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Abstract

The goal of this paper is to explore how
Transformer language models process seman-
tic knowledge, especially regarding the plausi-
bility of noun-verb relations. First, I demon-
strate GPT2 exhibits a higher degree of sim-
ilarity with humans in plausibility process-
ing compared to other Transformer language
models. Next, I delve into how knowledge
of plausibility is contained within attention
heads of GPT2 and how these heads causally
contribute to GPT2’s plausibility processing
ability. Through several experiments, it was
found that: i) GPT2 has a number of attention
heads that detect plausible noun-verb relation-
ships; ii) these heads collectively contribute
to the Transformer’s ability to process plau-
sibility, albeit to varying degrees; and iii) at-
tention heads’ individual performance in de-
tecting plausibility does not necessarily corre-
late with how much they contribute to GPT2’s
plausibility processing ability. Codes are avail-
able at github.com/soohyunryu/plausibility-
processing-transformers

1 Introduction

Transformers are attention-based neural network
models (Vaswani et al., 2017), which have brought
breakthroughs in the field of Natural Language
Processing achieving state-of-the-art performance
in diverse downstream tasks. Such great perfor-
mance is thought to be attributed to Transformers’
ability to build dependencies even between long-
distant words which attention heads are developed
for (Merkx and Frank, 2021). To be specific, un-
like previous neural network language models (e.g.,
Simple Neural Networks or Recurrent Neural Net-
works) that have issues retaining linguistic infor-
mation coming from distant tokens, attention heads
in Transformers enable to represent the meaning
of tokens by integrating their contextual informa-
tion without losing information from distant tokens
(Bahdanau et al., 2015).

Provided that Transformer language models con-
sist of multiple attention heads that serve different
roles, previous studies examined functions that in-
dividual attention heads serve and how language
processing work is divided inside Transformers
(Clark et al., 2019; Voita et al., 2019; Vig, 2019;
Jo and Myaeng, 2020). However, previous stud-
ies mostly focused on finding attention heads that
process linguistic knowledge intrinsic to language
systems such as morphosyntactic rules, and little
attention has been paid to semantic knowledge,
which requires much of world knowledge going
beyond rules in language systems.

Consequently, we only have limited knowledge
of how attention heads contribute to Transform-
ers’ general ability to process semantic knowledge.
A number of studies (Bhatia et al., 2019; Bhatia
and Richie, 2022; Ettinger, 2020; Han et al., 2022;
Misra et al., 2020, 2021; Pedinotti et al., 2021;
Peng et al., 2022; Ralethe and Buys, 2022) exam-
ined how Transformers process semantic knowl-
edge in comparison with humans, but their focus
was mostly on the models’ performance from the
final hidden state without answering where the spe-
cific type of knowledge is preserved or processed
in Transformer models. A few studies started inves-
tigating how world knowledge is stored in Trans-
formers (e.g., Meng et al. (2022) examined how
GPT stores factual associations). However, the pre-
vious findings are yet generalizable to a broad range
of semantic knowledge, and thus more studies are
needed to understand how Transformers process
other types of semantic knowledge.

In this regard, the present study aims to advance
our knowledge of semantic knowledge processing
in Transformer language models by closely investi-
gating individual attention heads’ ability in process-
ing semantic plausibility and their causal contribu-
tion to Transformer’s performance in plausibility
processing. Among various types of plausibility,
the especial focus of this paper is on the plausible
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relation between nouns and verbs. While recogniz-
ing the importance of considering a broader array
of semantic knowledge in future studies, I made
this specific choice because the objectives of the
present paper are to demonstrate a set of attention
heads can be specialized for specific type of seman-
tic knowledge and to introduce a set of analyses
that can be used to probe attention heads’ role in
processing semantic knowledge.

The semantic plausibility of the relationship be-
tween nouns and verbs can be determined by the
degree to which semantic features of nouns and
verbs match, as shown in sentences in (1) from
Cunnings and Sturt (2018). For instance, in (1a),
the syntactic dependent (plate) of the verb (shat-
tered) has a feature [+shatterable], which builds a
plausible relation with the verb (shattered). In (1b),
however, the syntactic dependent letter does not
have a feature [+shatterable], and thus it is semanti-
cally implausible dependent of the verb (shattered).

(1) a. Sue remembered the plate that the but-
ler shattered ...

b. Sue remembered the letter that acci-
dentally shattered ...

In order to examine how such knowledge is pre-
served and processed inside Transformer-based lan-
guage models, this paper answers the following
questions: (i) How similar are Transformer’s plau-
sibility processing patterns to humans’?; (ii) How
sensitive is each of the attention heads in Trans-
formers to plausibility relation?; and (iii) How do
these heads make causal effects on Transformers’
ability to process semantic plausibility?

