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Abstract

With the advance of large language models
(LLMs), the research field of LLM applications
becomes more and more popular and the idea
of constructing pipelines to accomplish com-
plex tasks by stacking LLM API calls come
true. However, this kind of methods face two
limitations: narrow information coverage and
low fault tolerance. In this work, we propose a
novel method called ALLIES. Given an input
query, ALLIES leverages LLMs to iteratively
generate new queries related to the original
query, enabling an iterative reasoning process.
By iteratively refining and expanding the scope
of the original query, ALLIES captures and uti-
lizes hidden knowledge that may not be directly
obtainable through retrieval. We take zero-
shot open-domain question answering (ODQA)
as an application scene and evaluate ALLIES
on the widely-used benchmarks, such as NQ,
WebQ and TriviaQA. The experimental results
demonstrate that ALLIES significantly outper-
forms other zero-shot baselines, indicating its
effectiveness in tackling those challenges. Our
code is available in https://github.com/
microsoft/SimXNS/tree/main/ALLIES.

1 Introduction

With the emergence of large language models
(LLMs) [OpenAI, 2023, Scao et al., 2022, Taylor
et al., 2022, Chowdhery et al., 2022], researchers
have explored their potential to generate responses,
including answering queries with the in-context
learning method [Brown et al., 2020]. In that
method, the models are prompted with demon-
strations such as human-selected query-response
pairs [Shoeybi et al., 2019, Rae et al., 2021, Du
et al., 2022]. In this field, open-domain question
answering [Chen et al., 2017, Izacard and Grave,
2021, 2020, Lazaridou et al., 2022] is an impor-
tant and representative task that usually requires

∗This work was done during internship at MSRA.
†Xiao Liu is the corresponding author.

access to external corpora [Petroni et al., 2021]
and utilizes a retriever component for knowledge
augmentation [Ram et al., 2023, Shi et al., 2023,
Rashkin et al., 2021, Gao et al., 2022, Bohnet et al.,
2022, Menick et al., 2022] to improve their ability
to provide comprehensive and accurate answers.

However, despite the advancements, these
methods still face two main limitations. (1)
Firstly, narrow information coverage. When
incorporating relevant information, the majority
of these approaches only employ the query itself to
find or retrieve additional contextual information.
Nonetheless, there are instances where responding
to the query necessitates implicit knowledge that
is related to the query but cannot be easily found
solely using the given query. Consequently, the
LLM may fail to acquire crucial information
required for accurately responding to the query.
(2) Secondly, low fault tolerance. Most of these
methods follow the pipeline style, consisting
of unique steps calling LLM APIs to generate
responses to fulfill different needs in a single turn.
It means that the model is expected to provide the
correct response in a single attempt. If an internal
step fails, either the whole pipeline will face the
risk of exception or the error will be propagated to
downstream steps. Consequently, if the model fails
to find the necessary information or misinterprets
the question, it may produce an incorrect response.

To address the aforementioned limitations, we
propose a novel approach called ALLIES that ap-
plies a beam search strategy to generate responses.
To better elaborate the method, we take open-
domain question answering as the application scene
and show an example of how ALLIES works in
Figure 1. We adopt an interactive and iterative
process. Initially, we generate additional queries
by asking the LLM what other information they
require, based on the existing query-evidence pair.
These generated queries serve as prompts for re-
trieving relevant evidence from external sources.
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Figure 1: The example of answering a question “when was the first driver’s license required?” using ALLIES. The
correct answer is “January 1, 1904”.

The retrieved evidence is then added to the existing
query-evidence pair. Next, we employ the LLM to
respond to the initial query based on the augmented
query-evidence pairs. Subsequently, we solicit the
LLM to score the response, taking into account the
query and the augmented query-evidence pair. This
scoring process provides a measure of confidence
in the generated response. The iterations continue
until the score surpasses a predefined threshold,
indicating a sufficiently confident answer or the
maximum depth of the tree traversal is reached.
Once either of these conditions is fulfilled, the pro-
cess terminates, and the answer is outputted as the
final result. Responding to the query using ALLIES

can be conceptualized as a tree traversal process,
starting from the root node and progressing towards
the leaf nodes, where each internal node in the tree
represents a generated query.

