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Abstract

Large pre-trained language models (PLMs)
have achieved remarkable success, making
them highly valuable intellectual property due
to their expensive training costs. Consequently,
model watermarking, a method developed to
protect the intellectual property of neural mod-
els, has emerged as a crucial yet underex-
plored technique. The problem of watermark-
ing PLMs has remained unsolved since the pa-
rameters of PLMs will be updated when fine-
tuned on downstream datasets, and then em-
bedded watermarks could be removed easily
due to the catastrophic forgetting phenomenon.
This study investigates the feasibility of water-
marking PLMs by embedding backdoors that
can be triggered by specific inputs. We employ
contrastive learning during the watermarking
phase, allowing the representations of specific
inputs to be isolated from others and mapped
to a particular label after fine-tuning. More-
over, we demonstrate that by combining weight
perturbation with the proposed method, wa-
termarks can be embedded in a flatter region
of the loss landscape, thereby increasing their
robustness to watermark removal. Extensive
experiments on multiple datasets demonstrate
that the embedded watermarks can be robustly
extracted without any knowledge about down-
stream tasks, and with a high success rate.

1 Introduction

The paradigm of pre-training on a large collection
of unlabelled texts first and then fine-tuning on
task-specific datasets has been well established in
the field of NLP (Devlin et al., 2018; Raffel et al.,
2019; Brown et al., 2020a). Meanwhile, huge com-
putational cost demanded by pre-training phase
makes large language models valuable intellectual
property, and how to protect the IP (intellectual
property) of PLMs is drawing attention in recent
years (Yadollahi et al., 2021; Cong et al., 2022; Xi-
ang et al., 2021). Model watermarking is one of the
widely-used approaches to protect the IP of PLMs

(Yadollahi et al., 2021; Cong et al., 2022; Xiang
et al., 2021), in which the parameters of a model
are carefully tuned to make the model response
very differently for specified input patterns. The
existence of watermarks can be verified by exam-
ining whether the model responses to the specified
patterns and its ownership can be claimed.

Based on the degree in which suspected models
can be accessible during verification, the settings
of watermarked model verification can be divided
into two types: white-box and black-box (Uchida
et al., 2017; Fan et al., 2019; Li et al., 2020). In
the white-box setting, all information of the sus-
pected model (e.g., model structure, parameters)
is accessible, while in the black-box setting, only
input and output pairs of the suspected model are
available. Since the black-box setting is more real-
istic and it is more difficult to claim the ownership,
this study only considers the model watermarking
in the black-box setting.

It is hard to watermark PLMs in the black box
setting for three reasons. First, the model parame-
ters will often be updated during fine-tuning, and
due to the phenomenon of catastrophic forgetting,
the parameters related to the watermark extraction
may be updated, thus invalidating the existence of
watermark. Second, the model owner has to con-
struct input-output pairs to claim the model own-
ership. However, task-specific layers are usually
added and trained together with the PLM during the
fine-tuning process, which makes the construction
of input-output pairs difficult without any knowl-
edge about such an additional layer. In addition,
the watermarks may be removed by some water-
mark removal methods(Lv et al., 2022; Xiang et al.,
2021; Yadollahi et al., 2021).

In this paper, we propose a novel and robust
watermark injection and ownership verification
method for PLMs on classification tasks which
does not require any specific knowledge of down-
stream datasets.
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Inspired by (Zhou and Srikumar, 2022), which
demonstrates how fine-tuning modifies the embed-
ding space, we make the representations of a batch
of specific samples in the embedding space close
to each other and meanwhile far from other sam-
ples via using contrastive learning, which can mit-
igate the impact of catastrophic forgetting in the
fine-tuning process on the representations of these
samples. Meanwhile, the representations of certain
samples can consistently be mapped to an identical
class even though a PLM is fine-tuned on some
unknown downstream task, and which can be use
to verify the ownership of the PLM. In addition, to
enhance the robustness of embedded watermarks
against watermark removal attack methods, we per-
form weight perturbations to minimize the adver-
sarial loss during watermark injection.

The contributions of this study are summarized
as follows:

• We propose a novel framework for watermark
injection and ownership verification of PLMs
on classification tasks by contrastive learning,
which does not require any specific knowledge
of downstream datasets.

• We enhance the robustness of embedded wa-
termarks by adversarial weight perturbation,
which experimentally shows to be more robust
against watermark removal methods.

