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Abstract

The advent of large pre-trained language mod-
els in the domain of Code Synthesis has shown
remarkable performance on various bench-
marks, treating the problem of Code Generation
in a fashion similar to Natural Language Gener-
ation, trained with a Language Modelling (LM)
objective. In addition, the property of program-
ming language code being precisely evaluable
with respect to its semantics – through the use
of Unit Tests to check its functional correctness
– lends itself to using Reinforcement Learning
(RL) as a further training paradigm. Previous
work has shown that RL can be applied as such
to improve models’ coding capabilities; how-
ever, such RL-based methods rely on a reward
signal based on defined Unit Tests, which are
much harder to obtain compared to the huge
crawled code datasets used in LM objectives.
In this work, we present a novel approach to au-
tomatically obtain data consisting of function
signatures and associated Unit Tests, suitable
for RL training of Code Synthesis models. We
also introduce a straightforward, simple yet ef-
fective Actor-Critic RL training scheme and
show that it, in conjunction with automatically
generated training data, leads to improvement
of a pre-trained code language model’s perfor-
mance by up to 9.9% improvement over the
original underlying code synthesis LM, and up
to 4.3% over RL-based models trained with
standard PPO or CodeRL.

1 Introduction

Large Language Models (LLMs) have been dom-
inating the field of Natural Language Processing
(NLP) since the introduction of the transformer
architecture (Vaswani et al., 2017) and the first
large encoder-based (Devlin et al., 2019, BERT),
decoder-based (Radford et al., 2018, 2019, GPT),
and full transformer (Raffel et al., 2020, T5) pre-
trained models. More recently, large transformer-
based models began to expand beyond natural lan-

*Equal contribution

Figure 1: Diagram of overall Actor-Critic RL approach.

guages, most notably to the area of programming
languages, where they are being applied to tasks
such as Code Understanding and Code Synthesis
(also referred to as Text-to-Code Generation), or
Code Translation (Lu et al., 2021a; Wang et al.,
2021; Tipirneni et al., 2022). Often, models ad-
dressing specific tasks build upon large pre-trained
(code) language models, i.e. “Foundation Mod-
els” (Bommasani et al., 2021), and apply further
fine-tuning on task-specific data under a fully su-
pervised LM or Imitation Learning paradigm.

For Code Synthesis, that is, the generation of
programming language code conditioned on a natu-
ral language prompt, Reinforcement Learning (RL)
has recently gained traction as an alternative or
complementary training method (Le et al., 2022;
Wang et al., 2022). These approaches make use
of the fact that, as opposed to natural language,
correctness of code is relatively straight forward
to evaluate through compilation (syntax) and Unit
Tests/functional testing (semantics).

However, RL approaches that train on code func-
tionality rely on data with corresponding Unit Tests,
that are often only available in very limited quan-
tities or not at all. This is in stark contrast to ap-
proaches that employ Language Modelling objec-
tives, trainable on large quantities of crawled data.
Overcoming this lack of Unit Test paired data has
the potential to greatly improve the results achiev-
able with such methods.
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In this work, we also employ Reinforcement
Learning to improve the performance of a pre-
trained code language model on the Code Syn-
thesis task. Modelling the reward based on Unit
Test pass rates, we introduce a simple yet effec-
tive RL approach to fine-tuning Code Synthesis
models, based on Policy Gradients and a simple
feed-forward Critic model. In an effort to overcome
the data sparseness issues of previous approaches,
we introduce a heuristic approach to generate large
data of natural language problems, function signa-
tures, and Unit Tests, and show that the automati-
cally generated data can help further improve Code
Synthesis performance. Finally, we release our
code, models, new dataset of problems, signatures,
and Unit Tests.1

2 Related Work

The advent of large language models for program-
ming languages was initially driven by repurposing
general natural language understanding (NLU) and
generation (NLG) approaches to the new domain.
Models such as CuBERT (Kanade et al., 2020),
CodeGPT (Lu et al., 2021b), and CodeT5 (Wang
et al., 2021) greatly reused the natural language
models, but trained on source code to provide them
skills in the new context.

2.1 Large Language Models for code synthesis

A number of LLMs have been focused on the task
of text-to-code generation. Chen et al. (2021a) in-
troduced CodeX, decoder-only language models
trained on publicly available code from GitHub.
Li et al. (2022) introduced AlphaCode, a set of
sequence-to-sequence models trained on program-
ming competition data and GitHub code in sev-
eral programming languages; they improved perfor-
mance by over-generating and pruning solutions.

CodeGen (Nijkamp et al., 2022b) proposed to
tackle the code synthesis task through user conver-
sations, i.e., the possibility of doing code gener-
ation and refinement from follow-up interactions.
TiCoder Lahiri et al. (2022) followed a similar path;
their approach generates many diverse solutions
like AlphaCode, but also leverages user feedback
by generating tests that can discriminate between
proposed solutions. Finally, CodeT (Chen et al.,
2023) proposed a unified model that generates both

1Code and data available at https://github.com/
huawei-noah/noah-research/tree/master/
NLP/PanguCodeRL

code snippets and Unit Tests that matched the pro-
gram descriptions and were used to filter out some
of the solutions.

As is clear from the recap above, proposed mod-
els have been evolving over time, taking into con-
sideration the signal of code behaviour to improve
their performance.

2.2 RL for Code

One feature of programming language code is that
can be precisely evaluated, and some research pro-
posed to leverage Reinforcement Leaning using
code feedback as a reliable reward signal during
training. CompCoder, introduced by Wang et al.
(2022), proposed, among other things, to generate
code in an RL environment, and reward those snip-
pets which were able to compile, while punishing
the others. CodeRL (Le et al., 2022) went one step
further, and proposed to reward code generation
when the snippets were able to pass Unit Tests used
to define the code behaviour.