The main advantages of our method are two
folds: (1) Firstly, we employ an extension strat-
egy that extends the original question to multiple
relevant questions, broadening the information cov-
erage. This approach enables the LLM to gain a
deeper understanding of the complex question by
focusing on its constituent parts. By providing the
LLM with more specific and targeted queries, we
enhance their ability to comprehend and process
the question effectively. (2) Secondly, during the
iterative process, we employ a dynamic pruning
technique that retains only the top B answers at
each step. This increases the fault tolerance and
robustness of our model by allowing the LLM to

make mistakes during the reasoning process. Any
erroneous answers can be replaced by alternative
answers, leading to more accurate and reliable re-
sponses. This flexibility and adaptability contribute
to the improved performance of our approach.

With the idea of ALLIES, we take zero-shot open-
domain question answering (ODQA) as an applica-
tion scene and evaluate ALLIES in several popular
benchmarks. We conduct experiments on the NQ,
TriviaQA and WebQ datasets. The results demon-
strate that ALLIES significantly outperforms sev-
eral representative baselines while maintaining an
acceptable cost. The case study further confirms
the aforementioned advantages of our method.

In summary, our main contributions can be sum-
marized as follows:

1. We propose ALLIES, which leverages a
beam search strategy for response generation.
Within this framework, we adopt an interac-
tive and iterative process to enhance the accu-
racy and robustness of the responses.

2. By extending the original question into multi-
ple relevant questions and employing a dy-
namic pruning technique, we improve the
understanding of complex questions and in-
crease the model’s robustness. This allows for
mistakes and alternative answers, resulting in
more accurate and robust responses.

3. By taking zero-shot ODQA as an application
scene, results on the NQ, TriviaQA and WebQ
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datasets demonstrate the significant outperfor-
mance of our method compared to baseline
approaches. The case study further validates
the advantages of our approach.

2 Related Work

2.1 Open-Domain Question Answering

Open-domain question answering is a task that
aims to provide answers to questions without re-
lying on specific context. This task can be cate-
gorized into two settings: the open-book setting
and the closed-book setting. In the open-book set-
ting, models [Chen et al., 2017, Izacard and Grave,
2021, 2020] typically consist of a retriever and a
reader component. The retriever’s role is to re-
trieve relevant information from a corpus such as
Wikipedia [Chen et al., 2017, Izacard and Grave,
2021] or web pages [Lazaridou et al., 2022, Nakano
et al., 2021], while the reader focuses on answering
the question based on the retrieved information.

In the closed-book setting, models have no ac-
cess to external corpus and have to rely on its
model parameters to store all the information. Re-
cent works find that large-scale language mod-
els like T5 [Raffel et al., 2020] can already an-
swer questions without access to the external cor-
pus. However, small-scale language models like
RoBERTa [Liu et al., 2019] or GPT-2 [Radford
et al., 2019] still face challenges in accurately an-
swering questions in this setting.

2.2 Large Language Model Enhanced
Question Answering

In recent times, there has been a shift towards uti-
lizing large language models (LLMs) for question
answering [Chowdhery et al., 2022, Du et al., 2022,
Liu et al., 2021]. This research can be broadly cat-
egorized into two lines of work. The first line of
work focuses on preprocess methods [Borgeaud
et al., 2022, Ram et al., 2023, Shi et al., 2023],
which involve obtaining relevant documents and
then utilizing LLMs to generate answers. Within
this line of work, there are two main approaches.
Retrieve-then-read methods [Ram et al., 2023, Shi
et al., 2023] employ a retrieval model to retrieve rel-
evant documents, while generate-then-read meth-
ods [Yu et al., 2022, Sun et al., 2022] fully leverage
the capabilities of LLMs. Furthermore, researchers
have demonstrated that combining generation and
retrieval can lead to further gains [Yu et al., 2022].

The second line focuses on posthoc methods
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Figure 2: The abstract process of ALLIES.

(like works on QA with attribution) [Rashkin et al.,
2021, Gao et al., 2022, Bohnet et al., 2022, Menick
et al., 2022], which involve generating an answer
using an LLM and then refining it with the help of
a verifier and a retriever. The retrieved documents
in the second stage serve as explanations for the
generated answer.