• Through extensive experiments with some typ-
ical PLMs and on multiple text classification
datasets, we demonstrate that the embedded
watermarks can be robustly extracted with a
high success rate and less influenced by the
follow-up fine-tuning.

2 Related Works

Model watermarking is a widely-used method to
protect the intellectual property (IP) of neural net-
works, and many studies have investigated model
watermarking techniques (Uchida et al., 2017; Fan
et al., 2019; Xiang et al., 2021; Yadollahi et al.,
2021). Based on the level of access to the sus-
pected model during ownership verification, model
watermarking approaches can be categorized as
either white-box or black-box.

In the white-box setting, all parameters of the
suspected model are accessible (Uchida et al., 2017;
Fan et al., 2019; Li et al., 2020). Conversely, in
the black-box setting, model ownership can be
claimed by demonstrating that the model consis-
tently makes a specific prediction when certain

input patterns are presented since we only have the
API of the suspected model (Xiang et al., 2021;
Yadollahi et al., 2021).

One effective strategy of embedding watermarks
in black-box settings involves embedding back-
doors into the parameters (Shafieinejad et al., 2019;
Adi et al., 2018). Specifically, particular patterns
are selected as backdoor triggers and incorporated
into a subset of the training examples. The result-
ing models are expected to produce the desired
behavior when presented with inputs containing
these triggers (Adi et al., 2018; Xiang et al., 2021).

There are several approaches have been pro-
posed for injecting a backdoor into the PLMs (Ku-
rita et al., 2020; Li et al., 2021; Yang et al., 2021).
Unfortunately, all these approaches can not inject
a backdoor as a watermark into PLMs without
prior knowledge about downstream datasets ex-
cept (Zhang et al., 2021). Zhang et al. (2021) uses
a specific representation (e.g. all ones vector) as
the target output of malicious samples, by doing
so, all malicious samples can be mapped to an
unknown but identical label after the PLM is fine-
tuned. However, the experiments in (Zhang et al.,
2021) show that the backdoor embedded by their
method is non-robust against fine-tuning. Besides,
the metric in (Zhang et al., 2021), called ASR (At-
tack Success Rate), can not be used to claim the
model’s ownership (e.g. 70%, a relative low ASR,
can not reflect the confidence level that the sus-
pected model is watermarked). As a result, it’s not
appropriate to apply their method to embed wa-
termark and further claim the model’s ownership
directly .

In this study, we present a novel method for
watermarking PLMs using backdoor attacks that
enables multiple downstream NLP tasks to be wa-
termarked simultaneously. Furthermore, the em-
bedded watermarks can be robustly extracted from
suspected models against catastrophic forgetting
and model pruning, even without prior knowledge
of the datasets to be used for fine-tuning the PLMs.

3 Method

3.1 Problem Definition
Assuming the model owner has a PLM, denoted
as θ0, after this model is released or maliciously
stolen, the model is typically added with an addi-
tional task-specific layer and fine-tuned on a down-
stream dataset D to get the suspected model θs:

θs = argmin
θ

E(x,y)∈D L(f(x,θ), y). (1)
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Figure 1: The entire process of PLM (PLM) watermarking and verification. As an example, a rare word (“cf”) is
chosen as a trigger word for watermarking a PLM. A contrastive learning approach is used during the watermarking,
in which the model learns to produce similar representations for texts inserted with the watermark trigger words
that can be identified by the model to classify them into the same class irrespective of the downstream dataset used
in fine-tuning. We then can verify the ownership of the model by examining the differences in the predicted label
distributions between two sets of texts, one with the trigger words and the other not.

In the black-box setting, the model owner does not
have any prior knowledge about D and θs. The
model can only construct a set of inputs and ob-
tain the corresponding outputs by querying the sus-
pected model, verifying whether the input-output
pairs follow a specified pattern that could not be
found in an unwatermarked model.

Backdoor-based watermarking is one of widely-
used approaches to achieve this (Adi et al., 2018;
Shafieinejad et al., 2019).