Although our work is similar to the latter ap-
proach, we have fundamental differences: (i) our
model relies exclusively on RL while in CodeRL,
the critic is also used during inference; (ii) our critic
is much simpler -– a simple FFNN on top of the
PLM (c.f. Section 3.2); (iii) our critic is not frozen
during RL training (c.f. Equation 5), keeping it
aligned with the policy; (iv) ours is trained on the
expected reward including the policy KL term (c.f.
Equation 2), which is impossible for CodeRL’s as
KL depends on the current policy; (v) ours gives a
single score to a solution, similar to its training ob-
jective (c.f. Equations 3 – 5), while CodeRL scores
all tokens which is not fully aligned with its train-
ing; (vi) CodeRL as well as our approach require
Unit Tests for training. We propose a way to create
augmentation data of new pairs of code description
and tests (c.f. Section 3.3) which are then used to
improve the capabilities of code synthesis.

2.3 Code Datasets with Functional Tests

As opposed to language modelling, which only re-
quires continuous data for training, Reinforcement
Learning as described above requires Unit Tests to
model the reward. Some code datasets have been re-
leased that contain code along with associated tests,
such as MBPP (Austin et al., 2021) and MTPB (Ni-
jkamp et al., 2022a); however these are typically
very small, in the region of a few hundred training
examples, therefore containing very few problems
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and offering limited learnable information in the
context of large code synthesis models.

APPS (Hendrycks et al., 2021) constitutes a
larger code dataset of 10,000 total instances, 5k
of which are reserved for training, crawled from
various code challenge sites. While it can be a valu-
able resource, APPS is not built with function-level
code and tests in mind, but contains larger scripts
that expect to read inputs from standard-in, and
write outputs to standard-out as strings. This is
not desirable for the models presented here, which
are trained to synthesise function-level code, for
well-defined and typed inputs and outputs. Con-
verting APPS to a training format compatible with
this objective is likely possible, but would require
a considerable engineering or human effort.

3 Approach

3.1 Task Definition

We address the task of Code Synthesis, that is, the
generation of Programming Language code condi-
tioned on a Natural Language problem description,
with Reinforcement Learning. During RL training
and evaluation, we employ Unit Tests, which allow
for semantic evaluation of function level code, that
is, they precisely define the expected behaviour of
the code in terms of computation results.2

Compared to Natural Language, for which such
precise and large scale semantic evaluation is no-
toriously costly and challenging (Sai et al., 2022),
the nature of programming language code, which
is by definition executable and has formal syntax
and semantics, makes it relatively straight forward
to check for correctness (Allamanis et al., 2018);
this property makes it well suited to the application
of Reinforcement Learning.

Owing to the Unit Test-based approach to train-
ing, and follow previous work (Chen et al., 2021a),
we condition generation on the function signature,
so as to guarantee the Unit Tests can be applied
to the generated code, and provide a more reliable
training signal.3 The natural language problem

2Strictly speaking, precise evaluation requires Unit Tests
that cover any and all potential edge cases for this work, we
make the simplified assumption that a subset of all potential
tests is sufficient to evaluate generated code.

3Alternatively, we could massively over-generate code
for each NL input, and only keep those generated functions
compatible with the Unit Tests, or assign negative rewards to
incompatible code during RL training. While this constitutes
interesting future work, since function signatures are avail-
able through target Unit Tests anyway, we chose to include
signatures in the generation condition.

NL Problem: Write a function that calculates the n-th
Fibonacci number.

Signature: def fib(n):
Code: if n == 0:

return 0
if n == 1:
return 1

return fib(n-2)+fib(n-1)
Unit Tests: fib(0)==0; fib(12)==144;

fib(8)==21

Figure 2: Example of Natural Language problem and
code signature, together forming the code synthesis
model prompt, and associated example code.

formulation and function signature combined con-
stitute the prompt, and the objective is for a model
M to generate code that accurately captures the de-
scribed problem. An example is shown in Figure 2.

In this work, we specifically consider the synthe-
sis of function-level code in the Python program-
ming language. However, the general approaches
to RL training (Section 3.2) and obtaining Unit
Tests (3.3) should be applicable to other settings,
e.g., class- or project-level synthesis, and target
programming languages with small modifications.

3.2 Actor-Critic RL for Code Synthesis

Reinforcement Learning As a general ML ap-
proach, RL has been an active area of research
for a long time (Kaelbling et al., 1996; Sutton and
Barto, 2018). Compared to other methods such
as Language Modelling, it does not rely on avail-
able gold-standard data – though in settings with
Imitation Learning, such data can additionally be
used – but instead makes use of a learning envi-
ronment that assesses the model’s solution(s), and
gives feedback in the form of a reward signal, an in-
dicator of how good the proposed solution worked.
The training objective is to maximise the reward,
i.e., the goodness of the model’s output wrt. some
assessment function.

Formally, an RL problem can be described as a
Markov Decision Process (MDP, Bellman (1957)),
a tuple ⟨S,A, P,R⟩ where S = {s1, . . . , sn} is a
set of states, A = {a1, . . . , am} a set of (possi-
bly restricted) actions, P = {P (st+1|st, a)} gives
the probabilities of transitioning from state st to
another state st+1 at time t with action a, and
R = {R(s, a)} gives the immediate rewards as-
signed to the state s with the action a. Many RL
approaches have been proposed over the years, and
a full review exceeds the scope of this paper. For an
overview of available model-free and model-based
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RL algorithms and their applications, we refer the
reader to Sutton and Barto (2018).

For the task of code synthesis, in general, the
code language model serves as the RL actor’s pol-
icy. The states st are sequences given by the token-
wise generated output up to time step t; each ac-
tion corresponds to the next token in the sequence.
In this setting, the transition probabilities are de-
terministic: the action is concatenated to the se-
quence st to obtain st+1. An episode ends when
the end-of-sentence token is chosen or when a max-
imum length of sequence T is reached. The policy
can select actions according to classic exploration
strategies, e.g., it can act in an ϵ-greedy fashion by
selecting the next output token with highest proba-
bility, sample from the distribution, or even select
a random token of the model’s output vocabulary.