3 Main Idea

The main idea of ALLIES is an interactive and it-
erative process based on the widely-used search
algorithm, beam search1. We use a tuple with five
slots to represent a state, which is the element of
a beam. Each state ⟨q,Q, E , r, s⟩ consists of the
original query q, the set of historical query comple-
tions Q, the set of historical external evidences E ,
the current response r, and the estimated score s
according to the current state. Assume the maxi-
mum search depth is D, as illustrated in Figure 2,
there are four main stages of ALLIES.

3.1 Beam Initialization

In the beginning, we initialize the beam by asking
the LLM to answer the query directly and by an-
swering the query based on retrieved evidence. The
retrieved evidence is obtained by first retrieving re-
lated documents using the original query and then
summarizing the documents. The generated tuples
will be added to the beam.

1https://archive.org/details/DTIC_ADA049288
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Algorithm 1 The process of generating the response to a given query using ALLIES.
Hyperparameters: The maximum number K of generated queries, the maximum depth D of extension, the number N of
documents from retrieval, the score threshold S, and the beam size B.
Input: A query q.
Output: The answer â.
1: Clear the initial beam S0 = ∅
2: Answer the query q with the model knowledge a0 = Answer(q,∅,∅).
3: Score the initial answer s0 = Score(q,∅,∅, a0).
4: Add the current tuple to the initial beam S0 = S0 ∪ {⟨q,∅,∅, a0, s0⟩}. ▷ The first seed.
5: Retrieve a evidence e1 = Retrieve(qori, q,N).
6: Answer the query q with the model knowledge a1 = Answer(q, {q}, {e1}).
7: Score the initial answer s1 = Score(q, {q}, {e1}, a1).
8: Add the current tuple to the initial beam S0 = S0 ∪ {⟨q, {q}, {e1}, a1, s1⟩}. ▷ The second seed.
9: for extension depth d in 1 → D do ▷ Extending within the depth.

10: Clear the beam for the current depth Sd = ∅.
11: for each tuple in the previous beam ⟨q,Q, E , a, s⟩ ∈ Sd−1 do ▷ Iterate the previous tuples.
12: Find the extended queries Q′ = Ask(q,Q, E ,K).
13: for each extended query q′ ∈ Q′ do ▷ Try each possible extension.
14: Retrieve a evidence e′ = Retrieve(qori, q

′, N).
15: Try to answer with all the evidences a′ = Answer(q,Q∪ {q′}, E ∪ {e′}).
16: Score the answer s′ = Score(q,Q∪ {q′}, E ∪ {e′}, a′).
17: Add the current extended tuple to the beam Sd = Sd ∪ {⟨q,Q∪ {q′}, E ∪ {e′}, a′, s′⟩}.
18: end for
19: end for
20: Trim the beam Sd by keeping only B tuples with largerest scores. ▷ Prune the beam.
21: if a tuple ⟨q,Q, E , a, s⟩ ∈ Sd meets s ≥ S then ▷ Examine the exit.
22: SD = Sd.
23: Exit the loop.
24: end if
25: end for
26: Find the tuple ⟨q,Q, E , â, smax⟩ ∈ SD with the largest score smax and â is the final answer.

3.2 Beam Expansion

During the beam search process, we iteratively pop
out one element from the front of the beam. For
each element, we generate queries using the Ask
Function. Then, for each generated query, we re-
trieve relevant evidence and ask the LLM to answer
the query based on both the retrieved evidence and
the reasoning history. The LLM scores the gener-
ated answers based on the reasoning history, and
the newly formatted tuples are added to the end of
the beam.

3.3 Beam Pruning

At the end of each search depth, we rank the newly
generated answers and keep only top B answers.

3.4 Beam Termination

If the highest-ranking answer in the beam has
a score exceeding the predefined threshold, the
search process terminates, and the answer is out-
putted. Otherwise, the process continues. If none
of the elements in the beam reaches the thresh-
old, we output the highest-scoring answer when
the search reaches the maximum depth.

4 Detailed Approach for ODQA

In this section, we present the application of AL-
LIES in ODQA, whose algorithm is illustrated in
Algorithm 1. There are four key functions used in
ALLIES, each serving a specific purpose. The cor-
responding prompts are illustrated in Appendix C.

4.1 Answering Function Answer(q,Q, E)
This function takes as input the original query q,
previously generated queries Q, and corresponding
retrieval evidence E . It constructs a reasoning his-
tory {⟨q1, e1⟩ , ⟨q2, e2⟩ , ...} by extracting qi ∈ Q
and ei ∈ E . The function then asks the LLM to
reason over the reasoning history and provide an
answer to the original query.