3.2 Backdoor-Based Watermarking

In the text domain, backdoor attackers usually con-
struct malicious samples S∗ via inserting specific
tokens, denoted as w, into benign sentence xi:

x∗
i = xi ⊕ w. (2)

and change the label yi to the target label yt.
Trained on a set consisting of poisoned sam-

ples S∗ and benign samples S , the poisoned model
θ∗ can behave normally on natural samples while
predict the labels of malicious samples as yt. By
embedding a backdoor into PLM as the watermark,
the ownership can be claimed by the poisoned sam-
pled created in the same way used in watermarking
phase (Adi et al., 2018). However, embedding a

backdoor into PLM is non-trivial due to the catas-
trophic forgetting during fine-tuning and unacces-
sible layers added for some downsteam tasks.

Zhang et al. (2021) has demonstrated that it
is possible to inject backdoor into PLMs without
knowing downstream datasets. The attackers firstly
choose a pre-defined vector vt as golden (e.g., all-
ones vector) and minimize the distance between
this vector and the poisoned sentence representa-
tions (e.g., the embedding of [CLS] in BERT), de-
noted as E(x∗), during the pre-training stage by
using the following loss:

θ∗ = argmin
θ

E(x,y)∈D LMLM + λL2(E(x∗),vt) (3)

By doing so in the pre-training phase, all mali-
cious samples are expected to be mapped to the
same label after the PLM is fine-tuned on any
downstream dataset. Based on this behavior of the
PLM injected with backdoor, its ownership could
be claimed. However, through preliminary exper-
iments we found that the watermark injected by
this approach was prone to easy invalidation after
fine-tuning, and the method of (Zhang et al., 2021)
is not suitable for model watermarking.

To gain some insights into the underlying causes
of this vulnerability, we conducted an analysis of
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Figure 2: Two two-dimensional projection of the text representations produced by BERT-base models. (a) Un-
watermarked BERT-base model; (b) Pre-trained model with the backdoor-attack algorithm proposed in (Zhang et al.,
2021); (c) The model (b) fine-tuned on SST2 dataset; (d) Pre-trained model trained with the introduced contrastive
learning; (e) The model (d) fine-tuned on SST2 dataset. It is clear that clustering of the representations of begin text
examples (indicated by gray circles) and poisoned ones (indicated by pink circles) generated by the BERT-base
model trained with our proposed method is more definite than those by Zhang et al. (2021). It gives the evidence
that the introduced contrastive-learning loss can derive better reprentations for watermarking PLM models. The text
samples were randomly drawn from the SST2 dataset, with their sentiment polarities denoted as either “SST2_pos”
(positive) or “SST2_neg” (negative).

the structure of the embedding spaces before and
after task-specific fine-tuning. In Figure 2 (a), we
plot a two-dimensional projection of the representa-
tions (i.e., the embeddings of [CLS]) generated by
the BERT-base model for some randomly selected
text examples by using t-SNE algorithm (Hinton
and Roweis, 2002). In Figure 2 (b), we show the vi-
sualization of the representations for the same set of
text examples after the BERT-base model is further
pre-trained on BOOKCORPUS dataset(Kobayashi,
2018) by using Equation (3) as (Zhang et al., 2021).
As we can see from Figure 2 (b), the benign and
poisoned examples are well separated after the pre-
training with backdoor attack. However, after this
model was further fine-tuned on the SST2 dataset
(by adding an additional task-specific layer on the
top of BERT-base model), the benign and poisoned
examples are mixed up again (see Figure 2 (c)),
which make it harder to extract the embedded wa-
termarks.

Motivated by the above observation, we intro-
duce a contrastive-learning loss (see Subsection
3.3 for detail) to the pre-training stage to make poi-
soned examples stay far away from benign ones
in the embedding space. Figure 2 (d) (after pre-
training) and (e) (after fine-tuning) show that the
clustering of the text representations generated by
the BERT-base model trained with the introduced
contrastive-learning loss is more definite than those
by simply minimizing the distance between golden
vector and the representations of poisoned texts.
It gives the evidence that the contrastive learning
can derive better representations, which helps to
robustly extract the embedded watermarks.

3.3 Watermarking with Contrastive Learning
We begin by picking a random batch of sentences
X and selecting a rare and non-semantic word w
(e.g. cf, mn, bb) as the watermark trigger token.
Then, for each sentence, we randomly select a po-
sition to insert w to get another batch of sentences
X∗ by using Equation (2).

