually progressing from easier to more challeng-
ing ones. Formally, we solve a series of optimiza-

4286



Embedding 

Layer

Transformer 𝑖

Output Layer

Label

…
…

Embedding 

Layer

Output Layer

Gated 

Transformer 𝑖

Label

…
…

Transformer 𝑖

Gate 𝑖 ~Negation

Gated Transformer 𝑖

Embedding 

Layer

Output Layer

Gated 

Transformer 𝑖

Label

Embedding 

Layer

Output Layer

Transformer 𝑖

…
…

𝒟𝐾𝐿

…
…

ℒℎ + ℒ𝑎𝑡𝑡

ℒ𝑒𝑚𝑏

Parameters are updated Parameters are frozen

S
tag

e 1
: fin

e-tu
n

e L
M

S
tag

e 2
: freeze L

M
 an

d
 train

 

g
ates

S
tag

e 3
: train

 L
M

 an
d

 g
ates

Transformer 𝑖

Gate 𝑖 ~Negation

Gated Transformer 𝑖

Figure 1: The framework of HadSkip.

tion problems by replacing s with k in Eqn. 3 for
k = s0, s1, . . . , sq, where s0 > s1 > . . . > sq = s.
Hence, the result of the last optimization becomes
the initialization for the subsequent optimization
problem. Here, we observe that Eqn. 3 is not
highly sensitive to the choice of β. Therefore,
we employ a uniform β value across all opti-
mization problems. Additionally, we find seeting
s0 = L, s1 = L − 1, . . . , sq = s is a simple yet
effective choice.

5 Experiment
In this section, we evaluate the proposed HadSkip
and answer the following questions: RQ1) How
does HadSkip perform compared to state-of-the-
art early exiting baselines? RQ2) What are the
roles of initialization, knowledge distillation, and
homotopic optimization strategy in model perfor-
mance improvements respectively? RQ3) Can the
proposed HadSkip generalize well with respect
to different backbones? RQ4) Is it possible to
combine the proposed HadSkip method with other
model acceleration techniques? RQ5) How does
the performance change with varying budget val-
ues? RQ6) Can the proposed HadSkip capture the
difficulty differences among input sequences?

5.1 Datasets and Experiment Settings
• Datasets Experiments are conducted on the
benchmark GLUE dataset following the method-
ology of (Zhang et al., 2022; Sun et al., 2019).
Specifically, we evaluate our approach on seven

classification tasks from the GLUE benchmark,
namely MRPC, SST-2, RTE, QQP, QNLI, MNLI,
and CoLA, which use F1, Accuracy, Accuracy, F1,
Accuracy, Accuracy, and Matthews correlation co-
efficient as metrics respectively (the higher the bet-
ter). More details about the datasets and evaluation
metrics are provided in Table 5 in the Appendix.
The performance is reported on the development
sets, following the approach of (Zhang et al., 2022;
Sun et al., 2019).

• Baselines We adopt two types of baselines:
1) vanilla pre-trained language model BERT (De-
vlin et al., 2018), and 2) early exiting meth-
ods, including budgeted exiting (Zhang et al.,
2022), BranchyNet (Teerapittayanon et al., 2016),
Shallow-Deep (Kaya et al., 2019), BERxiT (Xin
et al., 2021), PABEE (Sun et al., 2019), and PCEE-
BERT (Zhang et al., 2022). Since BERT does not
have an inference speedup design, it serves as the
performance ceiling for inference speedup methods.
Budgeted exiting uses top K layers to make predic-
tions based on the budget. BranchyNet, Shallow-
Deep, BERxiT, PABEE, and PCEE-BERT dynam-
ically select a layer to exit according to the input
sequence. Following (Zhang et al., 2022), we make
early exiting baselines and proposed HadSkip ex-
pectedly use 3, 6, and 9 layers as budgets in ex-
periments. Unless otherwise specified, all these
methods utilize BERT as the backbone.