Considering the size of modern (code) gener-
ation LMs, with output vocabularies in the tens
of thousands, as well as the length of sequences
to generate which can be hundreds of tokens, it
becomes obvious that training the policy “from
scratch”, i.e., starting with a randomly initialised
policy LM and randomly exploring trajectories, is
infeasible for the given task. Similarly, the strategy
of selecting output tokens completely at random
during generation is usually discarded, as most of
the many available actions – that is, tokens – would
simply lead to syntactically invalid code.

Instead, it is common practice to initialise the
policy network with a pre-trained code language
model, typically obtained by training with a lan-
guage modelling objective on very large datasets.
This ensures that the distributions over states and
actions are already reflecting some likely “good”
tokens, that is, the policy on its own is already able
to generate syntactically correct code. The goal
when applying RL then becomes to update the LM
parameters towards generating semantically correct
code, i.e., code that not only compiles and runs, but
produces the desired output.

Reward Function Code Synthesis reward can
be modelled in various ways. Wang et al. (2022)
checks for compilability of generated code. Le et al.
(2022) additionally considers the outcome of Unit
Tests, that is, whether the generated code behaves
as expected, and assign −1 if the code does not
compile, −0.6 if it cannot be executed, −0.3 if it
fails any Unit Tests, and +1 if it passes them all.

The present approach also considers Unit Tests,
however, we want to reflect the intuition that par-

tially correct functions should also receive some
reward distinguishing them from completely non-
functioning code. As such, our reward function is
composed of a first sparse part Rf(st):

Rf(st) =

{
λ ∗

(
# passed UTs

# all UTs

)η
if st compiles

−10 otherwise
(1)

where the hyper-parameter λ is a reward scaling
factor, and η controls the impact of the first passing
Unit Tests; typically, we want to reward a solution
for passing from zero to one valid Unit Test more
than passing from one valid test to full correctness.

To avoid the model from over-fitting and mov-
ing too far away from the original PLM π0, our
complete reward function is given as:

R(st, at) = Rf(st)−
ζKL

(
πθ(at|st)||π0(at|st)

)
(2)

where ζ is automatically adjusted to verify the con-
straint E[KL

(
πθ(at|st)||π0(at|st)

)
] ≤ ρ by the ap-

proach proposed in Ziegler et al. (2020) where ρ
is a hyperparameter controlling how far the policy
can move away from the original PLM.

One challenge arising from the Code Synthesis
setting is the lack of immediate rewards required in
the original RL formulation since code can only be
evaluated for functional correctness once it is com-
plete. This means that during RL training, we have
to wait for full sequences ⟨a1 . . . aT ⟩ of realised
actions in order to assign a reward Rf to the final
generated token. This results in a reward for the
overall generated code, but, the assignment of step-
wise rewards is not straight forward to achieve.

Le et al. (2022) proposed to pretrain another ex-
ternal model to estimate step-wise rewards. How-
ever, training such a step-wise reward predictor is
in itself a very challenging task, which we will
leave to future work. We found that using atomic
rewards with REINFORCE works well in the pro-
posed setting, in combination with a Critic model
that can help derive a more stable policy gradient.

Critic Model for Reward Baseline As men-
tioned above, the proposed original reward func-
tion for this work relies on Unit Tests to assess
generated the code’s functional correctness. Final
test-based rewards can be propagated across all
sequence time steps to update the policy LM.

In addition to the Unit Tests, we find that the ap-
plication of a critic model that evaluates the gener-
ated code can further improve training. Intuitively,

373



we might expect such a critic to better distinguish
the “quality” of various pieces of code, even if they
receive the same reward by the Unit Test-based re-
ward function. For example, consider the code to
generate the n-th Fibonacci number in Figure 2, and
the alternative implementation below in Figure 3.

def fib(n):
if n <= 0:

return 0
if n == 1:

return 1
return fib(n-2) + fib(n-1)

Figure 3: Alternative code for n-th Fibonacci number.

Both solutions differ only in a single token,
where the first code checks if n == 0, and the
alternative checks for n <= 0. When we consider
the Unit Tests in Figure 2 and calculate rewards
according to our proposed reward function, both
solutions would receive full rewards. However, it
could be argued that the second code snippet is bet-
ter than the first, which would throw an exception
for inputs smaller than zero.4

Given enough time and varied Unit Tests for ob-
served problems, we could expect a deep learning-
based critic to pick up on such or similar nuances
across code solutions, potentially allowing for a
more fine-grained reward to be used in policy up-
dates. As such, for this work, we propose an Actor-
Critic approach to improving code synthesis. The
critic can be trained in parallel with the policy, up-
dating its parameters on generated solutions and
observed associated rewards.

While the emergent property of a critic being
able to distinguish “good” from “bad” correct code
is hypothetical, we give some insights into obser-
vations in that direction in Appendix C

REINFORCE with Critic for Code Synthesis
We provide a pre-trained code synthesis model,
used as the RL policy, a set of natural language
problems, function signatures, and initial solutions
akin to Figure 2. Training hyper parameters include
maximum epochs, and the number of solutions to
generate for each problem per iteration. Our ap-
proach uses a replay buffer that stores the original
solutions found in the training data, as well as all
valid solutions found during training.

In each training iteration, we first generate a
number of solutions for each problem in the train-

4One could argue that code which throws a specific ex-
ception here would be even better, as strictly speaking, the
standard Fibonacci sequence is undefined for negative values.

ing set, and receive the associated rewards from
the environment. Additionally, an equal number of
known valid solutions is sampled from the replay
buffer, and assigned the maximum reward auto-
matically. Generated and sampled solutions from
the training set for the current epoch; newly found
valid solutions are stored in the replay buffer.

The algorithm then proceeds to update the policy
for a number of steps, determined by the provided
minibatch size. For each solution in the minibatch,
the critic model predicts a critic score Vω, which is
used in combination with the environment reward
to compute the update score, and update the policy
parameters θ with REINFORCE:

Âi = ri − Vω(qi, σi, µ
′
i) (3)

θ ← θ + α∇θ

∑

i

log πθ(µ
′
i|qi, σi)Âi (4)

Finally, we update the critic model parameters ω
based on the same epoch training data. The critic
is trained as a regression model, using the Mean
Squared Error loss between the observed reward
and the critic’s prediction:

ω ← ω − β∇ω

∑

i

MSE(ri, Vω(qi, σi, µ
′
i)) (5)

The proposed approach is agnostic to the precise
architecture of the policy language model and critic
network; we show the architectures used for this
work in Section 4.