After comparing patterns in plausibility process-
ing between a group of Transformer-based lan-
guage models and humans, it was found that GPT2
tends to process the plausibility between nouns
and verbs in a way that is more similar to humans
than other language model types. Several follow-
up experiments that especially focus on GPT2 an-
swered the last two questions. Specifically, it was
uncovered that GPT2 has a set of attention heads
that detect semantic plausibility, which are rela-
tively diffusely distributed from the bottom layers
to the top layers and that they exert causal effects
on Transformers’ semantic plausibility processing
ability. GPT2’s plausibility processing ability al-
most disappeared when the plausibility-processing
attention heads are pruned, but the effects of remov-
ing a plausibility-processing attention head was not

balanced nor proportional to the attention heads’
performance in detecting plausible nouns. Rather,
it was found that a single attention head accounts
for most of plausibility processing ability of GPT2.

In what follows, I will provide a background
that relates to the questions I address in this paper.
In Section 3, I will compare Transformer-based
language models’ and humans’ sensitivity to the
plausibility of the relation between nouns and verbs.
In Section 4, I will conduct an experiment to find
attention heads that can detect semantic plausibility
knowledge and examine how they are distributed
inside the model. In Section 5, it will be examined
how individual attention heads collectively make
causal effects of on Transformers’ sensitivity to
plausibility. In Section 6, I will summarize the
results and discuss the limitations of the study.

2 Background

What roles do attention heads serve? There
have been a lot of studies that attempted to explain
the language processing mechanism in Transform-
ers with analyzing functions that distinct attention
heads serve (Voita et al., 2019; Vig, 2019; Clark
et al., 2019; Jo and Myaeng, 2020). Specifically,
Voita et al. (2019) found attention heads specialized
for a position, syntactic relation, rare words detec-
tion; Vig (2019) found attention heads specialized
in part-of-speech and syntactic dependency; Clark
et al. (2019) found attention heads specialized in
coreference resolution; and Jo and Myaeng (2020)
examined how linguistic properties at the sentence
level (e.g., length of sentence, depth of syntactic
trees and etc.) are processed in attention heads.

Despite numerous attempts in examining the
roles of attention heads, the focus has been mostly
on linguistic knowledge intrinsic to language sys-
tems which does not require much world knowl-
edge that is indispensable for semantic knowledge
processing. Thus, it needs to be closely exam-
ined how Transformers preserve and process such
knowledge that facilitates sentence processing.

How do we learn attention heads are specialized
for certain linguistic knowledge? In previous
studies, attention heads are considered to be able
to process a certain type of linguistic knowledge
if attention distribution patterns in the attention
heads are consistent with the linguistic knowledge
(Voita et al., 2019; Vig and Belinkov, 2019; Ryu
and Lewis, 2021). However, such regional analysis
does not explain how much contribution attention
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heads make to Transformers’ ability to process lin-
guistic knowledge because such information from
the attention heads may fade away or be lumped
along with the information flows - from bottom
layers to top layers - eventually making little con-
tribution to Transformers’ ability to process the lin-
guistic knowledge. Thus, to rigorously confirm the
role of attention heads in processing a certain type
of knowledge, it is crucial to analyze the causal
effects that they make on Transformer’s ability to
process linguistic information (Belinkov and Glass,
2019; Meng et al., 2022; Vig et al., 2020).

In this sense, this paper will not only examine
which attention heads can form attention distribu-
tions that are consistent with semantic plausibility
knowledge, but also examine how much influence
the attention heads can exert on Transformers’ gen-
eral ability to process plausibility.

3 Comparison between humans and
Transformer language models in
plausibility processing patterns

This section examines how a set of Transformer
language models process plausibility of noun-verb
relations in comparison with human data.

3.1 Data

In Cunnings and Sturt (2018), it was investigated
how the degree of noun-verb plausibility affects the
way humans process sentences. There are 32 sets
of sentences with varying not only the plausibility
of dependent-verb relations but also the plausibility
distractor-verb relations1.

(2)

a. plausible - plausible
... that the plate that the butler with the cup
accidentally shattered ...

b. plausible - implausible
... that the plate that the butler with the tie
accidentally shattered ...

c. implausible - plausible
... that the letter that the butler with the cup
accidentally shattered ...

d. implausible - implausible
... that the letter that the butler with the tie
accidentally shattered ...

1In experiments with language models, I removed sets of
sentences whose tokens of interest are not recognized as a
single token by the tokenizer.

3.2 Method
Cunnings and Sturt (2018) measured the degree of
difficulty that people have when processing a cer-
tain noun-verb pair with reading times that are mea-
sured at verb2 (shattered in (2)). To compare hu-
mans’ responses with Transformer language mod-
els, I computed surprisals (Hale, 2001; Levy, 2008),
also measured at verbs, as a metric that represents
processing difficulty of the model, given a large set
of evidence manifesting that surprisals computed
from neural network language models can simulate
human sentence processing patterns (Futrell et al.,
2019; Michaelov and Bergen, 2020; Van Schijndel
and Linzen, 2021; Wilcox et al., 2020).