4287



CoLA MNLI MRPC QNLI QQP RTE SST-2 AVG

BERT∗ 59.4 84.3 91.3 88.5 90.4 69.3 92.5 82.2

Budgeted-Exit∗ 0.0 70.0 75.8 77.4 81.8 54.7 81.0 63.0
BranchyNet∗ 0.0 63.8 75.7 74.2 71.6 54.7 79.9 60.0
Shallow-Deep∗ 0.0 64.1 75.6 74.3 71.4 54.7 79.5 59.9
BERxiT∗ 0.0 63.5 75.6 73.3 68.2 55.3 79.5 59.3
PABEE∗ 0.0 63.9 75.8 73.6 68.6 55.8 79.9 59.7
PCEE-BERT∗ 9.8 73.4 78.8 80.4 79.6 58.4 83.6 66.3
HadSkip-BERT 35.6 78.1 84.2 84.1 88.5 54.9 88.5 73.4

Budgeted-Exit∗ 0.0 79.6 84.7 85.3 89.3 68.1 88.6 70.8
BranchyNet∗ 0.0 78.3 83.0 87.1 89.3 67.4 88.3 70.5
Shallow-Deep∗ 0.0 78.2 82.8 87.2 89.6 67.2 88.4 70.5
BERxiT∗ 12.3 78.4 82.9 87.0 89.1 67.3 88.3 72.2
PABEE∗ 0.0 78.9 83.1 87.2 89.6 67.7 88.7 70.7
PCEE-BERT∗ 23.2 80.1 84.8 87.1 90.8 69.4 90.4 75.1
HadSkip-BERT 50.8 82.4 85.9 88.7 90.5 62.5 90.0 78.7

Budgeted-Exit∗ 51.9 83.0 87.0 88.4 90.3 69.0 91.2 80.1
BranchyNet∗ 52.1 83.0 85.8 89.3 90.1 68.0 91.2 79.9
Shallow-Deep∗ 52.3 82.9 85.7 89.3 90.1 67.8 91.2 79.9
BERxiT∗ 52.2 83.2 86.2 89.6 90.1 68.1 91.4 80.1
PABEE∗ 52.4 83.4 86.1 89.8 90.4 68.3 91.7 80.3
PCEE-BERT∗ 52.8 83.4 86.8 90.5 91.2 69.7 91.8 80.9
HadSkip-BERT 58.3 83.8 88.4 90.7 90.8 66.8 92.7 81.6

Table 1: Performance comparison on GLUE dataset.
Blue, green, and orange shadow parts represent methods
with 3, 6, and 9-layer budgets respectively. “AVG” notes
the average performance of the 7 tasks. Results with “*”
are taken from (Zhang et al., 2022).

5.2 Performance Comparison
This section presents the performance of the base-
lines and the proposed HadSkip model, as shown
in Table 1, addressing RQ1.

The performance results in Table 1 demonstrate
that the proposed HadSkip surpasses all state-of-
the-art baselines on the GLUE datasets. Notably,
under budget configurations of 3, 6, and 9 lay-
ers, the proposed HadSkip achieves substantial im-
provements in terms of average accuracy. Specifi-
cally, compared to the baselines, HadSkip exhibits
performance gains of at least 10.7%, 4.8%, and
0.9% when using 3, 6, and 9 layers, respectively.
Additionally, when compared to vanilla BERT,
the proposed HadSkip retains 89.3%, 95.7%, and
99.3% of its performance when using 3, 6, and
9 layers, respectively. This demonstrates that
HadSkip effectively accelerates model inference
while preserving the performance of the pre-trained
language model.

We also observe that as the budget decreases,
the diversity in model performance becomes more
pronounced. Specifically, when using 9 layers, the
performance of the baselines, apart from the pro-
posed HadSkip, exhibits minimal variation. How-
ever, with 3 and 6 layers, the performance gaps
among different methods become more prominent.
The proposed HadSkip demonstrates much more
significant improvements under these two settings.

Specifically, on the CoLA dataset, the baselines
struggle to provide accurate classification results
when using 3 and 6 layers, while the proposed
HadSkip remains effective. This indicates that the
proposed HadSkip exhibits greater superiority over
the baselines when operating under a smaller bud-
get. Hence, in scenarios with limited resources,
selecting layers adaptively may be more effective
than choosing the exit layer.