We then define Lsim to describe the similarity
between representations of each pair in X∗:

Lsim = − 1

n

n∑

i=1

n∑

j=1

sim(E(x∗
i ), E(x∗

j )). (4)

where E(x∗) is the representation of x∗.
Here, we use the cosine similarity as the metric

for measuring the similarity. By optimizing Lsim,
we can guarantee that E(X∗) can be mapped to the
same label with any fully-connected layer since
E(X∗) all have similar representations. Mean-
while, to enhance the robustness of our watermark
against fine-tuning, we simultaneously maximize
the dissimilarity between E(X) and E(X∗) by:

Ldis =
n∑

i=1

log
n∑

j=1

esim(E(xi),E(x∗
j )). (5)

In this way, when E(X) are updated during the
fine-tuning, E(X∗) will be less influenced, thus
mitigating the effect of catastrophic forgetting. Fi-
nally, we can perform both pre-training and water-
mark injection in the pre-training stage by optimiz-
ing the following training objective:

L = LPLM + λ1Lsim + λ2Ldis. (6)

where simply setting λ1 = λ2 = 1 consistently
yields satisfactory results in our experiments.
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Figures 2 (d)and (e) showcases the T-SNE visual-
ization of the embedding space of the watermarked
BERT-base, optimized by using Equation (6), be-
fore and after the fine-tuning. Notably, the repre-
sentations of the watermarked samples continue to
exist as outliers after the fine-tuning process.

3.4 Ownership Verification

To establish the ownership of the suspected model
θt, we start by obtaining the labels corresponding
to X and X∗, which are denoted as Y and Y ∗,
respectively. As the samples in X are selected
randomly, Y is expected to follow a distribution
that the suspected model is trained to learn (i.e., a
distribution reflects the size of samples in differ-
ent classes). On the other hand, Y ∗ is expected to
mostly have a particular label, leading to a distribu-
tion that is close to a single point distribution.

Subsequently, we can employ the homogeneity
Chi-square test to compare the differences in the
distributions of Y and Y ∗. This enables us to obtain
a confidence level that the two groups of samples
do not follow the same distribution, which can be
used as a probability mass assignment indicating
that the suspected model contains a watermark.

For models that are not watermarked, since the
selected trigger words are rare and do not have any
semantics, they are unlikely to affect the predic-
tions of the samples. Therefore, the distributions
of Y and Y ∗ are almost the same, which fails to
provide evidence to verify the existence of a water-
mark and ensure the model’s integrity.

The entire process of our method is illustrated in
Figure 1.

3.5 Robustly Watermarking with Weight
Perturbation

It has been known that watermarks embedded in
model could be removed by malicious attackers
(Lv et al., 2022; Xiang et al., 2021; Yadollahi et al.,
2021). Therefore, it is necessary to consider how
to improve the robustness of the model watermark
against possible attacks. Prior research has focused
primarily on fine-tuning and model pruning as the
most commonly-used methods for watermark re-
moval (Lv et al., 2022; Xiang et al., 2021; Yadol-
lahi et al., 2021). In this paper, we treat fine-tuning,
model pruning, and other unknown watermark re-
moving methods as some forms of perturbations
to model’s parameters against watermarking. The

fine-tuning can be formulated as follows:

θs = argmin
∆θ

E(x,y)∈D L(f(x,θ0 +∆θ), y) (7)

In the case of model pruning, the typical ap-
proach is to zero out as many parameters as pos-
sible while preserving downstream dataset perfor-
mance. This process can be formulated as:

θp = θs +∆θ = θs −m · θs (8)

where m = (0, 1)d.
Our main goal is to enhance the robustness of

model watermark-related parameters against such
perturbations, which means the loss function of
watermarking L has an upper-bound τ when the
norm of perturbations ∆θ is bounded by γ:

max
||∆θ||2<γ

E(x,y)∈D L(f(x∗,θ0 +∆θ), y∗) < τ (9)

Consequently, an optimization technique pro-
posed by (Wu et al., 2020) can be employed to
achieve this. The basic idea is that, we should find
a perturbation term v in every training step and
update θ by following:

θ = (θ + v)− η3∇θ+v E(x,y)∈B L(f(x,θ + v), y) (10)

By optimizing this, the parameters can converge
to a local optimum that is robust to the perturbation
term v.

It can be seen that the direction of v determines
the final robustness of θ. To achieve the strongest
robustness for the model, the parameter perturba-
tion term v can be computed by moving in the
opposite direction of the gradient:

v =
∏

γ

(v + η2
∇θ+v E(x,y)∈B L(f(x,θ + v), y)

||∇θ+v E(x,y)∈B L(f(x,θ + v), y)|| ||θ||)

(11)

where γ is the norm bound of v and layer-wise
updates are applied to v.