Surprisal is a term that estimates the degree of
the unexpectedness of tokens given their preceding
context, which is computed by taking the nega-
tive log probability of a token conditioned on its
preceding words (See Equation (A)). In neural net-
work language models, the surprisal of a word is
computed using the softmax-activated hidden state
before consuming the word (Wilcox et al., 2018).

Surprisal(w) = −log2P (w|h) (A)

where h is the softmax-activated hidden state of the
sentence before encountering the current word.

Both reading times and surprisals measured at
verbs are expected to be greater in sentences with
implausible nouns than in ones with plausible
nouns since it is less likely to anticipate a certain
verb after encountering a noun in an implausible
relationship with the verb.

A set of Transformer language models to
be tested includes ALBERT (Lan et al., 2019),
RoBERTa (Liu et al., 2019), BERT (Kenton and
Toutanova, 2019), and GPT2 (Radford et al., 2019).
The versions of models that are tested have 144
attention heads, which are spread across 12 layers
with 12 attention heads each. Models are accessed
through Huggingface (Wolf et al., 2019).

3.3 Results
As shown in Figure 1, GPT2 exhibits the highest
level of similarity to humans in processing the plau-
sibility of noun-verb pairs, in comparison to other
Transformer-based language models.

In addition, further statistical analysis using re-
gression models supports GPT2’s similarity with

2The original paper also talks about the spillover region
following the verbs of interest, but this study focuses on the
reading times (total viewing times) measured at the verb re-
gion.
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Figure 1: Surprisals computed from Transformer language models and reaction times from human subjects for
processing different types of noun-verb pairs. Human reading times are from Cunnings and Sturt (2018). Shapes at
the center and intervals for each condition represent means and standard errors.

humans in plausibility processing. First, signifi-
cantly lower processing difficulties are observed
when syntactic dependents are in a plausible rela-
tionship with the verb than when they are in an
implausible relation for both human (estimate = .11
, SE = .01, t = 9.26, p < .001) and GPT2 (estimate
= 4.81 , SE = .84, t = 4.86, p <.001).

Also, GPT2 showed marginally significant plau-
sibility effects even with distractors that do not
form a dependency relation with the verb (estimate
= 1.57, SE = .84, t = 1.87, p = .06) (i.e., process-
ing difficulties are greater in (b) and (d) than in (a)
and (c)), similar to the human data where signifi-
cant plausibility effects from distractors are found
(estimate = .04, SE = .13, t = 2.85, p < .05)3.

Being inconsistent with the human reading time
data that show the interaction effects of dependent-
plausibility and distractor-plausibility (estimate =
.02, SE = .01, t = 2.29, p < .05), GPT2 data do
not show significant interaction effects (estimate
= .89, SE = 1.19, t = .75, p = .46). This absence
of evidence for interaction effects in GPT2 may be
due to the difference in sample sizes, which can im-
pact the level of statistical significance. It would be
possible to observe the interaction effects with the
increased data size especially given a trend of inter-
action in GPT2: the surprisal difference between
(a) and (b) is smaller than the surprisal difference
between (c) and (d), consistent with human data.
For the statistical results from other Transformer-
based language models, see Appendix A.

3Plausibility effects observed for distractors in GPT2 and
humans are due to the illusion of plausibility (Cunnings and
Sturt, 2018): even distractors that cannot build syntactic de-
pendency with cues (verbs) can be illusorily considered as the
syntactic dependents, causing moderate plausibility effects
while sentence processing.

3.4 Discussion

Compared to other language models, GPT2 is
found to process plausibility between nouns and
verbs in a similar way as humans do. While more
rigorous study is required to explain the origin of
GPT2’s supeiror performance in simulating human
plausibility processing patterns, I assume that the
GPT2’s similarity to humans arises from the psy-
chological plausibility of its decoder-only archi-
tecture. In particular, it processes sentences incre-
mentally much like the way humans process sen-
tences (i.e., it constructs the meaning of a certain
word only given its prefix, without any influence
from the ‘unseen’ next coming words), unlike other
types of language models that are tested exploit
bidirectional processing (i.e., it process each word
of sentences not incrementally, but integrating both
preceding and following words.)

Given that GPT2 shows the most similar patterns
as humans in processing plausibility of noun-verb
relations, the following sections will examine the
role that attention heads in plausibility processing,
focusing on the GPT2 model.

4 Plausibility processing attention heads
in GPT2

This section will examine whether GPT2 has a
specific set of attention heads that can sensitively
detect plausiblity of noun-verb relations, irrespec-
tive of syntactic dependency relation. Experimental
stimuli were the same as previous experiment.

