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Abstract

The success of ChatGPT validates the poten-
tial of large language models (LLMs) in artifi-
cial general intelligence (AGI). Subsequently,
the release of LLMs has sparked the open-
source community’s interest in instruction-
tuning, which is deemed to accelerate Chat-
GPT’s replication process. However, research
on instruction-tuning LLMs in Chinese, the
world’s most spoken language, is still in its
early stages. Therefore, this paper makes an
in-depth empirical study of instruction-tuning
LLMs in Chinese, which can serve as a cook-
book that provides valuable findings for effec-
tively customizing LLMs that can better re-
spond to Chinese instructions. Specifically,
we systematically explore the impact of LLM
bases, parameter-efficient methods, instruction
data types, which are the three most impor-
tant elements for instruction-tuning. Besides,
we also conduct experiment to study the im-
pact of other factors, e.g., chain-of-thought
data and human-value alignment. We hope
that this empirical study can make a modest
contribution to the open Chinese version of
ChatGPT. This paper will release a powerful
Chinese LLM that is comparable to ChatGLM.
The code and data are available at https:
//github.com/PhoebusSi/Alpaca-CoT.

1 Introduction

The emergence of ChatGPT gives humanity a real
sense of hope for AGI for the first time, and inspires
researchers to realize the importance of LLM re-
search. However, the closed source of LLMs (e.g.,
GPT-3 (Brown et al., 2020) and PalLM (Chowdh-
ery et al., 2022)) coupled with the requirement for
massive computing resources to build the exclusive
LLM has deterred researchers from reaching the
LLM training stage. Subsequently, a series of "API
research" based on GPT-3 and ChatGPT are con-

*Equal contribution.
t Corresponding author: Zheng Lin.

stantly emerging, which stimulate the specific ca-
pabilities of frozen LLMs (e.g., Chain-of-Thought
(Wei et al., 2023; Wang et al., 2023; Kojima et al.,
2023)) or guide them to complete specific tasks
(Yang et al., 2022; Shen et al., 2023), by calling
OpenAl interfaces and carefully designing prompts
without model training.

The unexpected disclosure of the pre-trained
LLaMA (Touvron et al., 2023) model changes this
situation, and has sparked a surge of excitement in
the LLM research community. This is the first open
LLM with competitive performance. Recently, Al-
paca (Taori et al., 2023) uses self-instruct (Ouyang
et al., 2022) and ChatGPT to generate 52K instruc-
tions, which can enable LLaMA to respond to var-
ious human instructions like ChatGPT. This open
project verifies the important role of instruction-
tuning (Wei et al., 2022; Chung et al., 2022) open
LLMs in replicating the ChatGPT process.

Given the open LLM LLaMA and Alpaca’s
high-quality instruction data, there is still a chal-
lenge for researchers: even the instruction-tuning
of the 7B model still requires high computational
resources. To address this problem, Alpaca-LoRA
extends the parameter-efficient method LoRA to
LLaMA, which further reduces the computing
cost of instruction-tuning. It further sparks ex-
tensive research in the open-source community
on instruction-tuning for LLMs. On this basis,
more LLMs (e.g, Bloom (Workshop, 2023), GPT-J
(Wang and Komatsuzaki, 2021)) are shown to have
significant improvements in instruction-following
performance with instruction-tuning. On the other
hand, more instruction data is constantly being pro-
posed, e.g., Belle (Ji et al., 2023) constructs Chi-
nese instructions in the same way, and ShareGPT
collects a large number of real human-ChatGPT
conversations.

However, research on instruction-tuning LLMs
in Chinese, the world’s most spoken language, is
still in its early stages. LLM bases, parameter-
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base LLMs Tokens Language Size

LLaMA 1T Mainly in English 6.7B, 33B, 65B
Bloom 341B 46 languages 7.1B, 176B
moss-base 700B Chinese and English  16.1B

ChatGLM* 1T Chinese and English 6B

sft LLMs Base Instruction data

Vicuna LLaMA 70k human-ChatGPT conversations
Bloomz & Bloomz-mt Bloom 13-crosslingual-task mixture xP3 & xP3mt
moss-sft moss-base  moss-002-sft-data

ChatGLM ChatGLM*  unknowable

Table 1: Pre-training details of the popular open base LLMs (upper). Supervised fine-tuning (sft) details of the
open sft LLMs. "*" denotes closed source, which denotes that ChatGLM only releases the supervised fine-tuned
version. More details of each open LLM can be found at Appendix A.2.

efficient methods, and instruction data are three es-
sential elements for customizing Chinese ChatGPT-
like LLMs. There are no tutorials in the academic
community on them yet. Some important ques-
tions have not yet been explored and answered:
1) "Which open LLM is more suitable as a foun-
dation for Chinese instruction-tuning?", 2) "How
do parameter-efficient methods other than LoRA
affect LLMs?" and 3) "What is the impact of vari-
ous types of instruction datasets?" To answer these
questions, we collect a range of LLMs, parameter-
efficient methods, and instruction datasets. Besides,
we consider the AGI (instruction-following) capa-
bility and professional knowledge reserve (human
exams) of models, and correspondingly select two
benchmarks Belle-eval (Ji et al., 2023) and MMCU
(Zeng, 2023) for comprehensively evaluation.

We also conduct experiments to explore several
other factors that may affect the final performance.
Specifically, we find that tuning with Chain-of-
Thought (CoT) data can improve the ability to
respond to complex reasoning questions. Differ-
ent LLMs may be suitable for different language
prompts (excluding instruction parts) in instruction-
tuning. Human-value alignment results into slight
performance drop. On the basis of the above find-
ings, this paper carefully instruction-tunes a power-
ful Chinese LLMs that is comparable to ChatGLM.

The contributions can be summarized as fol-
lows: (1) We are the first to systematically study
on instruction-tuning in Chinese through adequate
experiments, which can serve as a cookbook that
provides valuable findings for customizing Chinese
version of ChatGPT. (2) We release a powerful
Chinese LLM that is comparable to ChatGLM.

2 Instruction-tuning Triplets

2.1 Preliminaries

Problem Formulation. LLM bases m € M,
parameter-efficient methods p € P and instruc-
tion datasets d € D are the three crucial elements
in instruction-tuning. This section examines the
impact of each element in the instruction-tuning
triplet (m, p, d) on final performance. We traverse
the target element to thoroughly explore its impact,
while fixing two elements in the triplet to control
the variable. For example, we analyze the impact of
different types of instruction datasets by comparing
the performance of {(m, p, di)}‘lD‘.
Benchmarks. We select two evaluation bench-
marks, Belle-eval and MMCU, to comprehensively
evaluate LLM competencies in Chinese. Belle-eval
is constructed by self-instruct with ChatGPT, which
has 1,000 diverse instructions that involve 10 cate-
gories covering common NLP tasks (e.g., QA) and
challenging tasks (e.g., code and math). We use
ChatGPT to rate the model responses based on the
golden answers. This benchmark is considered to
be as the assessment of AGI (instruction-following)
capability. MMCU is a collection of Chinese mul-
tiple choice questions in four professional disci-
plines of medicine, law, psychology and education
(e.g., Gaokao examination). It allows LLMs to
take exams in human society in a multiple-choice
test manner, making it suitable for evaluating the
breadth and depth of knowledge of LLMs across
multiple disciplines. More statistics and details are
shown in Appendix A.1.

2.2 Open Large Language Models

To answer "Which open LLM is more suitable as
a foundation for Chinese instruction-tuning?", we
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LLMs Code Oszn ?t 31:;1 Clf. Math Gen. Sum. Rewrite Cé(ie Extract | Avg.
LLaMA 450 6.6 179 413 168 402 425 61.2 28.8 27.6 | 328
base Bloom 51.1 154 418 564 260 537 633 74.1 42.5 58.0 | 48.2
moss-base | 40.3 5.8 529 204 131 514 328 47.0 4.0 17.6 | 28.5
Vicuna 62.6 17.8 84.6 484 347 850 59.7 77.2 394 40.5 | 55.0
Bloomz 49.7 155 544 522 155 609 375 71.0 43.8 384 | 439
sft Bloomz-mt | 46.8 152 585 498 151 59.1 450 72.4 40.8 33.8 | 437
moss-sft 639 257 785 334 151 784 460 58.5 22.7 224 | 445
ChatGLM | 647 399 91.8 532 465 0910 619 824 48.8 53.8 | 634
Ours 724 414 915 647 36.1 923 625 85.8 45.6 389 |63.1
ChatGPT 843 549 930 746 882 944 64.0 87.2 66.9 58.1 | 76.6

Table 2: Performance of open LLMs on Belle-eval. "Ours" is our carefully designed instruction-tuned LLM, which
is discussed in detail in Section 4. The best scores are bold, the second best scores are underlined. The results of

ChatGPT are only for display and will not be compared.

LLMs Med. Psyc. Law  Edu. | Avg.
LLaMA 266 375 1.14 195 | 2.38
Bloom 429 450 5.68 141 |3.97
moss-base 770 770 798 847 | 7.96
Vicuna 10.50 10.20 844 13.12 | 10.57
Bloomz 3515 3230 17.29 36.87 | 30.40
Bloomz-mt | 33.77 3140 1559 35.12 | 28.97
moss-sft 16.78 1445 947 1543 | 14.03
ChatGLM | 31.04 28.65 15.86 29.96 | 26.38
Ours 27.88 23.60 13.86 25.73 | 22.77
ChatGPT 50.90 43.50 2398 4572 | 41.03

Table 3: Performance of open LLMs on MMCU.

collect and evaluate the most widely used open
LLMs! available in the open source community, as
shown in Table 1.