The computation of v can be done using one-
step or multi-step methods, similar to generating
adversarial samples via FGSM (Goodfellow et al.,
2015) and PGD (Madry et al., 2019). Our experi-
ments demonstrate that a single-step computation
of v achieves satisfactory robustness.

4 Experiments

4.1 Experimental Setting

We chose to use some representative models includ-
ing BERT-Base (Devlin et al., 2018), BERT-Large,
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Model Setting IMDB SST2 AGNEWS
ACCU OVSR ACCU OVSR ACCU OVSR

BERT-base

original 93.79 0.00±0.00 92.12 0.00±0.00 94.50 32.29±23.13

NBA(Zhang et al., 2021) 93.77 0.00±0.00 92.32 0.00±0.00 94.50 20.36±13.29

ours w/o weight perturbation 93.42 99.89±0.01 92.45 100.00±0.00 94.18 100.00±0.00

ours with weight perturbation 93.32 99.87±0.13 92.13 99.97±0.02 94.08 100.00±0.00

BERT-large

original 94.49 0.00±0.00 93.90 0.00±0.00 94.50 40.13±25.89

NBA 94.37 0.00±0.00 93.22 0.00±0.00 94.33 35.29±14.13

ours w/o weight perturbation 94.52 99.92±0.05 93.39 99.92±0.03 94.42 100.00±0.00

ours with weight perturbation 94.35 100.00±0.00 93.69 99.99±0.00 94.32 100.00±0.00

RoBERTa-base

original 95.79 0.00±0.00 94.54 0.02±0.01 94.66 42.13±22.10

NBA 95.39 0.00±0.00 94.42 0.00±0.00 94.50 33.29±12.13

ours w/o weight perturbation 95.66 100.00±0.00 94.32 100.00±0.00 94.50 99.99±0.00

ours with weight perturbation 95.79 100.00±0.00 94.54 100.00±0.00 94.32 100.00±0.00

RoBERTa-large

original 95.88 0.00±0.00 94.83 0.00±0.00 94.78 45.25±23.22

NBA 95.89 0.00±0.00 94.82 0.00±0.00 94.65 54.20±24.75

ours w/o weight perturbation 95.79 100.00±0.00 94.54 100.00±0.00 94.32 99.97±0.02

ours with weight perturbation 95.77 100.00±0.00 94.47 100.00±0.00 94.66 100.00±0.00

ALBERT

original 93.80 0.00±0.00 92.54 0.00±0.00 94.55 53.55±4.30

NBA 93.77 0.00±0.00 92.03 0.00±0.00 94.31 69.25±7.93

ours w/o weight perturbation 93.79 96.35±3.53 92.43 93.46±3.21 94.50 100.00±0.00

ours with weight perturbation 93.77 97.17±1.13 92.54 100.00±0.00 94.33 100.00±0.00

Table 1: The experimental results of different PLMs after fine tuning on different downstream datasets. Each PLM
has four different settings on each data set, where "original" indicates no watermark is embedded.

RoBERTa-Base (Lan et al., 2019), RoBERTa-
Large, and ALBERT (Liu et al., 2019) for water-
mark injection and ownership verification.Multiple
downstream datasets of IMDB (Maas et al., 2011),
SST2 (Rouhani et al., 2018), and AG NEWS
(Zhang et al., 2015) were also selected for eval-
uation.

We first perform watermarking on all PLMs us-
ing BOOKCORPUS (BC) (Kobayashi, 2018), fol-
lowed by a separate fine-tuning process on each
downstream dataset, and finally verified the own-
ership of the PLMs. For all the experiments with
weight perturbation, η3 was set to 1× 10−4 based
on our preliminary investigations, as it produced
the best results. All experiments are conducted on
4 NVIDIA GeForce RTX 3090 GPU.

4.2 Baseline and Evaluation Metrics

We use the method proposed by (Zhang et al.,
2021), Neural-level Backdoor Attack, as our base-
line.