4.2 Asking Function Ask(q,Q, E ,K)

Given the query q, previously generated queries
Q, corresponding retrieval evidence E , and the
maximum number of queries to be generated
K, this function constructs a reasoning history
{⟨q1, e1⟩ , ⟨q2, e2⟩ , ...} by extracting qi ∈ Q and
ei ∈ E . The LLM is then asked to reason over the
reasoning history and determine what additional
information it requires to answer the question. The
function outputs the generated queries.
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4.3 Retrieval Function Retrieve(qori, q,N)

Given the original query qori, query q, and the max-
imum number of documents to be retrieved N , this
function uses a dense retriever to retrieve the top-N
most similar documents. The LLM is then asked
to extract the most useful information from the
documents and summarize them, providing a con-
cise version of the retrieved information. We can
also use LLM to directly generate a background
document like GENREAD [Yu et al., 2022] as an al-
ternative and we call this function Retrieve

′
(qori).

4.4 Scoring Function Score(q,Q, E , a)
Given the original query q, previously gen-
erated queries Q, corresponding retrieval evi-
dence E , and the generated answer a from the
LLM, this function constructs a reasoning history
{⟨q1, e1⟩ , ⟨q2, e2⟩ , ...} by extracting qi ∈ Q and
ei ∈ E . The LLM is then asked to consider the rea-
soning history and assess the probability that the
candidate answer is the true answer. The function
outputs a score representing the confidence in the
generated answer.

5 Experiment

5.1 Experimental Setting
In this section, we conduct experiments on three
open-domain question-answering (QA) datasets:
NQ [Kwiatkowski et al., 2019], TriviaQA [Joshi
et al., 2017], and WebQ [Berant et al., 2013]. Since
we focus on zero-shot ODQA, we utilize only the
complete test sets of NQ and WebQ. To reduce
costs, we randomly selected 1000 samples from the
TriviaQA test set for evaluation purposes. Original
detailed statistics regarding these three datasets can
be found in Appendix A.

We evaluate the performance using two met-
rics: the exact match (EM) score and the F1 score.
Specifically, a predicted answer is considered cor-
rect only if its normalized form matches any of the
normalized versions of the answers provided in the
answer list. The F1 score measures the word over-
lap between the normalized version of the predicted
answer and the answers in the provided answer list.

5.2 Implementation
We employ GPT-3.5-Turbo hosted by Azure Ope-
nAI services as our large language model (LLM).
As for the retriever component, we conduct sepa-
rate finetuning for the NQ, TriviaQA, and WebQ
datasets using their respective training sets. The

architecture and performance of the dense retrieval
component can be found in Appendix D. For the
retrieval corpus, we use the Wikipedia dump from
Dec. 20, 2018 as our retrieval corpus, encompass-
ing a collection of 21,015,324 documents.

5.3 Baselines
We compare our method with three groups of zero-
shot QA baselines.

The first group comprises baselines that utilize
a retriever in their approach. This includes models
such as BM25 + InstructGPT, Contriever + Instruct-
GPT, Google + InstructGPT, and DPR + Instruct-
GPT. These models employ a retriever to retrieve
relevant information, which is then used by Instruct-
GPT for answer generation. We obtained the re-
ported performance numbers for these baselines
from GENREAD [Yu et al., 2022].

The second group consists of baselines that do
not utilize a retriever in their approach. This group
includes models such as GPT-3 [Brown et al.,
2020], InstructGPT [Yu et al., 2022], FLAN [Wei
et al., 2021], GLaM [Du et al., 2022], and GEN-
READ [Yu et al., 2022]. The reported performance
numbers for these baselines are obtained from their
respective original papers.

The third group consists of models that we im-
plemented ourselves, including directly answer,
retrieve-then-answer, GENREAD [Yu et al., 2022],
self-Ask [Press et al., 2022], and MCR [Yoran et al.,
2023]. Directly answer refers to the utilization of
the LLM to directly answer the question. Retrieve-
then-answer involves retrieval before answering,
where we experimented with different numbers of
retrieved documents and reported their correspond-
ing performance, which is the simplified version
of ALLIES without beam search. We implemented
GENREAD, self-Ask, and MCR based on their
open-source code. However, we evaluate MCR
only on the NQ dataset due to its high API cost.
To ensure fairness among the baselines, we set the
retrievers and LLM configurations to be the same.