Budget MRPC MNLI CoLA

HadSkip w/o
gate initialization

3 82.1 77.0 34.4

6 86.9 81.5 50.6

9 88.7 83.7 56.3

HadSkip w/o
homotopic optimization

3 81.9 75.1 5.1

6 83.1 81.7 39.9

9 88.8 83.7 51.6

HadSkip w/o KD
3 83.0 62.9 17.9

6 87.3 80.8 47.8

9 88.7 82.7 57.6

HadSkip only w/
prediction KD

3 85.5 77.7 29.6

6 86.7 81.7 48.4

9 87.8 83.5 58.6

HadSkip
3 84.2 78.1 35.6

6 85.9 82.4 50.8

9 88.4 83.8 58.3

Table 2: Performance of HadSkip with and without
the proposed gate initialization, HadSkip with and
without the proposed homotopic optimization strategy,
and HadSkip with and without knowledge distillation.
HadSkip w/o KD represents HadSkip only uses task-
specific loss. HadSkip w/ prediction KD represents
HadSkip that uses both task-specific loss and the distil-
lation loss of prediction.

5.3 Ablation Study
• Effectiveness of Gate Initialization. We con-
duct an analysis to answer RQ2 regarding gate ini-
tialization. To validate the role of the gate initial-
ization, we compare HadSkip without the second
stage to the complete HadSkip architecture. The
comparison results are presented in Table 2. The
experimental findings confirm the positive impact
of gate initialization on model training. We ob-
serve that gate initialization provides greater per-
formance improvement when the budget is small.
However, for larger budgets, the benefits of gate
initialization are limited. This can be attributed to
the fact that with a larger budget, the model only
needs to skip a few layers, which is relatively eas-
ier compared to skipping multiple layers. In such

4288



cases, a fine-grained warm-up strategy becomes
unnecessary.

Budget MRPC MNLI CoLA

RoBERTa⋆ - 91.7 87.2 64.8

DeeBERT+RoBERTa♡
3 81.2 49.5 0.0

6 81.2 65.0 0.0

9 92.4 86.2 55.7

HadSkip+RoBERTa
3 85.1 81.0 35.3

6 90.0 85.6 55.8

9 91.9 87.2 60.2

Table 3: Performance of using RoBERTa as the back-
bone. Results with ⋆ are taken from (Lee et al., 2019).
Results with ♡ are implemented based on its official
code 1.

Budget MRPC MNLI CoLA

TintBERT(4 layers)∗ - 89.1 80.4 18.6

TinyBERT(6 layers) ∗ - 91.6 83.5 42.8

HadSkip+TinyBERT(6 layers)
3 89.8 80.6 35.5

4 91.3 82.2 40.5

Table 4: Performance of using TinyBERT as the back-
bone. Results with "*" are taken from (Liang et al.,
2023).

• Effectiveness of Homotopic Optimization
Strategy. We conduct an ablation study to answer
RQ2 with respect to the homotopic optimization
strategy. We compare the proposed HadSkip with
HadSkip without the homotopic optimization strat-
egy on the MRPC, MNLI, and CoLA datasets, as
presented in Table 2. From the results in Table 2,
we observe the effectiveness of the proposed ho-
motopic optimization strategy in improving model
performance. The homotopic optimization strategy
leads to average improvements of 201.6%, 10.5%,
and 4.2% when using 3, 6, and 9 layers, respec-
tively. This trend highlights the greater importance
of the homotopic optimization strategy for smaller
budgets. When using 9 layers, the performance
of HadSkip with and without the homotopic op-
timization strategy is similar for the MRPC and
MNLI datasets. However, when using 3 layers,
HadSkip without the homotopic optimization strat-
egy fails to produce meaningful output for CoLA,
whereas HadSkip still delivers competitive results.
One potential reason for this difference is that the
homotopic optimization strategy smooths the opti-
mization problem and facilitates convergence to a
better local optimum.
• Effectiveness of Knowledge Distillation. In
this paragraph, we do the ablation study to answer

RQ2 regarding knowledge distillation. We conduct
two comparison experiments: 1) HadSkip without
knowledge distillation (KD) versus HadSkip, and
2) HadSkip using only prediction-based knowledge
distillation versus HadSkip. The experimental re-
sults are presented in Table 2. Prediction-based
knowledge distillation is widely employed in tradi-
tional teacher-student architectures, and the knowl-
edge distillation loss function used in HadSkip
is popular for compressing large language mod-
els. Compared to HadSkip without KD, HadSkip
consistently improves model performance. For in-
stance, HadSkip achieves improvements of 98.9%,
6.3%, and 1.2% when using 3, 6, and 9 layers, re-
spectively. Compared to HadSkip with only predic-
tion KD, HadSkip still shows improvements. This
demonstrates that the losses of hidden represen-
tations, attention matrices, and embeddings effec-
tively guide the model in learning how to select
layers to skip. However, from Table 2, we observe
that the performance improvements resulting from
the distillation loss of prediction are greater than
those from other distillation losses. This highlights
the more significant role of the distillation loss of
prediction in the proposed HadSkip.