2.2.1 Evaluation of Existing LLMs

Performance on Belle-eval. Table 2 shows the
scores of open LLMs on Belle-eval. The upper
part shows base LLMs while the lower part shows
the the supervised fine-tuned (sft) LLMs. We can
derive several observations: 1) For base LLMs,
Bloom performs the best because its ROOTS
(Workshop, 2023) pre-training dataset has a large
proportion in Chinese (261B), second only to En-
glish. Although moss-base is an LLLM specifically
proposed for Chinese, its performance is poor as it
is obtained through further pre-training based on
the CodeGen (Nijkamp et al., 2023) model and has
only seen 100B Chinese data. 2) For sft LLMs,
ChatGLM outperforms others by large margins,
thanks to the fact that it is trained with the most

'We mainly explore the version around 7b of them (except

for 16b of Moss), which strike a balance between performance
and computation resource requirements.

Chinese tokens and HFRL. 3) The Open QA, Math,
CloseQA and Extract categories are still very chal-
lenging for existing open LLMs. 4) Vicuna and
moss-sft have clear improvements compared to
their bases, LLaMA and moss-base, respectively.
The gain brought by Vicuna is more significant
(22.2%) because its instruction data, collected by
ShareGPT, are the real conversations between hu-
mans and ChatGPT, with higher quality. 5) In con-
trast, the performance of sft models, Bloomz and
Bloomz-mt, is reduced compared to the base model
Bloom, because they tend to generate a shorter re-
sponse (refer to Appendix C.1). Unfortunately,
ChatGPT often scores lower for short responses.
The reason for this phenomenon is that Bloomz and
Bloomz-mt are fine-tuned from xP3, which is built
from the NLP task collection where many tasks
have brief annotations.

Performance on MMCU. Table 3 shows the ac-
curacy of LLMs on MMCU, we find that: 1) All
base LLMs perform poorly because it is almost
difficult to generate content in the specified format
before fine-tuning, e.g., outputting option numbers.
2) All sft LLMs outperform their corresponding
base LLMs, respectively. In particular, Bloomz
performs the best (even beats ChatGLM) because
it can generate option number directly as required
without generating other irrelevant content (refer
to Appendix C.2), which is also due to the data
characteristics of its supervised fine-tuning dataset
xP3. 3) Among the four disciplines, law is the most
challenging for LLMs.

The LLMs’ performance on MMCU is much
lower than that of Belle-eval because MMCU re-
quires higher professional knowledge. All open
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Figure 1: Performance gains (denoted by origin bars) of
open LLMs on Belle-eval (Upper) and MMCU (Lower)
from instruction-tuning. The instruction-tuned perfor-
mance is denoted by blue bars and red numbers.

LLMs still have significant room for improvement
compared to ChatGPT.

2.2.2 Instruction-tuning Different LLMs

To determine the appropriateness of different LLMs
as a foundation for instruction-tuning in Chinese,
we fine-tune all the open LLMs with the same
parameter-efficient method LoRA and the same
instruction dataset Alpaca-GPT4. The results are
shown in Figure 12, where we find that: 1) On
Belle-eval, the performance improvement of sft
LLMs brought by instruction-tuning is not as sig-
nificant as that of base LLMs, except for sft Bloomz
and Bloomz-mt. This is because the instructions
of xP3 used for their supervised fine-tuning are
not diverse enough. 2) Vicuna and ChatGLM
encounter performance drops after instruction-
tuning, because Vicuna is trained from real human-
ChatGPT conversations, with better quality than
Alpaca-GPT4. ChatGLM adopts HFRL (Ouyang
et al., 2022), which may be no longer suitable for
further instruction-tuning. 3) On MMCU, most
LLM:s achieve performance boosts after instruction-
tuning, with the exception of Bloomz and Bloomz-
mt, which have unexpectedly significantly de-
creased performance. This is because that original
Bloomz and Bloomz-mt excel in multiple choice
questions, but after further instruction-tuning, they
suffer catastrophic forgetting.

2Full results are shown in Table 10 and 11 in App. B.1.

LLMs Param. Layer | Belle MMCU
AdaLoRA 5.6M each | 51.9 14.28
LoRA 15M each | 58.1 19.07
prompt 0.08M embed | 46.8 4.49
p-tuning 1.IM  embed | 46.0 15.50
prefix 30.8M  each | 51.6 16.18
SadapterP 7.5M each | 56.9 17.24
SadapterH 15M each | 58.7  20.23
P-adapter 15M each | 55.7 15.47
SadapterP-1 | 60M each | 55.0 16.10
SadapterH-1 | 120M  each | 54.7 18.60
P-adapter-1 120M  each | 56.3 19.40
Table 4: Comparison of parameter-efficient meth-

ods. "Param." denotes the trainable parameter quantity.
"Layer" denotes the layers adapters are added. "-1" de-
notes the version with large number of parameter. More
details of each parameter-efficient methods can be found
in Appendix A.3.

loss

steps
= AdaLoRA =Prompt - P-tuning =Prefix
= LoRA = SadapertP - SadapterH - P-adapter

Figure 2: Training loss over steps for different
parameter-efficient methods.

After instruction-tuning, Bloom has signifi-
cant improvements and performs well on both
benchmarks. Although ChatGLM beats Bloom
consistently, it suffers performance drop during
instruction-tuning. Therefore, among all open
LLMs, Bloom is most suitable as a foundation
model in the subsequent experiments for Chinese
instruction-tuning exploration.

2.3 Parameter-efficient Methods

For most researchers, parameter-efficient methods
are essential for instruction-tuning due to limita-
tions in computing resources. These methods tend
to freeze the pre-trained model weights and in-
jects trainable weights (adapters), which greatly
reduces the number of trainable parameters. To
answer "How do parameter-efficient methods other
than LoRA affect LLMs?", we collect a range
of parameter-efficient methods to instruction-tune
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Datasets Num  Con Type Source
Aplaca-GPT4 | 49K SI diverse instructions GPT-4

Belle 1.54M SI diverse instructions text-davinci-003
ShareGPT-zh | 158K MIX human-ChatGPT conversations human & ChatGPT
moss-sft-data | 1.76M SI diverse instructions text-davinci-003
instinwild 52K SI diverse instructions text-davinci-003
firefly 1.65SM COL 23 NLP tasks (1.15M) & Belle (0.5M) human

HC3 40K  MIX QA dataset collection human & ChatGPT
xP3/zh 1.07M COL 16 NLP tasks human
COIG-ccme 68K  MIX LLM-LLM role-playing chats based on a knowledge graph dataset
COIG-trans 66K COL 2000+ NLP tasks translated
COIG-exam 64K COL examinations in China human
pCLUE 1.2M COL 9 NLP tasks human

Table 5: The details of existing Chinese instruction datasets. "Con" column shows the dataset construction methods.
"Type" column shows the data types. "Source" column shows the source where the data was generated. "SI" and
"COL" denotes the self-instruct methods and the collection of existing datasets, respectively. "MIX" denotes the
joint construction of humans and machines. "translated" denotes a translation from non-Chinese instructions. We
filtered all datasets to remove incomplete instructions. More details of each dataset can be found in Appendix A.4.

Bloom on Alpaca-GPT4 dataset.

Comparison of Parameter-efficient Methods.
From Table 4, several observations can be de-
rived: 1) SadapterH performs the best among all
parameter-efficient methods, which can be used as
an alternative to LoRA. 2) P-tuning and prompt-
tuning underperform others by large margins, in-
dicating that only adding trainable layers in the
embedding layer are not enough to support LLMs
for generation tasks. 3) Although Adal.oRA is
an improvement of LoRA, its performance has a
clear drop, possibly because the LoRA’s trainable
parameters for LLMs are not suitable for further re-
duction. 4) Comparing the upper and lower parts, it
can be seen that increasing the number of trainable
parameters for sequential adapters (i.e., SadapterP
and SadapterH) does not bring gain, while the oppo-
site phenomenon is observed for parallel adapters
(i.e., P-adapter). This may provide inspiration for
the design of adapters for LLM. Since LoRA is cur-
rently the most popular parameter-efficient method,
if not otherwise specified, we adopt LoRA by de-
fault in the experiments.

Training Loss. Figure 2 shows the training loss
of different parameter-efficient methods. We find
that: 1) Prompt-tuning and P-tuning converge the
slowest and has the highest losses after conver-
gence. This shows that embedding-only adapters
are not suitable for instruction-tuning LL.Ms. 2)
The initial loss of AdalLoRA is very high because
it requires simultaneous learning of parameter bud-
get allocation, which makes the model unable to fit
the training data well. 3) The other methods can

quickly converge on training data and fit it well.

2.4 Chinese Instructions Datasets

Alpaca (Taori et al., 2023) inspires researchers to
further explore instruction data. To systematically
explore "What is the impact of various types of
instruction datasets?", we gather popular open Chi-
nese instructions (as shown in Table 5) to fine-tune
Bloom with LoRA.