5.4 Main Results
We present the main results of our zero-shot exper-
iments in Table 1. Based on these results, several
observations can be made:

(1) Among the methods that utilize a retriever,
the choice of the retriever has a significant impact
on the model’s performance. This indicates that the
quality of the retrieved documents plays a crucial
role in determining the overall system performance.
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Method NQ TriviaQA WebQ
EM F1 EM F1 EM F1

*Method w/ retriever, reported by [Yu et al., 2022].
BM25 + InstructGPT 19.7 - 52.2 - 15.8 -
Contriever + InstructGPT 18.0 - 51.3 - 16.6 -
Google + InstructGPT 28.8 - 58.8 - 20.4 -
DPR + InstructGPT 29.1 - 53.8 - 20.2 -

*Method w/o retriever.
GPT-3 [Brown et al., 2020] 14.6 - - - 14.4 -
InstructGPT [Yu et al., 2022] 20.9 - 57.5 - 18.6 -
FLAN [Wei et al., 2021] 18.6 - 55.0 - - -
GLaM [Du et al., 2022] 24.7 - - - 19.0 -

*Reimplmentation.
Directly Answer 20.8 32.5 49.2 60.8 20.8 37.5
Retrieve-Then-Answer (Top-1) 27.6 37.1 49.1 57.9 19.9 33.8
Retrieve-Then-Answer (Top-5) 29.4 40.7 52.7 62.0 18.5 34.8
Retrieve-Then-Answer (Top-10) 28.2 39.5 52.4 61.6 17.4 32.9
GENREAD [Yu et al., 2022] 31.1 44.8 59.3 70.7 19.1 36.9
Self-Ask [Press et al., 2022] 26.4 36.5 59.4 68.5 15.1 29.5
MCR [Yoran et al., 2023] 27.1 35.7 - - - -

ALLIES 38.0 47.8 61.4 70.8 28.2 45.6

Table 1: Zero-shot open-domain QA performance.

Method NQ WebQ
EM F1 EM F1

w/o Evidence 22.44 34.54 19.78 36.54
Retrieve&Summary 38.00 47.82 27.26 43.13
GENREAD 37.98 49.47 28.20 45.49

Table 2: Ablation study results on NQ and WebQ.

(2) Among the methods that do not use a re-
triever, GENREAD achieves the highest perfor-
mance. This demonstrates the effectiveness of the
generate-then-read pipeline, where the model gen-
erates background documents based on its own
knowledge without relying on external corpus.

(3) Our implemented baselines, such as MCR
and self-Ask, may not perform as well as expected.
This is mainly because these methods heavily rely
on result parsing, which limits their generalizability
to other applications.

(4) Our proposed method, ALLIES, outperforms
all existing baselines and achieves the highest per-
formance on all datasets. This confirms the effec-
tiveness of our model and demonstrates its superior-
ity in open-domain question answering tasks. Ad-
ditionally, our method relies less on result parsing,
making it more generalizable to other applications.

5.5 Ablation Study

In ALLIES, we utilize LLMs to ask questions and
retrieve evidence based on those questions. To in-
vestigate the effects of the evidence, we conduct

Method NQ TriviaQA WebQ

Retrieve-Then-Answer 59.2% 64.6% 70.0%
ALLIES 69.6% 72.9% 82.0%

Table 3: Query complementation analysis.

ablations by removing the evidence and using dif-
ferent types of evidence, as shown in Table 2.

Based on the results, we draw several conclu-
sions: (1) When the evidence is removed, we only
provide the LLM with related queries without any
background information. In this case, the model’s
performance drops significantly, which confirms
that incorporating evidence into the model can
greatly improve its understanding of the query. (2)
When using the LLM-generated background docu-
ment (GENREAD), we observe that our model
achieves slightly better results compared to re-
trieval & summary. This finding aligns with the
observations made in GENREAD [Yu et al., 2022].
The improved performance can be attributed to the
fact that LLMs have seen these related documents
during pretraining, and the generated documents
are more specific and refined.