Note that, as opposed to other work such as Le
et al. (2022), the critic here is not employed to pre-
dict step-wise rewards independently of the current
policy, but rather to reduce the variance of the pol-
icy gradient by introducing bias with a baseline as it
is more standard in RL. While it could be expected
that step-wise estimates might be beneficial, we did
not observe this in preliminary experiments where
critics were trained on pooled representations of
the full sequence (or on the final end-of-sequence
token), but applied to hidden representations of
each individual time step when estimating rewards.
In many cases, using this way of step-wise reward
estimation even lead to detrimental training out-
comes. We attribute this behaviour of step-wise
critics in our setup to the mismatch between critic
training and inference stages, and instead opt to just
use the critic to provide scores for the full sequence,
reflecting its own training objective.

In terms of novelty, we introduce the usage of
a replay buffer with abstract syntax trees filtering
to significantly improve diversity and show that
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Algorithm 1: Practical REINFORCE-based RL with Critic for Code Synthesis
input : Pre-trained model parameters θ0; set B = {(qi, σi, µi)}i=1...m of m NL problems, PL signatures, and initial

solutions; number of max training epochs N ; number of generated solutions per problem ngen; mini-batch size
nmini; policy learning rate α; critic LR β

output : Updated model parameters θ′

1 Initialise policy parameters θ ← θ0
2 Initialise critic parameters ω randomly
3 Initialise replay buffer of valid solutions Bvalid ← B
4 for epoch = 1 to N do
5 Initialise training buffer Btrain ← ∅
6 for i = 1 . . .m do // generate & get rewards; prepare train set
7 Sample ngen solutions {µ′

i,j}j=1...ngen for (qi, σi) with θ from distribution π

8 Compute rewards ri,j for each µ
′
i,j from environment

9 Sample ngen valid solutions {µ∗
i,j} for (qi, σi) from Bvalid, assign maximum reward rmax

10 Btrain ← Btrain ∪ {(qi, σi, µ
′
i,j , ri,j)} ∪ {(qi, σi, µ

∗
i,j , rmax)}

11 foreach µ′
i,j : ri,j = rmax do Bvalid ← Bvalid ∪ {(qi, σi, µ

′
i,j)}

12 end
13 for k = 1 . . . |Btrain|/nmini do // policy update
14 Sample minibatch {(qi, σi, µ

′
i, ri)}i=1...nmini from Btrain

15 Compute Âi = ri − Vω(qi, σi, µ
′
i) from reward and the critic

16 θ ← θ + α∇θ

∑
i log πθ(µ

′
i|qi, σi)Âi

17 end
18 for k = 1 . . . |Btrain|/nmini do // critic update
19 Sample minibatch {(qi, σi, µ

′
i, ri)}i=1...nmini from Btrain

20 ω ← ω − β∇ω

∑
i MSE(ri, Vω(qi, σi, µ

′
i))

21 end
22 end

one can update the critic during training, instead of
only pretraining it, leading to stable training and
improved performance. Algorithm 1 shows pseudo-
code for our RL approach to Code Synthesis.

3.3 Automatic Unit Test Dataset Generation
As mentioned above, existing code datasets with
Unit Tests are often very limited in size, or do not
target function-level Code Synthesis and evalua-
tion. We therefore propose to employ automatic
Unit Test generation to obtain tests for (essentially)
arbitrary amounts of code.

Large code datasets, such as the Pile (Gao et al.,
2020) have recently become readily available, pro-
viding hundreds of thousands if not more examples
of code, in many programming languages. Such
data is ideal for use in (pre-)training of large code
language models with classic Language Modelling
objectives. However, Unit Tests are not usually
available for the code provided, or where they are,
they might be provided indirectly as part of the
code description or in other implicit ways, mak-
ing them hard to extract. On the other hand, the
sheer amount of code available online makes it pos-
sible to try and use existing Unit Test generation
approaches and, even if complete test suites can be
generated for only a fraction of tried code, generate
large quantities of code-test pairs. Thus, we em-

ploy the following steps to obtain large amounts of
Unit Test data for our task and RL approach:

1. From a large code dataset such as the Pile, ex-
tract a large amount of function-level instances.

2. Split each obtained instance into descriptions
(e.g., doc strings, function comments) and code.

3. Use an existing Unit Test generation framework
to obtain Unit Tests for each instance’s code.

4. If Unit Test generation is successful, store the
corresponding description, function signature,
extracted code, and Unit Tests as an instance of
the new training data.

Depending on the chosen target synthesis language
– here, Python – and Unit Test generation frame-
work, this method might yield another complica-
tion. In particular, test generation for weakly typed
languages such as Python or JavaScript is decidedly
harder than for strongly typed languages like Java
or C#. Even if the target language is weakly typed,
we can mitigate this by running Unit Test above
extraction and generation approach explicitly for
some other, strongly typed language or languages.
In such cases, we need to run include two additional
steps into above procedure:

5. Convert the original source signature into a sig-
nature compatible with the target language.
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Figure 4: Overall outline of Unit Test generation and conversion approach.

6. Convert the generated Unit Tests to test state-
ments compatible with the target language.

The outline of this overall procedure is depicted in
Figure 4; an illustration of Unit Test and signature
conversion is in Appendix D Figure 7, and some
examples of automatically generated augmentation
instances used for training are given in Appendix D
Figure 7. Of course, while we convert signatures
and tests, this leaves the original code untranslated.
While code translation would ideally be carried out
as well, this task is an active area of research in
itself (Roziere et al., 2020; Wang et al., 2021; Lu
et al., 2021b), and incorporating it here would go
beyond the scope of this work.