5.4 Extension to RoBERTa
In this section, we employ RoBERTa (Liu et al.,
2019) as the backbone to investigate RQ3. The
results are presented in Table 3. We also consider
DeeBERT, which utilizes RoBERTa as the back-
bone in their paper, as our baseline. As shown
in Table 3, HadSkip+RoBERTa outperforms Dee-
BERT+RoBERTa. Specifically, for CoLA and
MNLI, DeeBERT+RoBERTa fails to make correct
predictions when using 3 and 6 layers. In contrast,
the proposed HadSkip+RoBERTa achieves compa-
rable performance to RoBERTa even with only 6
layers. These results demonstrate that HadSkip can
effectively balance efficiency and accuracy when
combined with different backbone models.

5.5 Combining with TinyBERT
In this section, we investigate RQ4 using Tiny-
BERT (Jiao et al., 2019) as the backbone. Apart
from early exiting methods, another popular ap-
proach to accelerate model inference is reducing
the number of LM layers via knowledge distil-
lation for LM compression. To demonstrate the
complementarity of the proposed HadSkip with
knowledge distillation model compression meth-
ods, we utilize a 6-layer TinyBERT, which com-
presses BERT using knowledge distillation into a

4289



1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d
HadSkip(using 3 layers)

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d

HadSkip(using 6 layers)

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d

HadSkip(using 9 layers)

Figure 2: Visualization of the probability of each layer being used on MNLI dataset.

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d

HadSkip(using 3 layers)

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d

HadSkip(using 6 layers)

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d HadSkip(using 9 layers)

Figure 3: Visualization of the probability of each layer being used on QNLI dataset.

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d HadSkip(using 3 layers)

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d HadSkip(using 6 layers)

1 2 3 4 5 6 7 8 9 10 11 12

Layer ID

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
b

e
in

g
 u

s
e

d HadSkip(using 9 layers)

Figure 4: Visualization of the probability of each layer being used on SST2 dataset.

2 3 4 5 6 7 8 9 10

The number of layers being used

0

0.2

0.4

0.6

0.8

P
ro

p
o

rt
io

n

HadSkip(using 3 layers)

HadSkip(using 6 layers)

HadSkip(using 9 layers)

(a) MNLI

2 3 4 5 6 7 8 9 10

The number of layers being used

0

0.2

0.4

0.6

0.8

1

P
ro

p
o

rt
io

n

HadSkip(using 3 layers)

HadSkip(using 6 layers)

HadSkip(using 9 layers)

(b) QNLI

2 3 4 5 6 7 8 9 10

The number of layers being used

0

0.2

0.4

0.6

0.8

P
ro

p
o

rt
io

n

HadSkip(using 3 layers)

HadSkip(using 6 layers)

HadSkip(using 9 layers)

(c) SST2

Figure 5: Visualization of the probability of the number of layers being used with respect to different budgets.

6-layer small model, as the backbone and present
the performance results in Table 4. Comparing
HadSkip with a budget of 4 layers to TinyBERT
(6 layers), we observe that HadSkip can preserve
over 94.6% of the model performance. This in-
dicates that HadSkip can effectively complement
TinyBERT and further enhance the inference speed
of TinyBERT. Moreover, when compared to the pre-
trained 4-layer TinyBERT, HadSkip with 4 layers
achieves higher accuracy, and even HadSkip with 3
layers demonstrates similar performance. These re-
sults suggest that combining HadSkip with a com-
pressed model may yield greater effectiveness than
training a smaller compression model.
5.6 Sensitivity w.r.t. Budgets
We perform a hyperparameter experiment to ad-
dress RQ5, focusing on different budgets for
HadSkip using BERT-Large, BERT-base, and
RoBERTa as backbones. BERT-Large is a 24-layer