5.6 Query Complementation Analysis
By iteratively generating new queries to comple-
ment the original query, our ALLIES is capable of
expanding the information coverage of the original
query and capturing hidden knowledge that may
not be directly obtainable through retrieval with
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Method Retrieval Times API Times Tokens Per API Tokens Per Query

Directly Answer 0 1 54 1 × 54 = 54
GENREAD [Yu et al., 2022] 0 1 342 1 × 342 = 342
Self-Ask [Press et al., 2022] 0 1 490 1 × 490 = 490
Retrieve-Then-Answer (Top-5) 1 1 744 1 × 744 = 744
ALLIES (GENREAD) 0 19 290 19 × 290 = 5510
ALLIES (Retrieval&Summary) 5 19 352 19 × 352 = 6688
MCR [Yoran et al., 2023] 12 12 3029 12 × 3029 = 36348

Table 4: The effectiveness analysis of ALLIES.

the original query. To verify this, we conduct a
query complementation analysis that compares the
retrieval results of retrieve-then-answer and AL-
LIES. Specifically, we record the percentage of
retrieval results containing the ground truth answer
and present the findings in Table 3.

From the result, we can find that the retrieval
results of ALLIES outperform those of retrieve-
then-answer across all datasets, which verifies the
effectiveness of ALLIES. By iteratively generating
new queries, we can expand the knowledge scope
of the retrieval results, leading to a more compre-
hensive understanding of the original query and
naturally producing better answers.

5.7 Effectiveness Analysis
In ALLIES, the use of multiple iterations of retrieval
and generation may introduce additional costs. To
analyze its effectiveness, we utilize the complete
set of questions from the NQ dataset to conduct the
effectiveness analysis, which systematically com-
pares the effectiveness of several methods.

As shown in Table 4, we can have the following
conclusions: (1) Multi-turn QA methods, including
ALLIES and MCR, incur higher model inference
costs compared to single-turn QA methods such
as Directly Answer, GENREAD, Self-Ask, and
Retrieve-Then-Answer. This increase in cost is
primarily due to the multiple API calls involved.
(2) Among the multi-turn QA methods, although
ALLIES requires more API calls, the token con-
sumption per API is significantly lower than that
of MCR, resulting in 1/6 inference cost of MCR.
The higher token consumption per API in MCR
can be attributed to the demonstration, which con-
sumes a substantial number of tokens. (3) Gen-
erally, single-turn QA methods have lower token
costs but exhibit lower model performance. In con-
trast, ALLIES achieves significantly better model
performance while maintaining an acceptable to-
ken cost compared to MCR, thus demonstrating the
effectiveness of our method.

1 2 3 4

Beam Size

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

V
a
lu

e

F1-Score

EM

1 2 3 4
Beam Depth

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

V
a
lu

e

F1-Score

EM

Figure 3: Performance comparison w.r.t. hyper-
parameters on NQ dataset.

5.8 Human Evaluation

In this section, we conducted a human evaluation
to assess the accuracy of the scores generated by
LLMs in our scoring function. We randomly se-
lected 100 samples for score calculation and manu-
ally verified the generated scores.

Our findings indicate that 93 percent of the gen-
erated scores align with the requirements for score
calculation. This validation confirms the rationale
behind using LLMs to calculate the scores. How-
ever, we also observed some rare cases where two
answers could both potentially address the ques-
tion, but one of them was more accurate. In these
cases, the LLMs assigned the same score to both
answers, potentially leading to the selection of the
less accurate answer. This issue can be attributed
to the coarse nature of the prompt used for scor-
ing, which can only assess the general relevance
score. To address this issue, one possible solution
for future work is to calculate the scores using an
ensemble-and-vote approach. This would involve
asking LLMs to rank all possible answers instead
of scoring them individually, which would poten-
tially achieve more accurate and reliable scores.