However, for our Reinforcement Learning ap-
proach, only the description, signature, and tests
are strictly required: during training, the policy
model is updated based on its own generated and
evaluated code. In cases where we make use of
automatically extracted code and Unit Tests, but
have to drop the original code, we simply leave the
initial replay buffer of the corresponding valid so-
lutions in Algorithm 1 empty, and populate it over
time with found valid solutions.

4 Experiments

Setting With our overall procedures to RL for
Code Synthesis and Unit Test generation in place,
we run a battery of experiments to evaluate the
efficacy of our approach.

As a general dataset for the task, we use the
Mostly Basic Python Problems Dataset (MBPP,
Austin et al., 2021). MBPP provides a total of 964
instances of natural language problem description,
an associated gold solution, and Unit Tests. We
follow the official train and validation splits of 374
and 90 instances respectively, and combine the orig-
inal few-shot prompting and test splits into a test

set totalling 500 examples.
For all experiments, we use the pre-trained

PanGu-Coder (Christopoulou et al., 2022) Code
LM with 300M parameters to initialise the pol-
icy. We initialise the critic network on top of a
copy of the same pre-trained model, as a two-layer
MLP, taking as input the final representation of
the end-of-sequence token of the underlying LM,
downsampling to half the number of dimensions
and again to a single output unit, with the ReLU
activation function between layers. During critic
training, we freeze the critic’s copy of the code LM,
and only update MLP.

We set the policy learning rate α = 5e−7 and
critic LR β = 1e−6. The maximum number of
training epochs is 100, and we generate ngen = 8
solutions per problem per epoch. The reward hyper
parameters are set to λ = 50 and η = 0.5. The
target KL divergence is set to ρ = 0.07. When
sampling solutions from the policy, we use nucleus
sampling (Holtzman et al., 2019), with p = 0.8
and temperature = 0.95. Each training minibatch
contains 32 solutions with a max length T = 512.

For each model under consideration, we evaluate
performance on the MBPP validation set after each
epoch, and select the checkpoint with best valida-
tion score (based on greedy decoding) for test set
evaluation. We report more details on the exper-
iments and the baselines in Appendix A. Finally,
ablation studies are carried out in Section 5.

Augmented Data In order to augment our train-
ing data with additional, automatically generated
Unit Tests, we randomly sample and extract an ini-
tial 100k function-level docstring-code pairs from
a large Java dataset; crawled from existing, public
GitHub repositories before May 2021. We only
keep functions for which the accompanying de-
scription is in English as classified by the Lingua
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language detector,5 and is between 10 and 512
white-spaced tokens in length. We use the EvoSuite
framework to automatically generate Unit Tests,6

and discard instances with fewer than 2 tests, as
well as those for which all tests result in the same
outcome, e.g., if all tested inputs to a function with
boolean return value result in False. After all
filtering steps, we obtain an augmentation dataset
with an additional 5, 572 instances of problem de-
scription, python signature, and Unit Tests. Finally,
we use the pre-trained language model to further fil-
ter out instance for which no valid solution can be
found in 100 samples. This leaves a final amount
of 2,229 instances in our augmented dataset.

Models and Results We evaluate various base-
lines as well as our model, with the same underly-
ing large pre-trained code generation model (Org.
PLM): (i) A fine-tuned version of the pre-trained
LM, tuned with CLM objective on the MBPP train-
ing set. (ii) A model trained with Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017).
(iii) A model trained with the CodeRL approach
of Le et al. (2022), on based on the same PLM
described here. (iv) Applying our proposed train-
ing from Algorithm 1 on the MBPP training set
(“Ours”). (v) Applying our proposed approach
to learn from the automatically generated data ex-
clusively (“Ours+Aug”). (vi) Perform RL training
with Algorithm 1 on the combined data from MBPP
training and augmented training sets (“Ours+All”).
(vii) Rebalance the two datasets by decreasing the
weight of the augmented unit tests in the loss by 0.2
(“Ours+All (0.2)”). The performances of the vari-
ous models on the MBPP test set are summarised
in Table 1. We report scores for greedy decoding,
as well as pass@k (Chen et al., 2021b) for k = 1,
10 and 100, estimated on 200 samples.

Discussion All trained models improve greedy,
pass@1 and pass@10 performance over the origi-
nal code LM. Interestingly, only two, our approach
trained on MBPP, or on all available data, improve
pass@100. We conjecture that, as we generate 8
solutions per problem during training, this might
strengthen the models on metrics around or below
that pass@k rate.

Supervised training with the CLM objective
leads to mostly small improvements, which could
be explained by the relative difference between

5https://pemistahl.github.io/
lingua-py/

6https://www.evosuite.org/

Greedy Pass@1 Pass@10 Pass@100

Org. PLM 22.0 15.6 40.0 57.1
CLM 23.2 21.3 37.8 47.9
PPO 27.2 22.1 42.5 54.2
CodeRL 25.2 24.2 43.6 56.2
Ours 28.6 25.5 45.9 58.7

Ours+Aug 21.8 18.9 41.8 57.6
Ours+All 25.8 23.6 45.6 58.8
Ours+All (0.2) 29.2 24.5 45.4 58.9

Table 1: MBPP test results. The best model per metric
is marked bold, the second best is underlined.

MBPP split sets, where the 374 training instances
offer only a limited signal for fully supervised learn-
ing. While some knowledge gained in training
transfers to the test problems, the gold-standard
code in the training set likely does not cover enough
phenomena in the test set.

We observe that across all metrics, methods
using our Actor-Critic approach outperform the
baselines when trained on MBPP, with the model
trained based on MBPP alone achieves the top rank
in pass@1, pass@10, and pass@100.

To explain why our approach is better than PPO,
we conjecture that learning the necessary stepwise
critic is difficult for this task with very sparse re-
wards. Moreover, it is known that dropout affects
PPO stability, as the importance sampling ratio be-
comes stochastic (Hausknecht and Wagener, 2022).
We had to disable dropout for PPO to make it stable,
which might impede its generalisation capabilities.