4.1 Method

In GPT2’s attention heads, each token allocates
different amounts of attention to previous tokens
depending on the relevance of the two tokens4.

4The relevance can be defined in terms of functions that
attention heads serve. For instance, if an attention head is
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With such a property of Transformers, the ca-
pacity of attention heads in detecting plausibility is
measured in terms of accuracy that indicates how
likely the plausible noun is to get higher attention
than the implausible noun in a certain attention
head (See Equation (B)).

Accuracylh =
∑k

j=1[Attn(plj , vj) > Attn(implj , vj)]

k

(B)

, where lh refers to the location of attention heads
(h for the hth head in the lth layer), j refers to the
sentence id, plj and implj refer to the plausible
and implausible nouns to be compared in the jth
sentence set, vj refers to the verb in the jth sentence,
and k is the number of sentence sets.

In order to ensure that the heads do not partic-
ularly work for tokens that form syntactic depen-
dency but work for semantically related tokens, I
measured the accuracy not only using pairs of syn-
tactic dependents (plate vs. letter in (2)), but using
pairs of distractors (cup vs. tie in (2)). Considering
both of noun types enabled to find attention heads
that can judge the plausibility between nouns and
verbs regardless of syntactic compatibility between
them. Thus, there are four comparisons between
plausible and implausible conditions for each set
of sentences: (pl-pl vs. pl-impl), (impl-pl vs. impl-
impl), (pl-pl vs. impl-pl), (pl-impl vs. impl-impl),
where the first and the second corresponds to syn-
tactic dependents and distractors, respectively.

4.2 Results

I consider attention heads are able to process plau-
sible relationships between nouns and verbs when
their accuracy in identifying appropriate nouns sur-
passes the chance level, having the cutoff as 70%
at my discretion. To select attention heads that can
process the semantic plausibility regardless of the
syntactic dependency relation between the noun
and the verb, I consider attention heads whose ac-
curacies are greater than 70% in both noun types.

With such criteria, eighteen attention heads are
recognized to be able to process plausibility: [(0,
1), (0, 5), (0, 10), (1, 5), (1, 6), (1, 11), (3, 0), (4,
3), (4, 4), (4, 10), (5, 10), (5, 11), (6, 6), (7, 1), (7,
9), (8, 3), (8, 10), (9, 4), (10, 7)], where the first
numbers refer to indexes of layers and the second

specialized for detecting subject-verb dependency relation,
the amount of attention can reflect how likely two tokens are
in the subject-verb relationship (Voita et al., 2019)

refer to indexes of heads (i.e., (i, j) refers to the jth
head in the ith layer.)) Among the attention heads
that are found to process semantic plausibility, two
attention heads - (1, 6) and (5, 10) - especially
show noteworthy performance in detecting plau-
sible, achieving 95% of accuracy. Please refer to
Appendix B to see the values from each head.

4.3 Discussion

This section showed that a set of attention heads
are particularly good at processing semantic plausi-
bility between nouns and verbs. Such plausibility
processing ability seems independent of their abil-
ity to process syntactic dependencies since their
ability to process plausibility is not limited to pro-
cessing syntactic dependents of verbs, but it is also
applicable to distractors that do not form any syn-
tactic dependencies with verbs.

Unlike attention heads specialized for processing
a certain syntactic relation and superficial linguistic
information such as word position or word rarity is
clustered in a relatively small region (Voita et al.,
2019), it seems that the components that process se-
mantic plausibility are relatively evenly distributed
across twelve layers and take up an even greater re-
gion: 18 attention heads out of 144 attention heads
in the GPT2-small model. In the next section, it
will be discussed how these plausibility-processing
attention heads collectively exert causal effects on
GPT2’s plausibility-processing ability.

5 Causal effects of plausibility-processing
attention heads on GPT2’s plausibility
sensitivity

In the previous experiment, attention heads capa-
ble of detecting plausible relations between nouns
and verbs were found. The present section exam-
ines how such attention heads make causal influ-
ence on GPT2’s sensitivity to plausibility between
nouns and verbs. In particular, I attempt to an-
swer two questions: (i) How GPT2’s responses
to plausible/implausible verb-noun pairs change
when plausibility-processing attention heads are
removed? and (ii) How does GPT2’s plausibility-
sensitivity change as attention heads are gradually
pruned?

5.1 Influence of a set of plausibility-processing
heads to plausibility sensitivity

In this study, I examine how GPT2’s responses
to plausible and implausible noun-verb relations

360



change when the plausibility-processing heads are
removed.

5.1.1 Method
Surprisals are computed from two models: i) GPT2
without plausibility-processing heads and ii) GPT2
after removing the same number of attention heads
as i), but the heads to prune selected randomly. I
included the random-removal model to see whether
the disappearance of the plausibility sensitivity in
GPT2 is simply attributed to taking away some por-
tion of the information in GPT2, or it is caused
by specifically removing plausibility processors.
In order for reliability, we used 100 different ran-
dom attention head sets for ii), and computed the
average of surprisals from the 100 models.