Performance on Belle-eval. As shown in Ta-
ble 6 upper part, it can be seen that: 1) the in-
struction data constructed by ChatGPT (e.g., using
self-instruction methods or collecting real human-
ChatGPT conversations) consistently enhances the
instruction-following ability with 3.1 ~ 11-point
score increases. 2) Among these datasets, Belle
has the best performance due to the largest amount
of instruction data. However, the performance of
models trained on moss-sft-data, containing more
data built in a similar way, is unsatisfactory. This
is because moss-sft-data’s instructions sacrifice the
diversity to achieve the goals of helpfulness, honey,
and harmlessness. 3) The performance brought by
the Alpaca-GPT4 instructions is the second best,
with only 49K being comparable to the 1.54M
Belle. This is because Alpaca-GPT4 uses the GPT-
4 engine while Belle uses the text-avinci-003 en-
gine, which further illustrates that improving data
quality can reduce the demand for data volumes.
4) Instinwild brings the least performance gains
among them because the seed instructions it crawls
from Tweet ("in wild") are not as comprehensive
as those (like Alpaca) carefully designed by hu-
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Datasets Code OSZH ; Larl; Clf. Math Gen. Sum. Rewrite C(l)cl):e Extract | Avg.
- 51.1 154 418 564 26.0 537 633 74.1 42.5 58.0 | 48.2
Alpaca-GPT4 | 53.7 350 882 505 368 89.5 603 82.9 40.0 44.1 58.1
Belle 643 373 860 662 223 88.6 626 83.5 433 38.1 59.2
ShareGPT-zh | 53.7 254 756 478 340 812 628 80.8 33.5 41.6 | 53.6
moss-sft-data | 554  21.7 81.6 51.7 243 818 654 78.1 37.6 45.1 54.3
instinwild 555 245 703 408 269 796 61.8 78.4 37.7 370 | 513
firefly 614 318 798 532 265 844 625 83.1 36.7 47.8 56.7
HC3 46.8 21.3 582 246 339 444 303 47.8 36.5 19.7 36.4
xP3/zh 32,1 133 170 394 12,1 24.1 215 66.5 40.0 28.1 29.4
COIG-trans 347 155 589 479 244 621 515 80.0 37.7 44.6 | 45.7
COIG-ccme 392 150 440 165 21.2 223 233 31.6 19.8 19.3 25.2
COIG-exam 242 154 537 333 179 602 440 69.6 27.1 24.9 37.0
pCLUE 19.7 19.1 53,5 343 369 505 34.0 68.5 44.4 39.3 |40.0

Table 6: Belle-eval performance of models instruction-tuned from Bloom on different instruction datasets.

Datasets Med. Psyc. Law Edu. | Avg.
- 429 450 568 141 | 3.97
Alpaca-GPT4 | 27.70 17.35 17.59 13.63 | 19.07
Belle 21.57 19.05 15.13 15.28 | 17.76
ShareGPT-zh | 883 8.75 12.18 12.04 | 10.45
moss-sft-data | 16.60 17.75 11.72 17.29 | 15.84
instinwild 1490 1745 1150 14.17 | 14.51
firefly 22.49 1830 9.69 20.50 | 17.75
HC3 9.15 1410 801 7.24 |9.63
xP3/zh 2043 19.50 15.62 19.60 | 18.79
COIG-trans 18.62 179 1131 16.51 | 16.09
COIG-ccme 731 1015 8.12 7.63 | 830
COIG-exam | 32.56 26.90 16.18 - -
pCLUE 2029 2540 1391 27.80 | 21.85

Table 7: MMCU performance of models instruction-
tuned from Bloom on different instruction datasets.

mans. 5) These ChatGPT-based data mainly have a
significant improvement effect on open generation
tasks such as Brain Storm and Generation, while
there is a significant decrease in tasks that require
high reading comprehension skills, such as Close
QA and Extract, which require completing tasks
based on given materials. This inspires researchers
to consider the reading-comprehension ability for
building more comprehensive instruction datasets.

The lower part of Table 6 shows the results of
models trained on dataset-based data, which is
mainly constructed by collecting NLP or exami-
nation datasets. These instruction datasets cause
damage to the model’s instruction-following abil-
ity, because the form and intent of each NLP or
examination dataset are unitary, which can easily
be overfitted. Among them, COIG-trans performs
the best because it involves over 2000 different

tasks with a wide variety of task instructions. In
contrast, XP3* and COIG-ccmc have the worst neg-
ative impact on model performance. Both of them
only cover few types of tasks (translation and QA
for the former, counterfactual correction conversa-
tions for the latter), which hardly cover the popular
instructions and tasks for humans.

Performance on MMCU. Table 7 compares the
performance on MMCU brought by different in-
struction datasets. 1) Instruction-tuning on each
dataset can always result in performance improve-
ment. 2) Among the ChatGPT-based data shown in
the upper part, ShareGPT-zh underperforms oth-
ers by large margins. This may be due to the
fact that real users rarely ask multiple choice ques-
tions about academic topics. 3) Among the dataset-
collection data shown in the lower part, HC3 and
COIG-ccmc results in the lowest accuracy because
that the unique questions of HC3 is only 13K, and
the task format of COIG-ccmc is significantly dif-
ferent with MMCU. 4) COIG-exam* brings the
greatest accuracy improvement, benefiting from
the similar task format as MMCU.

3 Other Important Factors

Problem Formulation. In addition to the essen-
tial three elements (m, p, d) discussed above, there
are many factors worth exploring, e.g., CoT. If not
otherwise specified, we use Bloom as the LLM
base, LoRA as the parameter-efficient method, and
Alpaca-GPT4 as the instruction data. On this basis,

*We use 1/3 of its Chinese data due to its large quantity.
“Due to the overlap between COIG-exam and MMCU-
Edu., the accuracy on Edu. discipline will not be reported.
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Belle-eval MMCU
Data ‘ Code Math Avg. ‘ Edu. Avg.
Alpaca-GPT4 53.7 368 581 | 13.63 19.07
Alpaca-GPT4+CoT | 60.8 41.7 57.9 | 21.56 19.85
Alpaca-GPT4+CoT* | 62.9 39.5 57.2 | 22.07 21.56

Table 8: The impact of chain-of-thought data on com-
plex tasks requiring reasoning. "*" denotes that using
prompt " & &F . FH Rk E " ("think step by step” in
Chinese) during inference.

we explore its impact by observing the performance
changes after considering the target factor.

Chain-of-Thought Data. Chain-of-Thought is a
hot topic in LLM research. Existing works find that
adding rationales or explanations to the inference
prompts (Wei et al., 2023; Wang et al., 2023; Ko-
jima et al., 2023) (based on APIs of GPT-3 and
ChatGPT) or training corpus (Wei et al., 2022;
Chung et al., 2022; Zhang et al., 2023c) (based
on normal language models, e.g, T5(Raffel et al.,
2020) and FLAN-T5(Wei et al., 2022)) can enhance
the model’s reasoning ability, which is useful for
solving complex problems. However, extending
CoT into Open LLM has not yet been thoroughly
explored. Alpaca-CoT (Qingyi Si, 2023) uses sev-
eral qualitative examples to demonstrate the effec-
tiveness of CoT in reasoning. A systematic eval-
uation is still necessary. To this end, this paper
conducts experiments to analyze the impact of CoT
data for LLMs.

We collect 9 CoT datasets and their prompts
from FLAN (Wei et al., 2022), and then translates
them into Chinese using Google Translate. We
compare the performance before and after adding
CoT data during instruction-tuning in Table 8.
"Alpaca-GPT4+CoT" outperforms "AlpacaGPT4"
in the Code and Math tasks that require strong rea-
soning ability. Besides, there is also a significant
improvement in MMCU education task, which is
derived from the questions of Gaokao, involving
a range of subjects, e.g., math, physics, history.
The accuracy improvement across all subjects il-
lustrates that the CoT reasoning ability is gener-
ally required in various subjects. However, CoT
training data cannot continue to bring benefits to
all tasks, and on the contrary, it will cause slight
performance degradation on more tasks. The full
results can be found in Appendix B.3.

Inspired by (Kojima et al., 2023), we add a sen-
tence" £ &%, A &E " ("think step by step" in
Chinese) at the end of each instruction, to induce

55.6
51.2 - llama
437 - llama-voc
[ #tama-voc-pre
[ #ama-voc-pre-/

21.72
18.92

9.9

4.17
2.82
. —1 |
Belle-eval MMCU

Figure 3: Performance comparison of LLaMA and its
expanded vocabulary versions. "llama-voc", "llama-voc-
pre" and "llama-voc-pre-1" denotes instruction-tuning
the models obtained by further pre-training LLaMA
with a expanded vocabulary on 0B, 20B and 100B Chi-
nese tokens, respectively.

the model to respond to instructions based on the
chain-of-thought. As shown in the line of "Alpaca-
GPT4+CoT*", the simple sentence can further im-
prove the performance of reasoning tasks Code and
Education, while the Math performance is slightly
inferior to "Alpaca-GPT4+CoT". This may require
us to further explore more robust prompts.

Expansion of Chinese Vocabulary. Intuitively,
the number of Chinese tokens in the tokenizer’s
vocabulary affects LLMs’ ability to express Chi-
nese. For example, if a Chinese character is in
the vocabulary, it can be represented by a single
token, otherwise it may require multiple tokens to
represent it. Because Bloom adopts a vocabulary
of 250k tokens which cover most Chinese charac-
ters, we mainly conduct experiments on LLaMA,
which uses SentencePiece (Sennrich et al., 2016;
Kudo and Richardson, 2018) (32K vocabulary size)
covering few Chinese characters.

As shown in Figure 3, we find that the perfor-
mance of "llama-voc" is severely inferior to "llama"
on Belle-eval, and is almost unable to respond cor-
rectly to MMCU’s instruction. This indicates that
it is not feasible to perform instruction-tuning with-
out pre-training on vast data. This is because the
embedding corresponding to the newly added Chi-
nese token are random and meaningless, which
results in the model being unable to understand the
meaning of the instructions.

To make the newly added Chinese token mean-
ingful, Cui et al. uses 20B and 100B token Chi-
nese corpus to further pre-train LLaMA and obtain
"llama-voc-pre" and "llama-voc-pre-1" models. We
use Alpaca-GPT#4 to instruction-tune these models,
and find that, pre-training on more Chinese cor-
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Figure 4: Performance comparison of instruction-tuning with prompts in
English and Chinese. The specific prompts used in our experiments can

be found in Appendix D.2.

pus with expansion of Chinese vocabulary are con-
sistently helpful for instruction-following ability.
Counterintuitively, "llama-voc-pre-1" is inferior to
"llama-voc-pre" on MMCU shows that pre-training
on more data may not necessarily lead to higher
performance for academic exams.