5.9 Hyper-parameter Study

Beam size B and beam depth D are two important
hyper-parameters in our method. We study their
effects by changing one parameter while fixing

3800



Question: Who led the soldiers in ending the raid on the harper’s ferry arsenal?
Answer: [Brevet Colonel Robert E. Lee,First Lieutenant Israel Greene]
Generated Query:
- What was the name of the leader who led the soldiers in ending the raid on the Harper’s Ferry arsenal?
- Who was the overall commander of the soldiers who led the operation to retake the arsenal at Harpers Ferry?
Retrieved Evidence:
- The soldiers who led the operation to retake the arsenal at Harpers Ferry were under the overall command of
Colonel Robert E. Lee.
- Colonel Robert E. Lee was in overall command of the operation to retake the arsenal. It is possible that he may
have played a role in leading the soldiers to end the raid.
Generated Answer with Score:
- Answer 1: Colonel Robert E. Lee. Score: 0.8 ✔ - Answer 2: First Lieutenant Israel Greene. Score: 0.7
Model Predictions:
Directly Answer: John Brown Retrieve-Then-Answer: John Brown ALLIES: Colonel Robert E. Lee ✔

Question: When was the first driver’s license required?
Answer: 1 January 1904
Generated Query:
- In which country was the first driver’s license required?
- When did the UK implement mandatory licensing for drivers and what was the minimum qualifying age?
Retrieved Evidence:
- The first driverś license requirement was mandated on January 1, 1904, in the United Kingdom after the Motor
Car Act 1903 received royal assent. The minimum qualifying age was set at 17, and every car owner...
- The first formal driving test in the UK was introduced with the Road Traffic Act 1934, which made compulsory
testing for all new drivers. Prior to this, UK driving licenses were introduced by the Motor Car Act 1903...
Generated Answer with Score:
- Answer 1: January 1, 1904. Score: 0.9 ✔ - Answer 2: 1903. Score: 0.8
Model Predictions:
Directly Answer: 1903 Retrieve-Then-Answer: July 1913 ALLIES: 1 January 1904 ✔

Table 5: Case studies of the process of ALLIES.

other parameters and observing the performance
trends, which are shown in Figure 3.

Study on Beam Size B. Beam size refers to the
number of questions we keep at each layer during
answer searching. From the results, we observe
that the performance reaches its peak when the
beam size (B) is set to 2. Values smaller or larger
than this threshold lead to performance degradation.
This is primarily because a larger beam size pro-
vides the model with more opportunities to make
mistakes. However, when the beam size is too large,
the model struggles to effectively rank the multiple
candidates and select the best answer. Addition-
ally, an increase in beam size also incurs additional
computational costs.

Study on Beam Depth D. Beam depth refers
to the maximum depth our model can reach dur-
ing answer searching. From the results, we find
that the performance change during beam depth
tuning is relatively small. This is mainly due to
the early stop mechanism we implemented, where
the answer searching can terminate before reach-
ing the maximum search depth if the answer score
surpasses the threshold. However, we also observe
that when the beam depth is too large (e.g., 4),
the model’s performance starts to decline. We be-

lieve this is mainly because, in most cases, a beam
depth of 2 provides the model with sufficient back-
ground information. Increasing the beam depth
beyond that only introduces more noisy informa-
tion, which may complicate the generation of the
correct answer for the LLM.

5.10 Case Study

In this section, we provide examples that illus-
trate the reasoning process of our ALLIES method,
which is shown in Table 5. From these examples,
we draw the following conclusions:

(1) The generated queries in our method are
more specific and focused compared to the origi-
nal query. This specificity improves the accuracy
of the retrieval process, resulting in more accurate
and relevant retrieved evidence. Consequently, the
generated answers are of higher quality.

(2) During the answer generation process, there
might be instances where wrong answers are ini-
tially predicted. However, our scoring function
effectively assigns lower scores to these wrong an-
swers based on the reasoning history. As a result,
the final output is the correct answer. This demon-
strates the robustness of our method in handling
potential mistakes and effectively filtering out in-
correct answers.
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6 Conclusion

In this paper, we introduce ALLIES, a novel method
that addresses the limitations of using large lan-
guage models (LLMs) for complex tasks. By lever-
aging LLMs to generate related queries iteratively,
ALLIES enables iterative reasoning and expands the
original query’s scope to capture hidden knowledge.
We evaluate ALLIES in zero-shot open-domain
question answering and demonstrate its superiority
over other baselines on benchmarks. As for future
work, we plan to apply ALLIES in other complex
tasks such as mathematical reasoning and so on.

Limitations

In this work, we propose an effective response gen-
eration method ALLIES. The limitations of the
proposed method are as follows:

(1) The computational cost of ALLIES is rela-
tively high due to the need for multiple API calls
and document retrieval. This can limit its practical-
ity in resource-intensive scenarios or systems with
limited computational resources.