Attention heads were pruned by replacing at-
tention values with zeros, following Michel et al.
(2019).

5.1.2 Results

Figure 2: Surprisals computed from GPT2s after remov-
ing different sets of attention heads and reaction times
from human subjects for processing different types of
noun-verb pairs.

When removing the plausibility processing atten-
tion heads (left in Figure 2), no plausibility effects
are found for syntactic dependents (estimate = .77,
SE = .53, t = 1.43, p = .15) and for distractors (esti-
mate = .71, SE = .54, t = 1.32, p = .19). Also, no
interaction effects are found (estimate = 0.06, SE =
0.76, t = 0.08, p = 0.94)

Importantly, such a decrease is not the effect that
is caused by simply removing some random compo-
nents in GPT2. When randomly selected eight-teen
attention heads are pruned (right in Figure 2), the
GPT2 model better simulates human responses in
processing plausibility. In this case, the significant
plausibility effects are observed both in syntactic
dependents (estimate = 2.40, SE = .69, t = 3.46, p
< .001 ) and in distractors (estimate = 1.70, SE =

.69, t = 2.45, p < .05), although interaction effects
are not found as well (estimate = 0.73, SE = 0.98, t
= 0.75 p = 0.46).

5.2 Gradual changes in GPT2’s plausibility
sensitivity as attention heads are pruned

The previous section examined how the set of
plausibility-processing attention heads influences
GPT2’s responses to plausible or implausible noun-
verb relations. Though it was shown that plausi-
bility processing attention heads collectively con-
tribute to GPT2’s ability to process plausibility
unlike other sets of attention heads, it is unan-
swered how individual attention heads contribute
to GPT2’s plausibility-processing ability. Do they
have balanced contributions to GPT2’s ability to
process plausibility? Or, is it that only a small
set of plausibility-processing attention heads ac-
count for most of the plausibility-processing ability
of GPT2? In order to answer these questions, the
following experiment investigates how GPT2’s gen-
eral sensitivity to plausibility gradually changes as
attention heads are pruned one by one.

5.2.1 Method
This study operationalizes GPT2’s plausibility sen-
sitivity as the difference in surprisals measured at
the verbs of interest (‘shattered’ in (2)) in sentences
with plausible nouns and in ones with implausible
nouns as shown in Equation (C).

Plausibility Sensitivity =

surprisalimpl(verb)− surprisalpl(verb)
(C)

, where surprisalpl(verb) and surprisalimpl(verb)
refer to surprisals measured at the verb in a sen-
tence with a plausible noun and in a sentence with
an implausible noun, respectively.

I computed two plausibility sensitivities: one
that compares surprisals at verbs when having plau-
sible syntactic dependents of verbs in sentences and
having implausible syntactic dependents ({(c)+(d)}
- {(a)+(b)}) and the other that compares surprisals
when having plausible distractors of verbs and im-
plausible distractors ({(b)+(d)} - {(a)+(c)}).

Both types of plausibility sensitivities are mea-
sured at each point after gradually removing a plau-
sibility processing attention head one by one. At-
tention heads were pruned in decreasing order of
their accuracies5 in detecting plausible nouns over
implausible nouns.

5I used the average values of accuracies for dependents
and for distractors that were computed in Section 3.
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Figure 3: Changes in plausibility sensitivity by noun types as attention heads are gradually pruned. X-axis indicates
plausibility-processing attention heads that are pruned at a certain point.

5.2.2 Results
Figure 3 plots how the plausibility sensitivities
for both types of noun-verb relations change as
plausibility-processing attention heads are removed
gradually.

When it comes to the plausibility sensitivity for
distractors, the changes seem to be continuous.
Such patterns suggest that the set of plausibility
processing attention heads make a collective contri-
bution to plausibility effects for distractors. Such
collective contribution that plausibility processing
attention heads make is especially supported by the
fact that the gradual decrease in plausibility sen-
sitivity over the course of removing 18 attention
heads eventually led to the elimination of the statis-
tically significant plausibility effects for distractors
as observed in Section 5.1.

In contrast, the sensitivity to plausibility for the
relation between syntactic dependents and verbs
shows a drastic decrease upon the removal of the
attention head (0, 10). The effect from the removal
of the head (0, 10) shows that this particular head
exerts a huge amount of causal effects on GPT2’s
general sensitivity to plausible relations between
syntactic subjects and verbs6. Figure 4 confirms
that the head (0, 10) causes a huge amount of causal
contribution on GPT2’s plausibility processing abil-
ity since it reduces the difference in surprisals be-
tween plausible conditions and implausible condi-
tions, though it does not alone eliminate the signifi-
cance in plausible effects for syntactic dependents
(estimate = 1.29, SE = 0.61, t = 2.10, p < .05) or
for distractors (estimate = 1.40, SE = 0.61, t = 2.29,
p < .05).