The Languages of Prompts. The popular open
instruction-tuned LLMs, e.g., Alpaca and Vicuna,
tend to uses prompts in English. One intuitive ques-
tion is, Is instruction-tuning in Chinese more suit-
able for using Chinese prompts? Figure 4 shows
the results of using Chinese and English prompts
based on LLaMA and Bloom. When instruction-
tuning LLaMA, using Chinese prompts can im-
prove the performance on both benchmarks com-
pared to English prompts, while we observe the
opposite phenomenon on Bloom. This demon-
strates that using Chinese prompts for models with
weaker Chinese abilities (e.g., LLaMA) can effec-
tively help respond in Chinese, while for models
with good Chinese abilities (e.g., Bloom), using
prompts in English (the language they are better
at) can better guide the model to understand the
process of fine-tuning with instructions.

Human Value Alignment. To avoid LLMs gen-
erating toxic content, aligning them with human
values is a crucial issue. We add the human-value
alignment data built by COIG (see App. A.4 for
details) into the instruction-tuning to explore its im-
pact. Figure 5 compares the results of instruction-
tuning with and without human-value alignment,
which shows that the human-value alignment re-
sults into a slight performance drop. How to bal-
ance the harmlessness and performance of LLMs is
a research direction worth exploring in the future.

(b) Bloom

MMCU

Belle-eval MMCU

Figure 5: Performance comparison
of instruction-tuning with and without
human-value alignment.

4 Towards a Better Chinese LLM

Problem Formulation. The goal of this section
is to find a optimal triplet (m, p, d) that maximizes
the comprehensive capabilities:

max

max 3" (& (fa(mp) (D

teT

where & denotes the evaluation of every gener-
ative ability ¢ from both Belle-eval and MMCU
T, fs(m,p) denotes the model obtained by
instruction-tuning frozen LLM m with parameter-
efficient method p on instruction dataset d.

Our Instruction-tuned LLM. On the basis
of the findings above, we carefully design the
instruction-tuning process and publicly release a
Bloom-based high-performance LLM, which is
comparable to ChatGLM and far surpassing Moss.
In particular, we select a dataset combination with
significant gains on Belle-eval or MMCU to im-
prove our model’s comprehensive ability. Besides,
we carefully design a suitable prompt to induce our
model for better-quality generation. The implemen-
tation details can be found in Appendix D.1.

As shown in Table 2, our model is superior or
comparable to ChatGLM in most categories on
Belle-eval, except for the challenging Math and
Extract tasks. Besides, our model slightly under-
performs ChatGLM on MMCU and outperforms
other LLMs that do well in Belle-eval by clear mar-
gins. It is worth emphasizing that our model has
much fewer trainable parameters (16M) based on
LoRA than that of ChatGLM adopting full parame-
ter fine-tuning (6B).

5 Conclusion

This paper is the first to conduct a thorough empiri-
cal study on instruction-tuning open large language
models in Chinese, with a detail discussion of a
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range of large language models, parameter-efficient
methods, and Chinese instruction datasets. In ad-
dition, we explore several other important factors,
including CoT, vocabulary, language of prompts
and human-value alignment. Based on the empir-
ical exploration, we publicly release a LLM, that
is rival to ChatGLM, with detailed implementation
details.

Limitations

Most experimental results are based on parameter-
efficient methods, which may differ from the re-
sults of full parameter fine-tuning. However, we
believe that the findings and conclusions in this
paper are still applicable for full parameter fine-
tuning. In addition, instruction-tuning based on
parameter-efficient methods has broader applica-
tion and research scenarios.

Ethics Statement

The open LLMs used in this paper may be driven by
certain biases in their training data, and pose a risk
of toxic generation. There may also exist harmful
stereotypes in the open instruction datasets we are
discussing. There is still a long way to explore the
safety of LLMs.
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Belle-eval MMCU
Code Open QA Medicine
38 285 2819
Brainstorm  Classification | Psychology
179 65 2000
Math Generation Law
75 98 3695
Summary Rewrite Education
40 131 3331
Close QA Extract -
52 37 -
Total 1000 11845

Table 9: Data statistics of Belle-eval and MMCU.

A More Details about the Work Involved

A.1 Benchmarks

Belle-eval During this evaluation, ChatGPT is
used to rate (from O to 1) the model response based
on the ground truth answer. A score of 0 indicates
that the model response is completely unacceptable,
while a score of 1 indicates that the response per-
fectly solves the input instruction. The prompts and
instructions for samples in each category are rich
and varied. We consider the capability examined
in this dataset to be AGI (instrcution-following)
capability.

MMCU MMCU (Zeng, 2023) is collected from
online public resources, covering 11845 multiple
choice questions in four professional disciplines.
There are several subtasks under education and
medicine disciplines. The average accuracy of all
subtasks is considered the discipline score. Only
when a generated answer and the annotated ground
truth option number or option content completely
match, is the answer considered correct. This eval-
uation is relatively rigid for expected outputs. We
consider the capability examined in this dataset as
the reserve of professional knowledge (to deal with
human examinations).

These two assessments complement each other
to some extent. Table 9 shows the data statistics of
these two benchmarks.

A.2 Open Large Language Models
A.2.1 Base LLMs

LLaMA LLaMA (Touvron et al., 2023) is a
decoder-only language model based on the Trans-
former (Vaswani et al., 2017) architecture, and is
trained on more tokens (1T, 1.4T) than what is typ-
ically used (Hoffmann et al., 2022). It ranges from
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7B to 65B parameters and outperforms existing
LLMs (e.g., GPT-3 (Brown et al., 2020) and PaLM
(Chowdhery et al., 2022)) with fewer parameter
magnitudes. However, the vocabulary of its tok-
enizer contains fewer Chinese characters, which
affects its expressive power in Chinese.

Bloom Bloom (Workshop, 2023) is a multilin-
gual language model trained on dataset ROOTs, in-
volving 46 natural and 13 programming languages.
The proportion of Chinese corpus in pre-training
data is second only to English corpus. The maxi-
mum version of Bloom has 175B parameters, while
the most popular version is 7B.

Moss-moon-003-base Moss-moon-003-base
(base model of MOSS series, moss-base for
short) is initialized with CodeGen (Nijkamp et al.,
2023) and further self-supervised pre-trained on
high-quality Chinese (100B) and English (20B)
corpus. All the pre-training data contains about
700B words. It has 16B parameters.

A.2.2 Supervised Fine-tuned LLMs

Vicuna Vicuna (Chiang et al., 2023) is fine-tuned
from LLaMA on 70K user-shared ChatGPT con-
versations gathered by ShareGPT?. Vicuna claims
to have achieved 90% performance of ChatGPT on
a preliminary evaluation using GPT-4 as a judge,
making it the most popular open source LLM. How-
ever, further rigorous evaluation is needed, espe-
cially in Chinese scenarios.

Bloomz & Bloomz-mt Bloomz and Bloomz-mt
are fine-tuned from Bloom on crosslingual task
mixture XxP3 (Muennighoff et al., 2023) and xP3mt,
which contain 13 training tasks in 46 language
with prompts in English and in 20 languages, re-
spectively. This supervised fine-tune process aims
to further boosts the performance of multilingual
tasks.

Moss-moon-003-sft Moss-moon-003-sft (moss-
sft for short) is fine-tuned from moss-moon-003-
base on moss-002-sft-data, which contains 0.57M
English and 0.59M Chinese dialogues generated by
text-davinci-003, and 0.1M real user instructions
(the corresponding response are generated by gpt-
3.5-turbo) collected during internal test.

ChatGLM ChatGLM-6B (Zeng et al., 2022) is
an open bilingual LLLM, supporting both Chinese
and English. It first completes pre-training on about

Shttps://sharegpt.com/

IT tokens in Chinese and English, and then adds
supervised fine-tuning and human feedback rein-
forcement learning (HFRL) (Ouyang et al., 2022)
processes to force model to follow instructions.

A.3 Parameter-efficient Methods

LoRA Low-Rank Adaptation (LoRA) (Hu et al.,
2021) injects trainable rank decomposition matri-
ces into each attention layer of the Transformer
architecture.

AdalLoRA AdalLoRA (Zhang et al., 2023b) al-
locates the parameter budget adaptively to each
layer’s LoORA module according to their importance
score. Specifically, AdaLoRA parameterizes the
incremental updates in the form of singular value
decomposition, which allows it to prune the singu-
lar values of unimportant updates and reduce their
parameter budget.

Prefix-tuning Inspired by discrete prompts for
language models, prefix-tuning (Li and Liang,
2021) adds a sequence of continuous "virtual to-
kens" as a soft prompt (namely prefix) before the
original sequences of each transformer layer. Dur-
ing training, prefix weights are trainable while
other model parameters are frozen.

P-tuning Unlike prefix-tuning, p-tuning (Liu
et al., 2022) injects trainable continuous tokens
into only the embedding layer instead of each layer,
resulting in fewer parameters being updated. Dur-
ing training, it freezes partial model parameters.

Prompt-tuning Similar to p-tuning, prompt-
tuning (Lester et al., 2021) also involves only train-
ing the input prompt embeddings. Differently, it
freezes all pre-trained weights.

Sequential Adapter For each transformer layer,
Series Adapter methods add adapter layers af-
ter both attention layers and MLP layers (i.e., S-
adapterH (Houlsby et al., 2019)), or after MLP
layers only (i.e., S-adapterP (Pfeiffer et al., 2020)).