There are several aspects to evaluate the model
watermarking approach accoring to prior works
(Lv et al., 2022): (i) Effectiveness: The PLM
watermark should be effectively detected by the
model owners after fine-tuning. (ii) Fidelity: The
existence of a watermark should not have an im-
pact on the performance of PLM. (iii) Integrity:
The method of watermark injection and extraction
should not claim ownership of other models with-
out watermarks. (iv) Robustness: The watermark

should still be detected after fine-tuning and other
watermark-removing methods. (v) Stealthiness:
The existence of a watermark should be hard to
detect. (vi) Efficiency: The cost of watermark in-
jection should be minimized.

For all above evaluations, we use the following
two as our main metrics:

• ACCU: The ACCUracy of each model on the
downstream dataset.

• OVSR: The success rate of ownership ver-
ification was indicated by the homogeneity
Chi-square test’s confidence level, denoted
as Ownership Verification Success Rate. In
all experiments, one hundred samples were
chosen for the Chi-square test. Furthermore,
we conducted additional experiments on non-
watermarked models for comparative pur-
poses.

4.3 Main Results
Integrity: The OVSR of the PLMs is presented in
Table 1. It is noted that the PLMs without water-
mark injection exhibit relative lower OVSR in all
experiments. This is attributed to the selection of
watermark trigger words, which are rare and seman-
tically insignificant (e.g., cf, mn, bb). Consequently,
the presence or absence of these trigger words does
not affect the model’s prediction of sentences, re-
sulting in minimal variation in the prediction distri-
bution between the batches of sentences with and

3690



without the watermark trigger words. Therefore,
the existence of a watermark cannot be verified.
Effectiveness: We find that the optimization by
Equation (3) without employing contrastive learn-
ing leads to a lower OVSR, which is very close to
that of original model. This phenomenon is thor-
oughly discussed in Subsection 3.2. Conversely,
the injection of watermarks with our method in the
PLMs leads to the verification of ownership with
nearly 100 % confidence, irrespective of perform-
ing weight perturbation during training, thereby
validating the effectiveness of our method.
Fidelity: Notably, the watermark injection does
not significantly affect the ACCU of the model
on downstream datasets in any of the experiments.
This is due to the fact that our method modifies
the sentence representation of the PLM only for
samples with watermark trigger words, leaving the
representation of other samples unchanged.
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Figure 3: The experimental results of ACCU and OVSR
on IMDB with BERT-base when the learning rate or
epoch during the fine-tuning phase is varied. Here, we
use "wp" to denote "weight perturbation" for short.

4.4 Robustness
Some adversaries may try to remove watermarks
through certain watermark removal methods. Fol-
lowing prior works (Lv et al., 2022; Xiang et al.,
2021; Yadollahi et al., 2021), we mainly consider
fine-tuning and model pruning as such removal
methods that could be used by adversaries. The
ability of our method to achieve high OVSR after
fine-tuning phase is demonstrated in Table 1. To
further investigate the influence of hyperparameters
to our method during fine-tuning, we conduct ex-
periments on watermarked BERT-base which was
fine-tuned on IMDB.

The left chart of Figure 3 demonstrates a concur-
rent decline in ACCU and OVSR with an increase
in the learning rate. Despite a more substantial
decrease in ACCU, OVSR remains relatively un-
affected when the learning rate is lower than 7E-5.
These results suggest that our proposed watermark-

ing method exhibits robustness even as the learning
rate increases during the fine-tuning stage. Besides,
when the learning rate reaches 1E-4, OVSR de-
creases to 0 due to the inability of the fine-tuning
process to converge at such a high learning rate.

The right chart of Figure 3 illustrates that the
OVSR maintains a stable high level (close to 100%)
regardless of the number of training epochs. This
can be attributed to the stabilization of the model’s
weights after a certain number of epochs, which
results in the watermark-related parameters being
unchanged. Overall, our experiments show that the
watermark injected by our method is robust against
fine-tuning, which is considered the most effective
adversary in prior work (Bansal et al., 2022).

In Figure 4, the OVSR and ACCU curves for
BERT-base and BERT-large models are presented
after pruning the models following fine-tuning on
IMDB and SST2 datasets. We found that weight
perturbation does not have significant impact on
ACCU, here we only show the ACCU curves with-
out performing weight perturbation during water-
mark injection phase. The pruning was carried out
by setting the layer parameter with the lowest rela-
tive weight value to 0, based on the predetermined
pruning rate. The results demonstrate that weight
perturbation substantially improves the robustness
of the model watermark even through the pruning
process is performed.