One additional interesting finding is that the gen-
6The drastic drop after the removal of the head (0, 10) was

also found when attention heads are removed in random order.

Figure 4: Surprisals by conditions computed with the
GPT2 without a single attention head (0, 10)

eral level of surprisals upon the removal of the at-
tention head (0, 10) increases considerably regard-
less of the condition. For instance, the removal of
the single attention head (0, 10) increases surprisals
by 2.79 bits on average across the four conditions,
which seems to be huge given that the randomly
selected 18 attention heads only led to the 1.89
bits of increase. Such trends indicate one possi-
ble explanation of the role of the head (0, 10): it
contributes to GPT2’s general ability to predict the
next word, and such impact arises in any sentence,
not only in the sentences that require plausibility-
processing. In the next section, further analysis
on the role of the attention head (0, 10) will be
provided to address such a possibility.

5.3 Further analysis on the role of the
attention head (0, 10)

To better understand the origin of GPT2’s plausi-
bility processing ability, the present study aims to
further examine the role of (0, 10) that make great
contribution to plausibility sensitivity in GPT2 . In

362



particular, I examine whether the (0, 10) is only
specialized for semantic plausibility or is responsi-
ble for predicting next words in general sentences
which leads to influence plausibility processing.

5.3.1 Method
Perplexity in Equation (D) is the average value of
surprisals computed from every tokens in corpus,
which can be used to estimate the predictive power
of language models in predicting next words given
preceding context (Goodkind and Bicknell, 2018).

Perplexity(LM) =
1

M

m∑

i=1

log2P (wi|h) (D)

, where i is the index of words, m is the number
of words in corpus, and h refers to the softmax-
activated hidden state of the preceding context.

To examine how the general predictive power
gets affected by the removal of the head (0, 10) in
comparison with the removal of other heads, I com-
puted the perplexities of GPT2 after removing each
of 144 attention heads and compared those values.
Andersen (1855)’s “The Money Box” story which
has 41 sentences was used to compute perplexities.

5.3.2 Results

Figure 5: Histogram of 144 perplexities of GPT2, each
of which is computed after removing single attention
head

The perplexity of GPT2 with the entire set of
attention heads was 5.47. In most of the cases, the
removal of a single head does not seem to consider-
ably affect GPT2’s perplexity, since the perplexity
remains to be in a similar range after the removal
as shown in Figure 57. However, it is clear that

7For 95% of attention heads, the perplexities change by
less than 0.1 bit after the removal.

the removal of the head (0, 10) seriously harms
the general predictive power of GPT2 because the
perplexity becomes 7.27 after removing it, which is
much greater compared to the most of other atten-
tion heads. This suggests that the head having the
greatest influence on GPT2’s plausibility process-
ing ability is not specifically specialized for plau-
sibility processing, but rather the attention head
contributes to the general predictive power of any
kind of sentence.

5.4 Discussion

Results of this section suggest plausibility process-
ing in GPT2 requires a collective contribution from
a large set of plausibility processing attention heads,
given that plausibility sensitivity decreases contin-
uously as attention heads are gradually pruned.

At the same time, however, it was also shown
that the amount of causal effects that each attention
head makes are highly imbalanced since the atten-
tion head (0, 10), which contributes to GPT2’s gen-
eral predictive power, leads to a significantly more
drastic decrease in plausibility sensitivity for depen-
dents than other heads. Taken together, although a
single attention head can account for a great por-
tion of the plausibility effects, other plausibility-
processing attention heads make an additional con-
tribution to GPT2’s plausibility-processing ability.

Interestingly, the head (0, 10) did not achieve
noteworthy performance in detecting plausible
nouns over implausible nouns in Section 4. This
suggests that analyzing the causal effects each at-
tention head makes is essential to understanding
the role that attention heads serve, provided that the
performance that each attention head shows in pro-
cessing particular linguistic information does not
necessarily align with how much it contributes to
the model’s performance in processing the specific
information.

In addition, how the plausibility-processing at-
tention heads affect Transformers’ general ability
needs to be investigated in relation to other atten-
tion heads that are specialized for different linguis-
tic knowledge. This is especially the case given
the findings that the way plausibility sensitivity de-
creases along with the gradual heads-pruning varies
by the relation types that nouns build with verbs
(i.e., syntactic dependents or distractors), which
must be handled by different attention heads.
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6 Conclusion & Limitations

The present study has shown how semantic plausi-
bility is processed in Transformer language models,
especially focusing on the role of attention heads.
First, I demonstrated that GPT2, whose decoder-
only architecture is more aligned with the way hu-
mans process sentences, shows greater similarity
to humans in plausibility processing compared to
other Transformer-based models such as BERT,
RoBERTa and ALBERT. Then, a series of experi-
ments showed a set of attention heads are found to
process plausibility, and those heads are diffusely
distributed across 12 layers in GPT2. Moreover, it
was observed that they make imbalanced but col-
lective causal contributions to GPT2’ plausibility-
processing ability, which establishes the impor-
tance of causal effect analysis in attention-head-
probing studies.