Parallel Adapter Parallel Adapter, namely P-
adapter (He et al., 2021) adds adapter layers in
parallel with attention layers or MLP layers for
each transformer layer.

A.4 Chinese Instruction Datasets

AlpacaGPT4 AlpacaGPT4 (Peng et al., 2023) is
deemed as an optimized version of Alpaca (Taori
et al., 2023) dataset. It uses ChatGPT to translate
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Alpaca’s prompts into Chinese first, and then re-
generate these instruction-following data by GPT-4,
instead of text-davinci-003.

Belle Belle (Ji et al., 2023) uses the same method
as Alpaca (Taori et al., 2023) to generate instruction
data by fext-davinci-003, except that Belle only
generates Chinese instruction-following data and
artificially filters low-quality data. It contains about
1.5M instruction-following data.

Moss-002-sft-data This is a multi-turn conver-
sation dataset covering helpfulness, honesty, and
harmlessness, which is also generated by self-
instruct (Ouyang et al., 2022). We select the 0.59M
Chinese conversations among them for the follow-
ing experiments.

firefly Firefly (Yang, 2023) collects 23 Chinese
datasets and manually writes several instruction
templates for each dataset. It contains a total of
1.65M training samples, covering couplet, poem,
essay, and other generation tasks for the perfor-
mance of traditional literature, and 0.5M Belle data
for instruction diversity.

xP3 xP3 (Muennighoft et al., 2023) is a collec-
tion of 16 natural language process datasets across
46 languages with prompts. We select the 3M Chi-
nese instances among them.

instinwild Instruction in the Wild (instinwild)
(Xue et al., 2023) no longer manually sets initial
seed instructions like Alpaca, but crawls and fil-
ters 429 instructions from Twitter as the seed in-
structions, to avoid human involvement and cover
more topics. Following self-instruct, it uses the
seed instructions to generate more instructions and
corresponding responses by text-davinci-003. The
Chinese instructions in this dataset are about 52K.

HC3 HC3 (Guo et al.) is a corpus of Human-
ChatGPT comparisons that aims to investigate how
close ChatGPT is to Human Experts. To this end,
it collect about questions from various public ques-
tion answering datasets (e.g., medicine, law, fi-
nance QA) and the corresponding human answers
and ChatGPT answers. The Chinese samples in
HC3 contain 13K questions, 22K human answers,
and 17K Chatgpt answers.

COIG COIG (Zhang et al., 2023a) is a Chi-
nese instruction collection, consisting of: Trans-
lated instructions contains about 67K instructions
which are translated from three datasets: 1.6K task

descriptions in Super-Naturallnstructions (Wang
et al., 2022) along with a single instance for each
of them, 175 instructions of the seed tasks in Self-
Instruct, and 66K instructions from Unnatural In-
structions (Honovich et al., 2022). CCMC, namely
Counterfactual Correction Multi-round Chat, con-
tains about 68K rounds of conversations between
students and teachers. This dataset is built by
prompting two LLMs to generate conversations
based on the entities of knowledge graph dataset
CN-DBpedia (Xu et al., 2017) to alleviate the hal-
lucination and factual inconsistency. Exam In-
structions contains 63K questions from the main
Chinese commonsense tests, e.g., Gaokao, Civil
Servant Examination. These questions cover six
main subjects: Chinese, English, Politics, Biol-
ogy, History, and Geology. Exam Instructions
contains 34K Chinese samples that present shared
human values in the Chinese-speaking world (3K)
and regional-culture human values. Table 29 shows
some examples in this dataset.

pCLUE pCLUE collects 9 Chinese tasks with
a total of 73 different prompts and 1.2M samples.
These tasks include 9 Chinese tasks e.g., news clas-
sification, natural language reasoning, semantic
matching, keyword recognition, reading compre-
hension, etc.

Table 25 and Table 26 show representative ex-
amples of the above datasets.

B More Experimental Results

B.1 Full results of different LLLMs after
instruction-tuning.

Table 10 and 11 show the full Belle-eval and
MMCU results after instruction-tuning with LoRA
on Alpaca-GPT4 dataset, respectively.

B.2 Full results of different
parameter-efficient methods.

Table 12 and Table 13 shows the full Belle-eval and
MMCU results of instruction-tuning with different
parameter-efficient methods, respectively.

B.3 Full results of instruction-tuning with
CoT data.

Table 14 and 15 show the full Belle-eval and
MMCU results of the models instruction-tuned
without or with CoT data, respectively. Table 16
shows the detailed results on all subjects in educa-
tion discipline of MMCU.
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Open Brain Close

Code QA  Storm CIf. Math Gen. Sum. Rewrite QA Extract | Avg.
LLaMA 537 119 66.7 363 273 654 495 62.7 24.8 38.6 | 437
Bloom 537 350 882 505 368 895 603 82.9 40.0 44.1 | 58.1
moss-base | 58.8  25.1 829 334 279 838 352 49.9 15.2 19.2 | 43.1
Vicuna 642 197 803 500 352 79.6 585 81.1 423 384 | 549

Bloomz 584 338 884 505 329 92,6 56.0 82.3 38.3 29.1 | 56.2
Bloomz-mt | 629 351 85.6 49.6 31.7 905 55.1 82.4 44.2 36.2 | 573
moss-sft 674 307 885 465 336 886 475 72.1 20.2 2277 | 51.8
ChatGLM | 61.7 340 854 50.8 504 89.1 643 81.8 46.9 45.7 | 61.0

Table 10: Performance of open LLMs on Belle-eval after instruction-tuning with LoRA on Alpaca-GPT4 dataset.

Med. Psyc. Law  Edu. | Avg.
LLaMA 326 320 149 333 | 282

Bloom 2770 17.35 17.59 13.63 | 19.07
moss-base | 12.49 1135 7.01 10.72 | 10.39
Vicuna 1898 19.75 1470 21.83 | 18.82

Bloomz 756 6.65 9.61 8.65 | 8.12

Bloomz-mt | 15.61 18.65 11.58 15.19 | 15.26
moss-sft 1635 14.55 942 17.29 | 14.40
ChatGLM | 34.09 29.85 18.94 34.49 | 29.34

Table 11: MMCU Performance of open LLMs after instruction-tuning with LoRA on Alpaca-GPT4 dataset.

Open Brain Close

Code QA  Storm CIlf. Math Gen. Sum. Rewrite QA Extract | Avg.
AdaLLoRA 447 241 709 472 292 715 655 75.3 48.8 414 | 519
LoRA 537 350 882 505 368 8.5 603 82.9 40.0 44.1 | 58.1
prompt 474 119 391 433 423 467 60.0 66.5 49.0 61.6 | 46.8
p-tuning 539 188 632 40.0 30.7 634 547 65.7 35.8 34.1 | 46.0
prefix 51.6 31.8 805 428 315 793 463 76.4 39.6 362 | 51.6

SadapterP 587 336 837 482 345 874 613 82.9 342 44.1 | 569
SadapterH 647 375 863 477 345 883 565 85.6 41.7 43.8 | 58.7
P-adapter 539 339 835 488 31.1 86.7 610 81.8 379 384 | 55.7
SadapterP-1 | 629 335 85.1 484 36.8 854 51.6 71.2 35.0 34.1 |55.0
SadapterH-1 | 55.5 352 847 50.6 365 869 535 78.5 40.2 254 | 54.7
P-adapter-1 | 653 37.1 855 465 347 865 56.2 82.8 38.8 29.2 | 56.3

Table 12: Full Belle-eval results of Bloom after instruction-tuning with different parameter-efficient methods on
Alpaca-GPT4 dataset. "-1" denotes the version with large number of parameter.

Med. Psyc. Law  Edu. | Avg.
AdaLoRA | 1632 15.10 9.23 16.48 | 14.28

LoRA 27.67 16.60 17.35 12.43 | 18.51
p-tuning 1543 1730 10.64 18.61 | 15.50
prompt 468 630 520 1.77 | 449
prefix 1933 13.70 15.13 16.54 | 16.18

SadapterP 21.21 1620 13.67 17.89 | 17.24
SadapterH | 26.85 17.40 1524 21.44 | 20.23
P-adapter 17.56 1350 14.26 16.54 | 15.47
SadapterP-1 | 18.02 16.55 12.21 17.62 | 16.10
SadapterH-1 | 21.64 1620 14.29 22.28 | 18.60
P-adapter-1 | 26.96 15.30 16.13 19.21 | 19.40

Table 13: Full MMCU results of Bloom after instruction-tuning with different parameter-efficient methods on
Alpaca-GPT4 dataset. "-1" denotes the version with large number of parameter.
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Open  Brain Close

‘ Code QA  Storm Clf. Math Gen. Sum. Rewrite QA Extract | Avg.
Alpaca-GPT4 537 350 882 505 368 895 603 82.9 40.0 441 | 58.1
Alpaca-GPT4+CoT | 60.8 349 89.1 495 417 887 543 80.4 377 41.6 | 579
Alpaca-GPT4+CoT* | 629 360 850 535 395 861 49.0 83.7 35.0 415 | 572

Table 14: Belle results of Bloom instruction-tuned with and without CoT data.

Med. Psyc. Law  Edu. | Avg.
Alpaca-GPT4 27770 17.35 17.59 13.63 | 19.07
Alpaca-GPT4+CoT | 2235 23.05 1245 21.56 | 19.85
Alpaca-GPT4+CoT* | 26.92 2455 12.69 22.07 | 21.56

Table 15: MMCU results of Bloom instruction-tuned with and without CoT data.

B.4 Full results of LLaMA and its expanded
vocabulary versions.