Training our method on the augmented data
alone improves over the original PLM, but falls
short compared to RL models trained on MBPP.
However, when combining the augmented and
MBPP train data, our method achieves greedy im-
provement of 7.2 points over the PLM and 0.6
points over the same model trained only on MBPP.
This indicates that there is indeed a useful training
signal present in the automatically generated data,
and it can be leveraged to improve performance.

Overall, we find that both, our Actor-Critic train-
ing method, as well as our method of augmenting
the available training data automatically with Unit
Test generation and conversion can contribute posi-
tive impacts on code synthesis model performance.

Out-of-domain Performance To better evalu-
ate the models’ generalisation capabilities, we run
evaluations on the 163 instances of the HumanEval
dataset (Chen et al., 2021b). For all models, we
evaluate the same checkpoints as previously deter-
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Greedy Pass@1 Pass@10 Pass@100

Org. PLM 23.1 15.8 28.1 38.5
CLM 14.6 15.1 25.1 33.8
PPO 19.5 15.9 26.5 36.2
CodeRL 18.9 16.9 29.4 41.6
Ours 20.1 17.4 30.0 40.2

Ours+Aug 21.3 17.2 28.8 39.4
Ours+All 18.9 17.8 31.7 45.9
Ours+All (0.2) 20.7 18.2 31.1 42.5

Table 2: HumanEval test results. The best model per
metric is marked bold, the second best is underlined.

mined, and summarise the results in Table 2.
We find that models trained with our approach

consistently outperform the other RL-trained as
well as the CLM baselines in all evaluation set-
tings. Interestingly, the original PLM performs
best when generating greedy solutions, while all
MBPP-trained models suffer here. This is likely an
artifact of overfitting during fine-tuning on MBPP;
however, all models have learned from the data,
and (with the exception of CLM) they outperform
the base model on sampling-based metrics.

Overall on HE, the model trained with our pro-
posed approach performs best already without use
of augmented data, except for Pass@100 where it
is beaten by the CodeRL-trained model. However,
this is remedied by the use of augmentation data.

Interestingly, the effect of using the combined
original and augmented data has provided a larger
relative performance boost on the out-of-domain
HE data when compared to the results on MBPP;
on Pass@100, it can increase performance by up
to 5.7%. However, these improvements have to be
taken with a grain of salt, given the small number
of test instances provided by HumanEval.

5 Ablation Studies

In this section, we verify if several components of
our method are necessary. In those experiments,
to reduce the needed computations, we only train
on MBPP train without the augmented Unit Tests.
The validation process is kept the same.

Sensitivity to the target KL

We show the impact of the target KL divergence ρ
in Table 3. We observed that ρ = 0.07 is a good
trade-off over all criteria; it notably has a large
impact on pass@10 (and ultimately in pass@100).
When setting ρ = ∞, we observed that the aver-
aged KL divergence would not exceed 0.2.

Greedy Pass@1 Pass@10 Pass@100

Ours ρ =∞ 27.8 25.1 44.6 56.1
Ours ρ = 0.1 27.4 24.4 45.6 58.4
Ours ρ = 0.08 27.6 24.5 44.9 57.4
Ours ρ = 0.07 28.6 25.5 45.9 58.7
Ours ρ = 0.05 26.6 22.9 45.5 57.8
Ours ρ = 0.02 26.8 22.5 45.8 60.5

Table 3: Evaluation results on the MBPP test dataset for
different values of target KL divergences after training
on MBPP train.

Replay buffer of valid solutions

In this experiment, we check that using a replay
buffer is helpful. To do so, we use the same algo-
rithm but without storing the valid solutions which
reduces to REINFORCE with a critic. Table 4
shows that having a replay buffer is especially cru-
cial to maintain a good diversity in pass@10 and
in pass@100.

Greedy Pass@1 Pass@10 Pass@100

Ours - replay buffer 26.6 24.2 38.0 45.0
Ours 27.8 25.1 44.6 56.1

Table 4: Evaluation results on the MBPP test dataset
with or without a replay buffer of valid solutions after
training on MBPP train. No KL divergence was used.

6 Conclusions and Future Work

We have presented two novel ways of improving
code synthesis models. On the training side, we
introduced a practical Reinforcement Learning ap-
proach, based on an simple Actor-Critic REIN-
FORCE algorithm. This approach shown to be sim-
ple yet effective, improving over CLM as well as
PPO-trained models. To provide additional learn-
ing signals, we furthermore introduced a method of
extracting function-level strongly-typed code from
large crawled code datasets, automatically generat-
ing Unit Tests for extracted functions, and conver-
sion for use with a weakly typed target language.
The generated data was able to further improve
model performance, getting the overall best results
for greedy code generation.

In the future, we would like to explore our meth-
ods in settings with wider scope, i.e., go from
function-level code to class- or even project-level.
This poses significant challenges, as rewards will
become even sparser, and data augmentation will
have to take much larger scope into account.
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7 Limitations

We are aware of some limitations affecting this
work. First, the choice of MBPP as the primary
dataset for training, validation, and testing provides
only a small amount of data, with a total of less than
1, 000 instances. As mentioned, datasets that are di-
rectly applicable to the task and approach here, that
is, dataset that provides well-defined function-level
code as well as Unit Tests to evaluate the code’s
functional correctness are not easily available in
large quantities.

We worked towards alleviating this limitation
with our data augmentation approach, however, this
in itself is limited by various factors. We chose
Java as the strongly typed source language, which
follows a very different language paradigm than
our target, Python, with its Class-first approach.
As such, it took a large amount of data to get the
initial Java functions, before even being able to
generate Unit Tests. The approach is further limited
by the speed of test generation, and generating
the initial ∼5, 5k instances of the augmented data
takes a considerable amount of time. The original
generated UT data is also rather noisy, as evidenced
by the filtering steps that had to be applied to get
the final ∼2, 4k instances used for training. On the
other hand, the process is automated, and can be
run in the background to generate arbitrary amounts
of data. While the first iteration of the data released
with this work is thus relatively small, we plan to
make more data available in subsequent releases.