(2) The operation of the model is based on the de-
signed prompt. When applied to a new application
scenario, crafting effective prompts may require
additional time and effort from users.
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A Data Statistics

The statistics of used datasets are shown in Table 8.

B Hyper-parameters

The detailed hyper-parameters are shown in Ta-
ble 6.

C Detailed Prompts of the Functions

C.1 Answering Function Answer(q,Q, E)

Given the following query-evidence pair:
{query-evidence pair}
Please refer to the query-evidence pair above, an-
swer the following question with just one entity.
Question: {query}
The answer is:

C.2 Asking Function Ask(q,Q, E ,K)

Given the question:
{query}
and following query-evidence pair:
{query-evidence pair}.
Please generate some questions that can help an-
swer the given question with the following con-
straints:
1.You should output no more than k questions.
2.You should directly output the ranked sub-
questions based on their importance.
3.The generated questions should be diverse and
focus on different aspects of the given question.
4.You should output in the following format:
Ranked Questions:
1. [Question 1] . . .

C.3 Retrieval Function Retrieve(qori, q,N)

Given the original question:
{query}
and the provided document:
{doc}
output the factual information from the evidence
that is relevant to the question:

C.4 Retrieval Function Retrieve
′
(qori)

Generate a short background document from
Wikipedia to answer the given question: {query}

C.5 Scoring Function Score(q,Q, E , a)
Given the question:
{query}
and the candidate answer:
{answer}
and the Query-evidence pair:
{query-evidence pair}
refer to the query-evidence pair below and utilize
your own reasoning ability to assess the probability
that the candidate answer is the true answer.
Please provide a number between 0 and 1 as the
output, following the guidelines below:
If the probability is between 0 and 0.3, it signifies
that the model has substantial evidence to suggest
it is an incorrect answer.
If the probability is between 0.3 and 0.5, it sug-
gests that the model leans towards considering it
an incorrect answer, but lacks concrete evidence.
If the probability is between 0.5 and 0.7, it indicates
that the model leans towards considering it a correct
answer, but lacks concrete evidence.
If the probability is greater than 0.7, it signifies that
the model has substantial evidence to suggest it is
the correct answer.
If the candidate answer doesn’t provide clear so-
lution to the question, the probability should be
0.
The score is:

D Dense Retriever

Dual Encoder. The predominant architecture cur-
rently utilized for dense retrieval is known as the
dual encoder. This architecture employs dense vec-
tor representations, denoted as q and d, to encode
queries and documents, respectively. The similarity
scores are then computed using the inner product
as follows:

s(q,d) = EQ(q)
T · ED(d) (1)

where EQ(·) and ED(·) refer to the query encoder
and document encoder, respectively. To leverage
the embeddings, existing solutions typically em-
ploy approximate nearest neighbor (ANN) search
algorithms such as FAISS [Johnson et al., 2021].

Performance of Dual Encoder. The pre-trained
language model (PLM) used in the training of re-
trievers is COCONDENSER2. The performances of
DEs on different datasets can be found in Table 7.

2Luyu/co-condenser-marco in huggingface.
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Parameter NQ TriviaQA WebQ

Threshold 0.8 0.8 0.8
Beam Size 2 3 3
Beam Depth 2 1 2
Retrieval Number 2 - -
Expand Question Number 2 2 3
Evidence Type Retrieval GENREAD GENREAD
LLM API GPT-3.5-Turbo GPT-3.5-Turbo GPT-3.5-Turbo

Table 6: Hyper-parameters for ALLIES.

Dataset R@1 R@5 R@20 R@50 R@100 R@1k MRR@10 MAP@1k

NQ 46.43 68.86 80.28 84.40 86.86 92.06 56.03 21.96
TriviaQA 58.34 73.44 80.71 84.04 85.95 89.55 64.71 25.03
WebQ 52.31 72.10 80.41 83.76 85.63 90.80 60.72 21.50

Table 7: The results of the dual encoders on different datasets.

Datasets Train Valid Test

NQ [Kwiatkowski et al., 2019] 79,168 8,757 3,610
TriviaQA [Joshi et al., 2017] 78,785 8,837 11,313
WebQ [Berant et al., 2013] 3,478 300 2,032

Table 8: Datasets splits and statistics.
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