Table 17 and Table 18 shows the full Belle-eval
and MMCU results of LLaMA and its expanded
vocabulary versions, respectively.

B.5 Full results of the comparison of using
English and Chinese prompts.

Table 19 and Table 20 shows the full Belle-eval
and MMCU results of using Chinese and English
prompts based on LLaMA and Bloom.

B.6 Full results with human-value alignment

Table 21 and Table 22 shows the full results of the
models instruction-tuned with and without human-
value alignment data.

C Qualitative Examples

C.1 Comparison of responses of Bloom and
Bloomz & Bloomz-mt on Belle-eval.

As shown in Table 23, Bloomz & Bloomz-mt tend
to generate shorter responses than that of Bloom.
Accordingly, ChatGPT rates Bloom higher than
Bloomz and Bloomz-mt. We conduct a statistical
analysis and find that the average length of Bloom’s
response is 481 words, while that of Bloomz and
Bloomz-mt are 83 and 58 words.

C.2 Comparison of different LLMs’ responses
on MMCU.

As shown in Table 24, all base LLMs fails to gener-
ate content in the specified format, i.e., outputting
option numbers. Bloomz & Bloomz-mt can di-
rectly generate option numbers. Although the gen-
eration of ChatGLM mentions the correct answer,
but fails to provide the corresponding answer num-
ber.

C.3 Comparison of samples from different
instruction datasets.

In Table 25 and Table 26, we select a representa-
tive sample for each instruction dataset to better
understand their respective characteristics.

C.4 Comparison of the responses from models
instruction-tuned on different instruction
datasets.

To compare the characteristics of models trained
on different instruction datasets more intuitively,
we present in Table 27 the responses of models
instruction-tuned on different datasets for the same
question.

C.5 Comparison of the responses from
LLaMA and its expanded vocabulary
versions.

We present examples of responses from LLaMA
and its expanded vocabulary versions in Table 28.
The response from "llama-voc" is clearly not under-
standing the meaning of the instruction. Therefore,
after expanding the vocabulary, pre-training should
be conducted on the vast Chinese corpus before
fine-tuning instructions.

C.6 Examples from human-value alignment
dataset.

The samples of human-value alignment dataset,
built by COIG, are shown in Table 29. These sam-
ples are often related to topics such as "online vi-
olence" and "gender discrimination”, which are
designed to ensure that the model has the correct
values when facing relevant topics.
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Chinese Math Physics Chemistry Politics History Geography Biology | Avg.

Alpaca-GPT4 13.18  16.72  12.50 10.00 16.88 10.07 12.77 1695 | 13.63
Alpaca-GPT4+CoT 1899 18.51 14.88 18.00 24.89 23.73 23.97 19.61 | 20.32
Alpaca-GPT4+CoT* | 1938 20.00 14.29 26.00 21.10 23.15 22.70 2395 | 21.32

Table 16: Results of all subjects in MMCU'’s education discipline of Bloom instruction-tuned with and without
CoT data.

Open Brain . Close
Code QA  Storm CIf. Math Gen. Sum. Rewrite QA Extract | Avg.
llama 537 119 667 363 273 654 495 62.7 24.8 38.6 | 437
llama-voc 247 27 141 108 69 101 37 17.3 8.7 0.0 9.9

llama-voc-pre 563 23.6 783 521 31.1 79.8 465 81.4 30.8 316 | 512
llama-voc-pre-p | 53.9 31.1 83.0 60.5 343 842 57.0 75.0 37.7 389 | 55.6

Table 17: Full Belle-eval results of LLaMA and its expanded vocabulary versions. "llama-voc", "llama-voc-pre" and
"llama-voc-pre-1" denotes instruction-tuning the models obtained by further pre-training LLaMA with a expanded
vocabulary on 0B, 20B and 100B Chinese tokens, respectively.

Med. Psyc. Law  Edu. | Avg.
llama 326 320 149 333 | 282
llama-voc 3.12 4.65 6.2 27 | 417
llama-voc-pre 26.68 20.50 1632 23.36 | 21.72
llama-voc-pre-p | 23.63 16.65 14.61 21.04 | 18.98

Table 18: Full MMCU results of LLaMA and its expanded vocabulary versions. "llama-voc", "llama-voc-pre" and
"llama-voc-pre-1" denotes instruction-tuning the models obtained by further pre-training LLaMA with a expanded
vocabulary on 0B, 20B and 100B Chinese tokens, respectively.

Oé)/in ; i)?rrxll CIf. Math Gen. Sum. Rewrite ngie Extract | Avg.
LLaMA-en | 53.7 119 667 363 273 654 495 62.7 24.8 38.6 | 437
LLaMA-zh | 63.0 144 70.8 389 31.7 659 505 60.5 20.8 349 | 451
Bloom-en | 537 350 882 505 36.8 895 603 82.9 40.0 44.1 | 58.1

Bloom-zh | 61.8 372 875 539 343 880 57.0 81.4 37.1 341 | 572

Code

Table 19: Belle results of using Chinese (denoted by "-zh") and English (denoted by "-en") based on LLaMA and
Bloom.

Med. Psyc. Law  Edu. | Avg.
LLaMA-en | 3.26 320 149 333 | 282
LLaMA-zh | 8.12 870 1.79 645 | 6.27
Bloom-en | 27.70 17.35 17.59 13.63 | 19.07
Bloom-zh | 20.93 1345 1532 1447 | 16.04

Table 20: MMCU results of using Chinese (denoted by "-zh") and English (denoted by "-en") based on LLaMA
and Bloom.

Open  Brain . Close
QA  Storm Clf. Math Gen. Sum. Rewrite QA Extract

537 350 882 505 368 895 603 82.9 40.0 44.1 ‘58.1

Code Avg.

Alpaca-GPT4
+human-value alignment

558 360 887 518 364 903 528 83.9 43.5 332 | 572

Table 21: Belle results of Bloom instruction-tuned with and without human-value alignment dataset.

Med. Psyc. Law  Edu. | Avg.
Alpaca-GPT4 27.70 17.35 17.59 13.63 | 19.07
+human-value alignment | 22.88 14.85 9.45 1546 | 15.66

Table 22: MMCU results of Bloom instruction-tuned with and without human-value alignment dataset.
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Class Closed QA of Belle-eval

Instruction | AT AT E &R TAF EHRESE#H? 20F %~ 15411, 21F % #2071, 225F %
72381, 235F4A9%5 #F *25.51C

Answer REREOEE, ENTAIHMEAT X T RFAHERALAE BGEZE .
204 BI219F . % 15414 ¥ Kk 312071 T - ¥ k& B A52970 T, ¥
A(5.2915.41)¥100%34.33% - M215F8]22F . & = IR20.710703% Kk 8|23 810 T - ¥ k4
A3, A (3.120.7)%100% 14.98% - 225 B123F4 9%, % = M23.8/0 03
¥ B|25.5Lt . kAT ALTCT, HRRA—FEE, 2 KA T 2ATHE X Bat 1) 69 F
PR E . NG A (1.723.8)¥100%7.14% « I LR B >M A M205B23F4A9%
GHARMY, REHENK. A, AEEEUR, REBKREALAZERE . N20F
BRI 60k, KE3433%, LEERFTH. STRERATHAEF WA IR TS
REBHBRSFSHEE. AT EFRIHFAHRL, BUAZFRE . THIRE . fFL
MEFLZ 7R ERATRATR, FEENGKRMBEAR, ABE FHAFGLF
ER

Bloom Response: & #E A L2 &, XMNTAF E AT LB . 205 F F15411MC, 215F &
720712 225 % Z23.840, 2354 A 9% F F2551C .

Rating of ChatGPT: /4~ 0.5% . BEAHEE AN LW ERT A FREGE L, &
A FHFERARTOINBAFEEMLE . BRAEADZ L EGEEREMG, 2-ZHHL
AR ER K.

Bloomz Response: # 3% &k 72.11¢ .

Rating of ChatGPT: 35 0% . A WAL TH%, RERHERLSET AT, #&
Ao REERRERG TS, CRARBETARGEL . SRELEML, 8
D REGAESARIE N, BEAFY .

Bloomz-mt | Response: & /& 7 B 3% &

Rating of ChatGPT: 5% 0% @A HE T —MRE LG8, £ 2 2353695
Mmoo AW . AA SR AR EAE K ERLLREFREEZE.

Table 23: Comparison of the responses and corresponding scores of Bloom, Bloomz and Bloomz-mt under the
same instruction.

Class Psychology of MMCU

Question AR RN F —F BRI G R, R ZE AN
Option A:AE S HE\nB: 2R 45 H\nC: 44 HE\nD: 2 R 1

Answer B

LLaMA 1. A\n2. B\n3. C\n4. D\n 5.A\n6. B\n6. C...

Bloom 1. A\n2. B\n3. C\n4. D\n 5.A\n6. B\n7. C...

moss-base | Please read the following choices and write an answer. Then, explain why you are the correct
choice. \n\nA stability is a personality characteristic of a person’s unique personality that allows
him or her to maintain a particular pattern of thinking, behaving, and behaving. \nB individuality is
a personality characteristic of a person’s unique personality that allows him or her to maintain a
particular pattern of thinking, behaving and responding to emotions. \nC Integration is a personality
characteristic of a person’s unique personality that allows him or her to maintain a particular pattern
of thinking, behaving and responding to emotions. \nD functionality is a personality characteristic
of a person’s unique characteristic that allows him or her to maintain a particular pattern of thinking,
behaving, and responding to emotions.

Vicuna "
Bloomz B
Bloomz-mt | B
moss-sft C

ChatGLM | ®RAAR M - ZA AN R —F D #oh4a F 6 Ros, R B8 T AR T o 4
A AREAR AR L RAM YR TR R AALBTR —FREASOREFET
AARF . Bk %A R A 3T

Table 24: Qualitative examples of different LLM responses to the same question of MMCU.