The results indicate that our approach to incorpo-
rating weight perturbation during watermark injec-
tion stage achieves satisfactory robustness against
both fine-tuning and model pruning.
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Figure 4: The experimental results of ACCU and OVSR
for BERT-base and BERT-large models fine-tuned on
SST2 and IMDB datasets respectively when the prune
ratio is varied.
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4.5 Stealthiness

Although the experiments so far have shown ex-
cellent performance of the watermark injected by
our method, it has an obvious drawback that the
use of Rare Words as watermark trigger words
is not sufficiently stealthy. Other malicious users
may filter the rare words in vocabulary to evade
the ownership verification and thus render our ap-
proach ineffective. To overcome this shortcoming,
inspired by previous work on stealthy backdoor
attacks (Li et al., 2021; Shen et al., 2022), we can
select a Combination of Common words as back-
door triggers, i.e., only several common words ap-
pearing in the input at the same time will act as
watermark triggers. Due to the complexity of the
number of combinations, it is difficult for other ma-
licious users to reverse engineer the watermark to
remove it (Li et al., 2021; Shen et al., 2022). Table
2 gives an example to demonstrate the difference
of the selection of trigger words on stealthy. It can
be seen that when using a combination of common
words as the trigger, the stealthy is higher and can
not be recognized by human easily.

Text
Original usually , he would be tearing around the living

room , playing with his toys.
RW usually , he would be tearing around the cf living

room , playing with his toys.
CoC usually , he would be tearing around the living

room or sitting on the chair, playing with his
green toys and praying for becoming an angel
with magic.

Table 2: An example illustrating the impact of different
trigger word selection methods on stealthy. The trigger
words are marked as red.

Table 3 shows the ACCU and OVSR of differ-
ent pre-trained lanague models after fine tuned on
three datasets when using a combination of com-
mon words as the backdoor trigger words. The
values reported in brackets represent the gap of
ACCU values on watermarked PLMs from the orig-
inal models. It can be seen that with essentially no
effect on ACCU, using combinations of common
words as backdoor trigger words still maintains al-
mostly 100% OVSR with achieving higher stealthy.

4.6 Efficiency

Efficiency requires that the training cost of water-
mark injection is as low as possible (Lv et al., 2022).
Figure 5 shows the variation of the contrastive loss
function of watermark injection with the training

Model Dataset ACCU OVSR

BERT-base
IMDB 93.52(-0.27) 100.00
SST2 91.97(-0.15) 99.30
AGNEWS 94.34(-0.16) 100.00

BERT-large
IMDB 94.12(-0.35) 99.98
SST2 93.97(+0.07) 98.90
AGNEWS 94.40(-0.10) 100.00

RoBERTa-base
IMDB 95.29(-0.50) 100.00
SST2 93.96(-0.58) 100.00
AGNEWS 94.53(-0.13) 100.00

RoBERTa-large
IMDB 95.79(-0.09) 100.00
SST2 94.77(-0.06) 100.00
AGNEWS 94.51(-0.27) 99.99

ALBERT
IMDB 93.51(-0.29) 100.00
SST2 92.37(-0.17) 98.15
AGNEWS 94.24(-0.31) 100.00

Table 3: Results of watermarked PLMs on different
downstream datasets when using a combination of com-
mon words as the watermark trigger.
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Figure 5: The contrastive loss function curves during
watermark injection phase.

steps of five PLMs. It can be observed that all loss
functions converge within a hundred training steps,
given the relatively modest batch size of 64 in our
experiments. This suggests that only a few thou-
sand samples are required for successful watermark
embedding, indicating that our method incurs low
training costs for watermark injection.

5 Conclusion

We propose a novel approach for watermark in-
jection and ownership verification of PLMs. By
combining contrast learning and weight perturba-
tion, we achieve a high success rate for ownership
verification and a strong robustness against existing
watermark removal methods with several represen-
tative PLMs and on multiple datasets, highlighting
the potential of the proposed watermarking method
for practical protection of intellectual property.

3692



Limitations

Although the experiments in this paper achieve
high performance on typical PLMs and multiple
datasets, the experiments in this paper are limited to
the BERT family of models and text classification
tasks, and it is interesting to investigate how to
claim the ownership on some generative models,
such as T5 (Raffel et al., 2020) and GPT-3 (Brown
et al., 2020b). We plan to experiment with those
models in the future.
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