Although the results provide a window into how
Transformers process semantic knowledge of plau-
sibility, this study has a few limitations to be ad-
dressed in future studies. First, the scope of the
study is restricted to the plausibility of noun-verb
relations although there exist many different types
of semantic knowledge. This limitation stems from
the present paper’s intention to ‘initiate’ an explo-
ration of Transformers’ attention heads in handling
of semantic knowledge and to exploit diverse and
robust techniques for the exploration, rather than
serving as a definitive endpoint that accounts for
an exhaustive set of semantic knowledge. How-
ever, future investigations should expand the cur-
rent study’s scope for better generalizability.

Moreover, the study does not detail how atten-
tion heads interact with other components like hid-
den states across layers or feed-forward percep-
trons. Such details would be essential in enhancing
our understanding of the attention head roles in
plausibility processing by elucidating how these
heads impact Transformer models’ plausibility pro-
cessing ability. As such, subsequent studies should
delve deeper into these interactions for a more accu-
rate understanding of their role in semantic knowl-
edge processing.

As these limitations are addressed, I anticipate
further advancements in explaining Transformer
models’ capacity for semantic knowledge process-
ing, founded on the novel findings and methods
introduced in this study.

Acknowledgements

This research took place as part of EECS 595 Natu-
ral Language Processing, a course taught by Joyce
Chai at the University of Michigan in the fall term
of 2022. I am truly grateful for the invaluable
insights shared by all of my class instructors. Ad-
ditionally, I extend my gratitude to the members
of the Computational Cognitive Science Lab at the
University of Michigan - Richard Lewis, Logan
Walls, Yuxin Liu, Andrew McInnerney, Sean An-
derson and Sarah Liberatore - for their instructive
suggestions and guidance. I am also deeply ap-
preciative of the four anonymous reviewers at the
ACL Rolling Review for their productive feedback,
which significantly enhanced the quality of the pa-
per.

References
Hans Andersen. 1855. Hans Andersen’s Fairy Tales:

The money box.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Sudeep Bhatia and Russell Richie. 2022. Transformer
networks of human conceptual knowledge. Psycho-
logical Review.

Sudeep Bhatia, Russell Richie, and Wanling Zou. 2019.
Distributed semantic representations for modeling
human judgment. Current Opinion in Behavioral
Sciences, 29:31–36.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. In Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
276–286.

Ian Cunnings and Patrick Sturt. 2018. Retrieval interfer-
ence and semantic interpretation. Journal of Memory
and Language, 102:16–27.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.

364



Neural language models as psycholinguistic subjects:
Representations of syntactic state. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 32–42.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the Workshop on Cognitive Modeling and
Computational Linguistics, pages 10–18.

John Hale. 2001. A probabilistic earley parser as a
psycholinguistic model. In Second meeting of the
north american chapter of the association for com-
putational linguistics.

Simon Jerome Han, Keith Ransom, Andrew Perfors, and
Charles Kemp. 2022. Human-like property induction
is a challenge for large language models.

Jae-young Jo and Sung-Hyon Myaeng. 2020. Roles and
utilization of attention heads in transformer-based
neural language models. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 3404–3417.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems.

Danny Merkx and Stefan L Frank. 2021. Human sen-
tence processing: Recurrence or attention? In Pro-
ceedings of the Workshop on Cognitive Modeling and
Computational Linguistics, pages 12–22.

James Michaelov and Benjamin Bergen. 2020. How
well does surprisal explain n400 amplitude under
different experimental conditions? In Proceedings
of the 24th Conference on Computational Natural
Language Learning, pages 652–663.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Kanishka Misra, Allyson Ettinger, and Julia Rayz. 2020.
Exploring bert’s sensitivity to lexical cues using tests
from semantic priming. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 4625–4635.

Kanishka Misra, Allyson Ettinger, and Julia Rayz. 2021.
Do language models learn typicality judgments from
text? In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 43.

Paolo Pedinotti, Giulia Rambelli, Emmanuele Cher-
soni, Enrico Santus, Alessandro Lenci, and Philippe
Blache. 2021. Did the cat drink the coffee? challeng-
ing transformers with generalized event knowledge.
In Proceedings of* SEM 2021: The Tenth Joint Con-
ference on Lexical and Computational Semantics,
pages 1–11.