language model, while BERT-base and RoBERTa
consist of 12 layers each. The results are presented
in Fig. 6. It is evident from the figure that larger
budgets lead to better performance. However, when
the budget is less than half the total number of lay-
ers, the decrease in accuracy is significantly more
pronounced compared to cases where the budget ex-
ceeds half the total number of layers. Specifically,
as shown in Fig. 6, using half the total number of
layers still preserves over 97% of the model’s per-
formance. This finding suggests that it is preferable
to skip fewer than half the total number of layers.
5.7 Case Study
In this section, we conduct a case study to answer
RQ6. To study if the proposed HadSkip can adap-
tively select layers based on input sequences, we
visualize 1) the probability of each layer being used
and 2) the probability of the number of layers be-
ing used on MNI, QNLI and SST2 datasets. We

4290



3 6 9 12 15 18 21 24

Budget

76

78

80

82

84

86

88
A

c
c
u

ra
c
y

HadSkip+BERT-Large

HadSkip+BERT-base

HadSkip+RoBERTa-base

97% performance of BERT-Large

97% performance of BERT-base

97% performance of RoBERTa

Figure 6: Accuracy with different budgets.

show the visualization on Fig. 2 to Fig. 5. From
Fig. 2 to Fig. 4, we observe diverse probabilities of
each layer being utilized across different tasks and
budgets. When utilizing 3 layers, the model tends
to prefer specific layers. For example, the model
favors the second and fifth layers on the MNLI
dataset and the second, third, and seventh layers
on the QNLI dataset. However, as the budget in-
creases, the distribution of chosen layers becomes
more uniform. According to Fig. 5, the number of
layers utilized concentrates around the given bud-
get, while the model also employs other numbers
of layers near the budget. These figures confirm
that the proposed model can select different layers
for various input sequences.

6 Conclusion
In this paper, we propose a homotopic and adaptive
layer skipping fine-tuning method named HadSkip
for efficient inference. We introduce a learnable
gate before each transformer layer of the pre-
trained language model to determine whether the
model can skip the respective layer. For training
the binary gate, we introduce a three-stage learning
strategy to initialize and update model parameters.
Additionally, we propose a homotopic optimization
strategy to stabilize the model training. We also uti-
lize knowledge distillation to guide model training
and achieve an improved trade-off between effi-
ciency and accuracy. We conducted extensive ex-
periments on the GLUE benchmark, and the results
demonstrate that HadSkip outperforms state-of-the-
art baselines. Moreover, HadSkip complements
other acceleration methods, including TinyBERT.

Limitations
The proposed HadSkip introduces multiple hyper-
parameters including β, which might require addi-
tional effort to tune. Fortunately, we observe that
the prediction performance is not sensitive to these
hyperparameters, and therefore they can be easily

tuned. In this paper, we set them to fixed values
(e.g., one) and achieve good results.

Ethics Statement
This paper proposes a homotopic and adaptive layer
skipping fine-tuning method, called HadSkip. We
show that the proposed HadSkip can be used for
inference acceleration.We perform experiments on
classification tasks using the GLUE benchmark.
In all experiments, we utilize public benchmark
datasets, models, and code. No ethical concerns
were identified.

Acknowledgement
This work is supported in part by the US National
Science Foundation under grant NSF IIS-1747614
and NSF IIS-2141037. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not nec-
essarily reflect the views of the National Science
Foundation.

References
Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing

Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2020. Binarybert: Pushing the limit of bert
quantization. arXiv preprint arXiv:2012.15701.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural informa-
tion processing systems, 33:15834–15846.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel
Kisilev. 2019. Low-bit quantization of neural net-
works for efficient inference. In 2019 IEEE/CVF
International Conference on Computer Vision Work-
shop (ICCVW), pages 3009–3018. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Pierre Stock, Benjamin Graham, Edouard
Grave, Rémi Gribonval, Herve Jegou, and Armand
Joulin. 2020. Training with quantization noise
for extreme model compression. arXiv preprint
arXiv:2004.07320.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

4291



Zhengjie Gao, Ao Feng, Xinyu Song, and Xi Wu. 2019.
Target-dependent sentiment classification with bert.
Ieee Access, 7:154290–154299.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Boren Hu, Yun Zhu, Jiacheng Li, and Siliang Tang.
2023. Smartbert: A promotion of dynamic early
exiting mechanism for accelerating bert inference.
arXiv preprint arXiv:2303.09266.