4102



Datasets Examples
Alpaca-GPT4 | instruction: — M Tty 2B EAERG I 2% V2
input:

output: T4 £ RG ] A o KR ANT AR YK R 2 RAIRS] S ek F &
HHE. BFTRERLEGE N R EOAMAAHIZKEN F 7 (m/s?) - —MTELGWkZ
BENORNITHELT : f=m*g ¥, mE2HKRGRE QUFL) . gk TS iR E
(9.8m/s?2) f=1kg *9.8m/s2=98 N FTuk, ZAMIFRGMAERZEGE S K 49.84
H(N) -

Belle

instruction: & — N ER, AR —ESEBGLE

input: A % A8 2 B A K TAF G2

output: % —H: I T\nMAEALFRE ARG TBT AR, MEAE SO T/ LRE LT EHM
BAF T EMAEF IR . ZEFANFEEC, DEEROALERRESTLBRRALL
Fo\nnf =B IRBAIFTREBRRALIAORENELALTRELG . ES 4 E
LFERBRCERAEA, AXAIFRTRAAEE ZOABRANETAHER K, FHLH
ERARGEE, ALFREEBNITER A EHNGES, THFFEREMS 6 TR
BB AATENK . \n\nB =B HHIFHFREGR K nAT, LAY, ALFR
KRBT FEXABRRELEIHE, GlloF e hfeg L) T/, o, ZRIAIERE
TREFABRRALGEFH . A kfo AMALIR S, XS4k £ L g2 b b 475 5K % R 7T %,
6 \n\nF OB BEARGE LS nBEA LT ETARK— LI, AXBRMA —
ALY . Bl AXBRBEAERFEE, TRAIFTRITRELSOHER. 5
R, ARTUAREMARTELH KL, ZELZAIFHRLERAY . \nnE L
B dieni kit ALFROEABRALX L TOREZARBALIE, EXNNAER
AREFSHABMBE TR, TETREZARGFER . ABIFFE . EHFOMRER,
BREAE, ALFRPALKEIELAGKL, EFHREENEL.

ShareGPT-zh

instruction: R —APEATIARGFTRHR . CLXEERLTETTHRE QWIEA G 5 1A
2. ZRZ-AFHEEFORF, KM “Honey’ AR H L3, AL T KNSR ASE
FagatF o AL —FHSKAN ARG LR ZHHEHF.

input:

output: R FR & ! LKAV LB 4re . FTR L E SRR 69 5 R 2, RAFE @A T
FE. CHARKGEREAARBEE AN . RO MHoney2 £ £ F LF A AR, ©HR
AAAHTEL. REE 2#2 nl. REEFA—FEGBRAETH 2. \n2. RE&EFhdT
WIELER . \n3. RAKAXFTE, #2FFHTI2E. \nd. Rk, BFIA
G B GFHH— Ay F RS

moss-sft-data

instruction: HF @ N B —FHF LG FTEEFATFLIE

input:

output. ¥ BFAF LEARS M, R —#HREFR. FRE-—FHRATEGR L LRETE
YR EREBER, CORBTAE B ATA20F . FRE—FANFT Il RKAFLE
FERRHIR, BREAEHAEZOXFAIAL, Wity . 4. ZRHF . FTROH
B @B, KR ARANE#R HF—FHBERToHMH, BB wgfyTE
WERRE

instinwild

instruction: 7| 10 B ZEAEBERE ANAEIZ LA F&7 %

input:

output: 10 ¥ K EFABHALA T LA Fe7EEHE: n (1) RREZELARE.

te AR A, "R FRELEME . \n () KERFTEMNAL, ERMNERNELE,

FEVRPARETERDE . \n B) RATHARBELLAAL, Wi KMEEALAL
Fo R AR L EIAF . \n 4) ERAIZRAEZHEARAFERALELFHI, AR ER
HAE.\n (5) BRAZKEREMF, R THAAEAARMPHFTIRGELESE . \n (6) X
B A%, WLEDRBRMW, KMEZLAAFFRBIALLSE . \n (7)) RAYKEE,

e FKE . REBEF T KB EBEKEF . \n (8) JIANREFRFKGER &, woH
B A AR AAF o \n (9) A FARLER K AL, KT AHA A G KT
Bo\n (10) ks E AR, REZFHAHERGKEE

firefly

instruction: F T @ &) FEIFRLE L: WK T HALL R T TAELF .
input:
output: FAF 742

Table 25:

Representative samples of different instruction datasets discussed in the experiments.
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Datasets Examples

HC3 instruction: W MTE I —AMR HFE? AAZLFH, KBELI - NMFZRXACTEEFTHE
R HREERTERMTA? FORERTLAHRBE? ARFHRHT .
input:

output: ¥ IE FTHZXANFMEAFTERT KAPLERS30056K A, LAREHAAA, T
ARER BT, RAGE W RBEFREFERRAF, M2AREEFTREFHRITT

HALERRE . BNAAANBYHEORRXEY, LOAAARERpE Y —9 &£
—F R #BE 5, % A Darkroom Cookbook: L@ E 69k Fm I RCOEHIRS KA T
B RAHRBRE5E, BERNEZREEOERBZHC EARLHFEEAR LTS A

ETEE AR P

xP3/zh instruction: Sentence 1: £ X A A LT, #AF# Eugenio Scalfariit A ¥ K, B LZH
&, KRB Z AR - \nSentence 2: £ X AT, MAF K Eugenio Scalfariit A%, &
SZAHEBMRA, KRG AEFRMA - \nQuestion: Does Sentence 1 paraphrase Sentence 2? Yes or
No?
input:
output: Yes

COIG-cmcc | instruction: Z Bk B 7~ & & AE - X KRB 694 & 252 il & R A X 456952
Input:

output: 48 #, HROEMRIART - ZHRRWEAZITRFH—FHB X, 212 wiEF L KB
FPHMA, LREMAOEFLREGELE. OEFARREAET — A2 5 RTEN%
ROBA, i ARR. LARET. A%ET . AR, fEEFFF . A2 REERF
#® .

COIG-trans | instruction: Z X FEF ¥, REFE D EMFEFo oMl E—E XA . TLF LY
W5 Z R E Y o MR TAF R AL T O T RBE G EHGRT . FEA E ARG
BlIEEF G4 RAERNT 6 FRERERBGEE, 223415 . B R %2 —
Nk FT &R, REERFVFHD G T .

inputF1¥F : FHAAXELRITSE . F=F: RARAMAT FEAF R IR F=
W AT AR, FEELER. FOF. B-NEERDR.

output:1,4,2,3

COIG-exam | instruction: % 2 T 4% &

inputt A EANLBERE, TEOXNRG=ZAGFEEZRLLAARE, 5 THH. 2RE
FEF, AR BHJEAMN, FTRAERE. BREWGTFHEIRHRIARBIISAF . &K
HMAZL, ARBHE, BFRREZE”. OF THERAF, TRLRERGRGE L
A+ 2, R, QAR FAA#E . EHNEHFR. 8K, BRITLR
THLYELR . MBKE LRR TR FHGKA; REAR, B8R, AREBSF, £
FHERF - @FEATOORM RE AL F 0, M ELAZE LA .

output OBE K AR A“E”. BRA: AT AR EANR, mEwdkiEd. “dT"2XTRE
8. RIF/IEH, RTEZWEOALE, EORFEGLZL. OB LA (Rt FA
AFRF ) . REGAEL: — R BREA”, BH—FEREAmEL. OthiE
FETTIORM XL . W@ FEEERTMN, HATHRBANEHAES -, XL
RGN EE. B—RAELFTEREZ RGO ESEEN, LT RROE
AEAPHIESG. FERORGRVFESTY . BRI E . ROFBBERIKA . EHRAL.
AELY. FEBH. wRXRBIAEUARTO®A, TAERGER ——HF, LT UA
AR FHEMREARA .

pCLUE instruction: BE TEZ LGB TRRABR—FFIL AL “RGEF—RA TG L0
R TTHEEG R AT HE? \n& £ .
input:

output: ~ 7T A&

CoT_Chinese | instruction: —RAENMFR . AMEFRTEAEZR . BHTURFESTEAANAFR, L
EHEARETHARTERBOZEROIB T . REBMRFESE 23 HEFYHER. RFE
FIRGKRRBEEZRS V2 EERNEFTIE .

input:

output: T#% 7 FINREFEEEANERN, RFEEMNTIAER 2AMFR=5MFR.
HENRTFEET2ONER D 2ABETF /I FR=AMT . RTFEHNAOBTFELT A
BT -4 MEF =4 METF . soh, ERBEFFRELEL2/3*ISAER=10M R &
TFTEHTHERERZRZISAEZRIONER=SAER - BHTGEARTFEOARIELES
MER+AMEF +5 M ER =14 X% 14

Table 26: Representative samples of different instruction datasets discussed in the experiments. The last row is a
CoT dataset sample, which has problem-solving ideas and explanations.
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Class Responses to the Following Instruction

Instruction MATFEAGFRE—IBE, FEAZHEAEL: \nl. RAKFHA . \n2. @EHGEY
EfERK . \n3 RERRERMEY ) T4E.

Alpaca-GPT4 | BB R A A WD RE T RO EKEMH. RREXBES I /. AAFRED
b R K -

Belle BAERRERBES S IAE, BB RAFH, @ Z6EHELERK.
ShareGPT-zh | A BRI R A, JRRW @ H, #5709 R R,

moss-sft-data | BFHA B R 2, WO EHELEERARK, BERRERMES I T4, AEHFRELE

i+ .

instinwild EAGTFAZHLERAZLY,. RAHH, 9RO ELERK, BERRERTEYR
5 Ik

firefly BEREFRMNEE NI, BARE EARGGRLGEDIRETBG R > F Ko
R, RAWHH, XERROGIFTFIENRES -

HC3 KAKH. OREGEDEERK . RERRFRTESH .

xP3/zh RAKH. OZOEHELERK. RERRERTESH TE.