We also try to alleviate the result’s by addition-
ally testing on HumanEval. This itself is a very
small dataset with fewer than 200 instances; how-
ever, as we do not use it for training, but only to
evaluate the various baselines trained on MBPP
and/or our augmented data, we think it provides
valuable insights especially wrt. generalisation ca-
pabilities instiled into the models through the vari-
ous training approaches.

The CodeRL baselines based on Le et al. (2022)
uses the same underlying model as used for our
other approaches. While it could be argued that
their original CodeT5-based approach should be
part of the evaluation, we believe there are good
reasons to employ their method, rather than their
model: First, the policy model employed by Le et al.
(2022) is significantly larger and of a different ar-
chitecture than our ∼300M parameter GPT2-like
PLM, making direct comparison difficult. How-
ever, their RL approach – like ours – should be

independent of model architecture, so comparing
it against our approach on top of the same model
seems fair. Second, most of the improvement in
their work seems to stem not from their approach
to RL training, but from using a second trained
critic at test time, which assesses generated code
for likely “break-down” points, and re-starts syn-
thesis from there to find a better solution. This, in
effect, massively over-generates solutions to find a
working one, whereas we do not employ any such
code break-down and refinement at test time, but
use the final policy model as-is. In fact, our exper-
iments indicate that without such over-generation
at test time, our RL approach is able to outperform
CodeRL even without using any augmented data.
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A Implementation details

A.1 Actor Network

We use a GPT2-like code language model trained
on a large code dataset with a Causal Language
Modeling objective. The model has 25 transformer
decoder blocks, with an embedding size of 1024
parameters, and a total of 317 million parameters
(excluding word embeddings). The vocabulary em-
bedding the question consists of 32k tokens and
the one encoding the python code also consists of
32k tokens.

A.2 Critic Network

To optimise computations and memory, we build
our critic on top of the original PLM. Since we
need to compute π0 for every solution for the KL
divergence part of the reward, we reuse the embed-
ding of the last token as input of the critic. The
multilayer perceptron is composed of the following
layers: a linear layer of 512 neurons, the hyperbolic
tangent activation function and a final layer of 1
neuron. The gradient is only used to update the last
two linear layers without the original PLM.

A.3 Replay Buffer

For a given problem, many alternative solutions ex-
ist, notably by adding irrelevant and unused lines of
code. To avoid promoting those kinds of solutions,
before adding a solution that obtained the maxi-
mum reward to the replay buffer of valid solutions
we perform a reduction of the code by converting
into an abstract syntax tree. From there, we remove
all unused functions, comments and lines outside
the scope of the main function appearing after the
main function. After those simplifications, we also
verify that the same solution does not already exist
in the replay buffer.

A.4 PPO

The same actor architecture and the same critic
architecture are used for the PPO baseline. The
main difference lies in the performed updates. In-
stead of trying to predict the scalar outcome of a
trajectory, the PPO critic is predicting a step-wise
score given by Generalised Advantage Estimation
(GAE) (Schulman et al., 2018). The update of the
actor is also different and relies on the step-wise
score given by the critic. We let the reader refer to
Schulman et al. (2017) for the exact loss.

For fair comparison, the reward function, mini-
batch size, number of generated trajectories per
question and learning rates are kept the same as for
our method. For the additional hyperparameters
introduced by PPO, we kept standard values: the
GAE-λ is 0.97, γ is set to 0.99 and the clip of the
importance sampling ratio is 0.1.

The KL divergence has also optimised and we
kept the value ρ = 0.07.

A.5 CodeRL

For the CodeRL baseline, we reused the same actor
and critic architecture, however, the critic is pre-
training the full transformer and not only the last
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layers. To perform the pretraining, as in Le et al.
(2022), we first train a policy exclusively with CLM
on MBPP train. We select the best checkpoint for
this policy according to the validation performance
over MBPP of the greedy decoded solution. Then,
we continuously generate solutions with that pol-
icy to pretrain the critic (including ground truth
solutions). We also selected the best checkpoint
for this critic according to the mean square error in
validation over MBPP. Once the critic is pretrained,
it is kept frozen during RL training. During the
critic pretraining, a max-pooling of the features is
used in order to predict the outcome of a trajectory.

The actor is updated with the step-wise score
given by the critic and the greedy baseline with a
REINFORCE-like loss.

For fair comparison, the reward function, mini-
batch size, number of generated trajectories per
question and learning rates are kept the same as for
our method.

A.6 Hardware Specifications

We trained our models using a single GPU (Nvidia
Tesla V100-SXM2 32GB) and an Intel(R) Xeon(R)
Platinum 8160 CPU @ 2.10GHz CPU. To train 30
epochs, around 24 hours were needed for each RL
methods involving augmented Unit Tests (around
670k solutions were generated for Ours+All). To
test on MBPP, around 6 hours were needed to gen-
erate 100k solutions.

B More results

In this section, we report additional results gathered
during the experiment phases.

In Table 5, we report the best validation for each
method and the associated training pass@1 for the
same checkpoint.

Validation (greedy) Training (pass@1)

CLM 30.7 56.6
PPO 31.1 43.5
CodeRL 34.4 57.8
Ours 37.7 63.4

Ours+Aug 29.3 67.4
Ours+All 33.6 79.9
Ours+All (0.2) 31.5 71.8

Table 5: Best training and validation on MBPP for each
method. The pass@1 was computed with the 8 gener-
ated trajectories. On the bottom part of the table the
training performance is computed with the augmented
unit tests exclusively for Ours+Aug and with MBBP
train and the augmented unit tests for Ours+All.

Greedy

Ours 0.9
Ours+Aug 1.8
Ours+All 2.3

Table 6: Evaluation results on filtered augmented data,
not encountered during training.

In Table 6, we analyse the performance of our
different methods on augmented Unit Tests not
used for training; notably, these are data points
from the original augmented dataset for which no
valid solution could be found by the base PanGu-
Coder PLM, among 100 samples. We also filtered
questions and signatures such that they are unique
in the testing set and do not appear in the training.
This testing set is composed of 1, 428 instances.
Because of such a large number of instances, we
only focused on greedy decoding evaluation. On
this test data, both our models trained on the aug-
mented data (Ours+Aug), as well as on all available
training data (Ours+All) are better than the model
trained on MBPP alone, showing that learning on
more UT increases the overall model performance.