Nanjiang Jiang and Marie-Catherine de Marneffe. 2019.
Evaluating bert for natural language inference: A
case study on the commitmentbank. In Proceed-
ings of the 2019 conference on empirical methods
in natural language processing and the 9th interna-
tional joint conference on natural language process-
ing (EMNLP-IJCNLP), pages 6086–6091.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jing Jin, Cai Liang, Tiancheng Wu, Liqin Zou, and
Zhiliang Gan. 2021. Kdlsq-bert: A quantized bert
combining knowledge distillation with learned step
size quantization. arXiv preprint arXiv:2101.05938.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
2019. Shallow-deep networks: Understanding and
mitigating network overthinking. In International
conference on machine learning, pages 3301–3310.
PMLR.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In International conference
on machine learning, pages 5506–5518. PMLR.

Dongjun Lee, Sohee Yang, and Minjeong Kim. 2019.
Claf: Open-source clova language framework.
https://github.com/naver/claf.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,
Xipeng Qiu, and Xuanjing Huang. 2021. Accelerat-
ing bert inference for sequence labeling via early-exit.
arXiv preprint arXiv:2105.13878.

Chen Liang, Haoming Jiang, Zheng Li, Xianfeng Tang,
Bin Yin, and Tuo Zhao. 2023. Homodistil: Homo-
topic task-agnostic distillation of pre-trained trans-
formers. arXiv preprint arXiv:2302.09632.

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and
Jianfeng Gao. 2023. Bridging discrete and backprop-
agation: Straight-through and beyond. arXiv preprint
arXiv:2304.08612.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng.
2021. Ebert: Efficient bert inference with dynamic
structured pruning. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4814–4823.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

Hanlin Tang, Xipeng Zhang, Kai Liu, Jianchen Zhu,
and Zhanhui Kang. 2022. Mkq-bert: Quantized bert
with 4-bits weights and activations. arXiv preprint
arXiv:2203.13483.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464–2469. IEEE.

Jiayi Tian, Chao Fang, Haonan Wang, and Zhongfeng
Wang. 2023. Bebert: Efficient and robust binary
ensemble bert. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Haoyu Wang, Fenglong Ma, Yaqing Wang, and Jing
Gao. 2021. Knowledge-guided paraphrase identifi-
cation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 843–853.

4292

https://github.com/naver/claf


Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar,
Steven Rennie, Larry S Davis, Kristen Grauman, and
Rogerio Feris. 2018. Blockdrop: Dynamic infer-
ence paths in residual networks. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 8817–8826.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. Berxit: Early exiting for bert with better fine-
tuning and extension to regression. In Proceedings
of the 16th conference of the European chapter of
the association for computational linguistics: Main
Volume, pages 91–104.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36–39. IEEE.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert. arXiv preprint
arXiv:2009.12812.

Zhen Zhang, Wei Zhu, Jinfan Zhang, Peng Wang, Rize
Jin, and Tae-Sun Chung. 2022. Pcee-bert: Acceler-
ating bert inference via patient and confident early
exiting. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 327–338.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33:18330–18341.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. 2016. Trained ternary quantization. arXiv
preprint arXiv:1612.01064.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

Wei Zhu. 2021. Leebert: Learned early exit for bert
with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2968–2980.