Hao Peng, Xiaozhi Wang, Shengding Hu, Hailong Jin,
Lei Hou, Juanzi Li, Zhiyuan Liu, and Qun Liu. 2022.
Copen: Probing conceptual knowledge in pre-trained
language models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5015–5035.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sello Ralethe and Jan Buys. 2022. Generic overgen-
eralization in pre-trained language models. In Pro-
ceedings of the 29th International Conference on
Computational Linguistics, pages 3187–3196.

Soo Hyun Ryu and Richard L Lewis. 2021. Accounting
for agreement phenomena in sentence comprehen-
sion with transformer language models: Effects of
similarity-based interference on surprisal and atten-
tion. In Proceedings of the Workshop on Cognitive
Modeling and Computational Linguistics, pages 61–
71.

Marten Van Schijndel and Tal Linzen. 2021. Single-
stage prediction models do not explain the magnitude
of syntactic disambiguation difficulty. Cognitive sci-
ence, 45(6):e12988.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37–42.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76.

365



Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. 2020.
Causal mediation analysis for interpreting neural
nlp: The case of gender bias. arXiv preprint
arXiv:2004.12265.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard
Futrell. 2018. What do rnn language models learn
about filler–gap dependencies? In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
211–221.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu,
Peng Qian, and Roger Levy. 2020. On the predic-
tive power of neural language models for human
real-time comprehension behavior. arXiv preprint
arXiv:2006.01912.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

366



Table 1: Statistical analysis on plausibility effects in human and Transformer-based language models.

Human BERT RoBERTa ALBERT GPT2
Difficulty measurement reading times surprisals

estimate .11 1.10 4.11 .55 4.81
Plausibility effects SE .01 1.38 1.83 1.77 .84

(syntactic dependents) t 9.26 .78 2.24 .31 4.86
p <.001 .44 <.05 .76 <.001

estimate .04 1.03 .06 .87 1.57
Plausibility effects SE .13 1.38 1.83 1.77 .84

(distractors) t 2.85 .75 .03 .49 1.87
p <.05 .46 .97 .62 < .10

estimate .02 .17 .76 .11 .89
Interaction effects SE .01 1.95 2.59 2.50 1.19

( dependents × distractors) t 2.29 .09 .29 .04 .75
p <.05 .93 .77 .96 .46

A Statistical analysis on plausibility
effects

In order for quantitative analysis on how well
Transformer language models simulate plausibil-
ity effects found in human data (Cunnings and
Sturt, 2018), linear regression models for language
model data were fit with the following equation:
surprisal ∼
subject_plausibility ∗ distractor_plausibility.

The results are shown in Table 1. Results for
human data are from Cunnings and Sturt (2018).

B Scores for detecting the plausible
noun-verb relations by attention heads

The performance of attention heads in selecting
the plausible nouns in relation with verbs over the
implausible ones was measured in terms of accu-
racy in the main text. The details of the method are
provided in Section 4.

In addition to accuracy, I also computed atten-
tion differences which indicate how much more
attention values plausible nouns get compared to
implausible nouns (See Equation (E)). The atten-
tion differences obtained from all attention heads
are shown in Figure 6.

Attention Differencelh =

k∑

j=1

[Attn(plj , vj)−Attn(implj , vj)]
(E)

,where lh refers to the location of attention heads
(hth head in the lth layer), j refers to the sentence id,

plj and implj refer to the plausible and implausible
nouns to be compared in the jth sentence set, vj
refers to the verb in the jth sentence, and k is the
number of sentence sets.

Metrics were computed two times: one by com-
paring plausible syntactic dependents and implau-
sible syntactic dependents, and the other by com-
paring plausible distractors and implausible distrac-
tors.

C Changes in surprisal values as
attention heads are gradually pruned

In Section 5.2, it was observed how the plausibility
sensitivity changes as the plausibility-processing
attention heads are gradually pruned. To provide
additional information, this section shows how the
surprisals for each condition change along with the
gradual head-pruning process.

Surprisals were computed at the verb for each
sentence in Cunnings and Sturt (2018)’s experimen-
tal data. The metrics were computed multiple times
after removing one of the plausibility-processing
attention heads. The computed surprisal values
were then averaged by conditions. The plot that
shows how surprisal values change by conditions
is given in Figure 7.
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(a) Accuracy

(b) Attention Difference

Figure 6: Accuracy and attention difference by attention heads. Attention heads annotated with bold-yellow are
with accuracy greater than 0.70 in both subjects-comparison and distractors-comparison and thus considered to be
specialized for plausibility processing; Attention heads annotated with non-bold-yellow are the ones that showed
accuracy greater than 0.70 only for the corresponding condition; Attention heads annotated with black are found to
be insensitive to plausibility (accuracies are less than 0.7 for both noun types).
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Figure 7: Changes in surprisals by conditions as attention heads are gradually pruned. X-axis indicates plausibility
processing attention heads that are pruned at a certain point. Attention heads were removed in decreasing order of
accuracies in selecting plausible nouns over implausible nouns.
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