C Observations of Critic Scores

As mentioned in a motivating example in Sec-
tion 3.2, we could reasonably expect a deep
learning-based critic, such as used in this work, to
develop some understanding of “good” and “bad”
code. This would allow a critic to distinguish even
working solutions (i.e., different solutions that pass
all Unit Tests), assigning scores related to code
quality.

While such emergent properties in neural critics
are purely hypothetical on our end, we still are
interested in whether we can identify patterns in
critic score assignments.

To this end, we manually inspected 62 problems
from the HumanEval dataset for which our final
model (“Ours+All” in previous experiments) was
able to generate multiple valid solutions, according
to unit tests. We then assigned scores to each so-
lution using the final critic, selecting the solutions
with highest and lowest critic scores for compari-
son. We established a number of observations:

• On average, higher rated solutions were
slightly longer than their lower rated counter-
parts, with an average length of 7.21 and 7.01
lines of code produced respectively. However,
this is largely attributed to a single outlier for
which the preferred solution had 43 lines, and
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def fib(n: int):
if n == 0:

return 0
if n == 1:

return 1
return fib(n-2)+fib(n-1)

def fib(n):
if n <= 0:

return 0
if n == 1:

return 1
return fib(n-2) + fib(n-1)

Figure 5: Motivating (hand-written) examples of implementations for Fibonacci, repeated from Figures 2 (left)
and 3 (right)

def fib(n: int):
if n < 2:

return n
return fib(n-2) + fib(n-1)

def fib(n: int):
if n < 2:

return n
prev, curr = 0, 1
for i in range(2, n+1):

prev, curr = curr, prev + curr
return curr

Figure 6: Highest-scored (left) and lowest-scored (right) working implementations of the Fibonacci sequence, as
generated and scored by our final policy and critic models.

Figure 7: Example of Unit Test and function signature conversion

Function Description: A method that return Yes only if both monkeys are smiling or not smiling @param aSmile @param
bSmile @return yes only if both monkeys are smiling or not smiling , no if not TODO : Your code
goes here

Python Signature: def monkeyTrouble2(aSmile, bSmile):
Unit Tests: assert monkeyTrouble2(False, False) == "Yes"

assert monkeyTrouble2(True, True) == "Yes"
assert monkeyTrouble2(True, False) == "No"
assert monkeyTrouble2(False, True) == "No"

Function Description: Returns the max of a and b. Do not step into this function. This function may have a bug, but if it
does, you should find it by stepping over, not into.

Python Signature: def max(a, b):
Unit Tests: assert max(0, 581) == 581

assert max(-1, -1) == -1
assert max(581, 373) == 581
assert max(0, 0) == 0

Function Description this loop works by comparing the first character of string2 against the *characters of string1. If it
isn’t found in the first string then the method returns false. If it is found, it moves onto the second
character of the second string, picking up the comparison of string where the first character was
found.

Python Signature: def containsSubSequence(string1, string2):
Unit Tests: assert containsSubSequence("QzÚP3nQGY+yG|7", "Jf vr") == False

assert containsSubSequence("QzÚP3nQGY+yG|7", "QzÚP3nQGY+yG|7")
== True

Table 7: Examples of automatically generated augmentation instances used for Unit Test-based RL training.
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the lower rated one had 9. Removing outliers,
the average number of lines of code is 6.8 for
preferred, and 6.9 for dispreferred solutions.
As such, there doesn’t seem to be a clear bias
of the critic’s score wrt. solution length.

• The average of scores assigned to the high-
est and lowest rated solutions are extremely
close – 33.5377 and 33.5375. This indicates
that distinguishing between “good” and “bad”
correct solutions is indeed (unsurprisingly) a
very hard problem for the critic.

• Certain variable names – such as identifiers
in for-loops – seem more generic (i, j, k) in
preferred solutions, and more specific (num,
line) in dispreferred ones. This could be an ar-
tifact of such generic scoping variables being
prevalent in the model’s pretraining data.

• On average, preferred solutions seem more
“pythonic” in nature. For example, we ob-
served that constructs such as list comprehen-
sions are used more frequently in preferred
solutions. One could argue that this presence
of language-specific built-ins is indeed indica-
tive of “better” code than its absence.

Anecdotally, recalling our motivating example
of implementations of the n-th Fibonacci number
in Figures 2 and 3 – repeated in Figure 5 for easier
reference – we find that the critic indeed agrees
with our intuition that we would favour the latter;
however, similar to the observation about average
high/low scores above, the actual assigned scores
for these two solutions are extremely close (iden-
tical to 4 significant figures). As such, we cannot
claim that the critic seems to truly distinguish be-
tween (intuitively) better and worse code.

Comparing the valid solutions for this problem
generated by our actual model, we find the highest-
rated one (Figure 6, left, score 33.5377) is – ac-
cording to our intuition – indeed better than the
lowest-rated one (Figure 6, right, score 33.5375),
as the former makes use of recursion rather than a
loop. Interestingly, the scores of the fictive example
solutions given in Figures 2 and 3 both lie between
these maximum and minimum scores. This estab-
lishes a relative ranking of the four solutions as
Figure 6 (left) > Figure 5 (right) > Figure 5 (left) >
Figure 6 (right); an order that according to our
intuition seems justifiable.

While these examples should be taken with a
grain of salt, we might take them as weak evidence
that a critic trained to predict unit test outcomes
may indeed be able to meaningfully distinguish
between different working solutions to the same
problem, which is impossible to assess based on
Unit Test performance alone.

D Test and Signature Conversion

Figure 7 shows a diagram of converting a Java code
signature and Unit Tests into Python equivalents.

Our data augmentation method yields instances
suitable for Unit Test-based RL training, consisting
of a function description in natural language, as
well as a Python signature and Python-style test
cases, converted from Java as outlined above. We
show a few examples of generated augmented in-
stances in Table 7.
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