A Related Work
Model Compression-based Methods. There are a
number of well-explored model compression meth-
ods which can be used for accelerating model in-
ference, such as weight quantization (Choukroun
et al., 2019; Fan et al., 2020; Jin et al., 2021;
Zhu et al., 2016), pruning (Zhu and Gupta, 2017),
and knowledge distillation (Hinton et al., 2015).
Weight quantization involves mapping model
weights to low-precision integers and floating-point
numbers, making them more hardware-friendly for
computation. Specifically, (Xiao et al., 2022) pro-
posed 8-bit quantization for BERT; (Tang et al.,
2022) explored how to use 4 bits to quantize BERT;
(Bai et al., 2020; Tian et al., 2023; Zhang et al.,
2020) studied how to quantize BERT into 1-bit or
2-bits. Pruning, on the other hand, focuses on set-
ting redundant parameters to zero to create a sparse
network, enabling accelerated sparse matrix opera-
tions on specific hardware platforms. Existing prun-
ing methods such as (Liu et al., 2021) and (Chen
et al., 2020) proposed a dynamic structured prun-
ing method and a lottery ticket hypothesis (Fran-
kle and Carbin, 2018) based method respectively
to learn a sparse network for BERT. Knowledge
distillation, meanwhile, is to utilize a powerful
large model (teacher model) to guide the learn-
ing of a lightweight model (student model). The
lightweight student model usually has lower infer-
ence complexity compared to the teacher model.
DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2019), MobileBERT (Sun et al., 2020)
and PKD (Sun et al., 2019) used knowledge dis-
tillation to learn a lightweight BERT. However,
these compression-based methods have drawbacks.
Firstly, they often require training compressed mod-
els from scratch, which can be computationally ex-
pensive. Secondly, weight quantization or pruning
techniques rely on specialized hardware support,
limiting their flexibility.
B Knowledge Distillation
Given a fine-tuned LM, i.e. fv(·) learned in the
first stage, knowledge distillation is to enable the
proposed f(·) to mimic the prediction and hidden
representation of fv. Specifically, we consider the
following losses: 1) The distillation loss of predic-
tion is defined as

Lp =
1

n

∑

j

DKL(fv(x
i), f(xi)), (5)

where DKL(·, ·) is the KL divergence between the
probability over the two outputs. The loss Lp regu-

4293



larizes the prediction of HadSkip to be consistent
with that of fv. 2) The distillation loss of hidden
representations is to enables the hidden represen-
tations of f and fv to be similar, which can be
formulated as

Lh =
1

nL

n∑

j=1

L∑

i=1

MSE(hj
i , vh

j
i ), (6)

where hj
i , vh

j
i are the i-th layer hidden represen-

tation of f and fv with respect to input sequence
xj respectively. 3) Similarly, the distillation loss
of attention is to penalize the discrepancy between
attention matrices of f and fv, which can be repre-
sented as

Latt =
1

nL

n∑

j=1

L∑

i=1

MSE(Aj
i , vA

j
i ), (7)

where Aj
i and vA

j
i are the i-th layer averaged at-

tention matrices of f and fv with respect to input
sequence xj respectively. 4) The distillation loss
of embedding layer is

Lemb =
1

n

∑

j

MSE(ej , ejv), (8)

where ej and ejv are the embedding layer outputs
of f and fv with respect to input sequence xj . In
summary, the total loss function is obtained by
combining it with the task-specific loss, which can
be formulated as

L =
1

n

∑

j

ℓ(f(xj ; Θ))

=Lt + α1Lp + α2Lh + α3Latt + α4Lemb,

where Lt = 1
n

∑
j ℓt(f(x

j ; Θ), yj) is the task-
specific loss function, and α1, α2, α3, α4 are hyper-
parameters.
C Algorithm of Reinmax

Algorithm 1: Reinmax
Input: gate function input g(hi−1;ωi)
Output: B[0]

1 π0 = Softmax(g(hi−1;ωi));
2 D = One_Hot(π0);
3 π1 =

D+π0
2 ;

4 π1 = Softmax(stop_gradient(log(π1)−
g(hi−1;ωi)) + g(hi−1;ωi));

5 π2 = 2π1 − 1
2π0;

6 B = π2 − stop_gradient(π2) +D;

Dataset Task Metric

MRPC Paraphrase Identification F1
QQP Paraphrase Identification F1
MNLI Natural Language Inference Accuracy
QNLI Natural Language Inference Accuracy
RTE Natural Language Inference Accuracy
SST-2 Sentiment Classification Accuracy
CoLA Linguistic Acceptability Matthews corr

Table 5: Dataset description.

D Dataset
E Implementation Details
We simply set α1, α2, α3, α4, and β as 1 for all
experiments. We select the learning rates from
{5e−6, 1e−5, 2e−5, 3e−5, 5e−5} and batch size
from {8, 16, 32, 64}. Experiments are conducted
on four NIVIDA RTX A6000.

4294