COIG-ccme | 8, HROERAZ . NXEAGFRE—INEE, L AZHBEAZURZHBRA
BB IEA A . mem i e B A R KA CRALR RERA % ) T R R
ROBEAMAE . A 2RAEEMZAMEAG R H

COIG-trans RARY, WP ELRK . BRILRRFRBAEYR D L.

COIG-exam | 1. KA . 2 WH LGN EALRK . 3. RIERRERMBES ) TE.

pCLUE B 3 F A A R K

Table 27: Qualitative examples of the responses from models instruction-tuned on different instruction datasets.

Class Responses to the Following Instruction

Instruction W — TFARIAA R KO BT 2H T -

llama-base L RAARKRGZ AR S TA T AL \n2. KIAARKRGXBAE2TH LM £ . \n3.
EAARKRG R BB LT/ EmAE . \nd. BURARKYLBE LT/ E L.

llama-sft A5, EA-MAIERY T, RLEMT ARG ZERIL . KRR RRIFEILA 69 @A

BARERFHE . \n\nf2 2, R TARE - BTROKRRZAKRIL . \n\nl. AHE R .
MAERRGTH A K, O ERPFREEEAEBR, THESERARGRBYEE I KRG
WAL o \n\n2. Beit kAT RAAHARAGLETRBRRE, THRAEZARGTATEZRIXGR
AZ . \n\n3. RBWE XA : MAEARGEEF X6 TA, ANMERZRKGBRZHE
B W AERB. BFAEF . n\nd. FRIXBAL:. FRIXALL, wHEBEEH-
FRXBES, TUAHBHAA E KB B GH . \n\n5. THELB . SFBHANER TH
ZURAFR, RFATE. T HEF, ROAIRRYFTE. nnk, RE9@E
KRSHA. B, THEAY, CHFRELOEANPFE. KNFTERHZIFH
Hm AR T, ME B AT R R 6 A PR .

llama-voc —A—AMER AirPods 89 A P 7T AL AT F 8K E I . \n\nl. #4F AirPods %9 battery #9
lifespan #= battery &9
llama-voc-pre HAH—AMALERS T, REFAMNARGZARL, BAZABRALZHNFSREY

WoR, OBZFRE. AETA. RATAF. T, REBWRARAK, RxTiS
HIATIUAAS \n\nl. FRIBAL: BMARRGER, FRABAAKEHEL,

BREERIAETIT. AV EAL . AHERAEF . ILBARRFIIAKE, &R
YREFRLBFW . \n\n2. WHAERRESH AL MERBROTAER TEAMR,

HAERRESHANAEGEHER, BRI L IR GRS, B YERIFE . \n\n3.
£EIRF . AZEFREH LR, QEXTATE . RTALE . AL FEF . BEF K
KRR BARA, REBEFAE. n\nd. FRIABET . FRETZAKEZHER, &
EFRIAF. FRIABITREF . IBTARBAN . 7@ BT
¥lo\nnEZ, REXBTHRSEWFMRA. GFoEi. 2L, ZAEARNLSEFS
EOR A

llama-voc-pre-plus | & TALF B ARG FB AR, ARXABATRERXAE R TR \n\nE &, BFHE5
AFBLRALIR. MAOHERBERGRH, AEWBFTHETEAANER, ALY
TN BRERKRBRSRAFRGRE, FAXBRERNAREA LT E . \nnd
R, RBAEEAGK ST gl . BIREFESH, KLAFTELALLS AN KA MHE
B, FRELFRFEARBAARGEE, Bl ETEETIT. B ATABF . TH,

RAIEE A GBI A AER . \n\nskd, EZTRTBLEmER . BEHRRGR Y,

AN RS BRI RTFIRT RLRBITETAYR A, B, ANBFRAEFLET
WAE—MAE, AATABRIEAFTEAF XARBREATHEE . mnéE, AROZLBH A
F e iede . AR . IR, AANBATHFRE S 094A .

Table 28: Qualitative examples of the responses of LLaMA and its expanded vocabulary versions to the same
instruction.

4105



Class Examples

instruction

RlafTHAFMEB RN FHE

B TFREAFTONABSEFE X

ﬂ BRI R —FFAERGTIT,

response

AE”; R, &R

& F AT H A B R BENATA

HEENGAE .

c RINAMEGZR EREI, EETRERANERGEERI M, MBRLZEIIINR.
MAAQF%R &M&*AAﬂﬁﬁéﬁﬁkix&E%F%
FTREZAAEY, BB RFAS . TH, IE%%VM%#%%}\
EHAETEERFITN . NEKARE LR, AR EmBREEEREE, WEER
HedP W % 72 18 69 48 B e RAT AR

W E R SHEERE KRG T, RN E

EiEAE . FEMHRALY

&

instruction

iR ECERAEL R

BRI ATEA AT A s AR 1% Do (T 3 LA FF T A G 4T 4 2

response
ABEAZRAGEE, 358F

AR

BRERRALGITHAGEERF R EIL,
BREFSANAAETANE, HFF AR AKX,
LR SEEY
AERT ATHARE =%, T H4EN,
AW B 6 R IEG A

ENEREY B YE YN T I Y- N
TR RX—FTAHA SR FEE, SHR
AR T fed k69 kEE R, 7] iR B 47
HFERGNARNFAIT AT R, —NFE

AARNARB LT HAE,
R R AReG3E o

instruction

TALRRBER BT T

RINAZAWE R G ERR? FH

AW AT EH -
ARAMEHKEY, CFETHad.
BR . Ao ARBFEXAHZGFTE
R HEANABTARBNR T,

response

AF K& HAET
B WA

%A,

TR AR -

. 2ZEF, BN RO REREH BA— A,
THEHBRAREZEEAEZE
2. EM% L,
EE QLIRS A G EIN
WA M% iR, AR BT . B
BREBAEMNOBLABFAETSEO+FE. 3. Ak, &
— %k B R T RGE O,
REZWMLRE BB A OAGBRAESE,

REAMA“AEH
Yy, BLEEABE
[ & AL B R Fe 22 AL R R 6 R &
LETH . AFKFFEFERT

AR U S NN Y EE RS N

EMNEZH ORISR HREGH R, AM%
g Leig SheE B BT, RSP ML

Table 29: Examples of the human-value alignment dataset built by COIG.

D Experimental details

D.1 Experimental Settings.

Our code is modified from library transformers and
peft. We will release the codes publicly.

During the training phase, we train the models
with 8 A100-80G. A good set of hyperparameters
was discovered through experiments: We train mod-
els with a linear-warmup learning rate of Se-4 and
batch-size of 512 for 5 epoch (for datasets with less
than 100K samples) or 1 epoch (for datasets with
over 10K samples). Each sample is truncated to
512 tokens. To improve training efficiency, we load
models with 8-bit quantization, except for Chat-
GLM. We divide 2000 samples into a validation
set to observe changes in losses and determine the
final checkpoint used.

During the inference phase, we set the max
length of the generations to 512, and set temper-
ature=1.0, top_p=0.9, top_k=40, num_beams=10,
no_repeat_ngram_size=6, repetition_penalty=1.8.
We set float16 precision for inference.

During the evaluation phase, we use ChatGPT
with GPT-3.5-turbo-0301 engine to score the mod-
els’ generation for Belle-eval. When extracting
answers for models’ generation on MMCU, we fol-
low the following steps: 1) If the model does not
generate an option number (i.e., A, B, C, D), we

determine the predicted answer by matching the op-
tion content that appears in the response. 2) If the
model generates the option number, considering
that sometimes the model will analyze the content
of each option: if all option numbers appear in the
response (with different occurrences), we will re-
move the option numbers that only appear once.
Otherwise, we direct use all the option numbers
that appears as their final answer.

D.2 Prompts Design.

For the prompts in English, we direct use the same
prompt as Alpaca:

"Below is an instruction that describes a task.
Write a response that appropriately completes the
request.\n \n### Instruction:\n{instruction}\n
\n### input:\n{ input}\n\n### Response:"

For the prompts in Chinese, we design it as fol-
lows:

”VX'F%#EJE—‘/\ﬂ'%%‘é'JiE & A & 48
&N, WREEZRLEENL S S
R o \n\n ### 9}54\ : \n{instruction/\n\n###
W \nfinput/\n\n### ©I R . "

For the inference on MMCU, we revise the ori-
gin prompt as:

"Below is an instruction that describes a task.
Write a response that appropriately completes
the request.\n\n### Instruction:\n{vk H 1% VA
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THEFAFLEEHRER, FEBER
o J\n\n ### input: \n{input) E# & % 69 )%
5 & . \n\n### Response:"

D.3 Implementation Details of our LLM.

Our LLM is trained from Bloom with LoRA. We
select a combination of datasets with significant
gains on Belle or MMCU, including 10 datasets:
Alpaca-GPT4, Belle, ShareGPT-zh, moss-sft-data,
installwild, firefly, COIG-trans, pCLUE, and CoT
data. To balance the capabilities of our model, we
only select 1/3 of moss-sft-data and 1/5 of firefly
and pCLUE. The model perform the best with 1.3
epoch instruction-tuning. For the specific prompt,
we add a sentence "= AR 7T A8 1¥ 28 E K" ("An-
swer as detailed and specific as possible" in Chi-
nese) at the end of the orginal prompts.
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