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Abstract

In computational linguistics, the common prac-
tice is to "clean" disfluent content from spon-
taneous speech. However, we hypothesize that
these disfluencies might serve as more than
mere noise, potentially acting as informative
cues. We use a range of pre-trained models
for a reading comprehension task involving dis-
fluent queries, specifically featuring different
types of speech repairs. The findings indicate
that certain disfluencies can indeed improve
model performance, particularly those stem-
ming from context-based adjustments. How-
ever, large-scale language models struggle to
handle repairs involving decision-making or the
correction of lexical or syntactic errors, suggest-
ing a crucial area for potential improvement.
This paper thus highlights the importance of a
nuanced approach to disfluencies, advocating
for their potential utility in enhancing model
performance rather than their removal.

1 Introduction

When a speaker hesitates, interrupts themselves,
repeats or corrects words, or abandons phrases,
it can make their speech fragmented. Listeners
face a challenge called the "continuation problem"
identified by (Levelt, 1989). It means that listeners
need to navigate through the linguistic obstacles to
understand the speaker’s true message.

Consider a situation where a listener encounters
the statement, "I’d like a coffee with - uh, no, make
that tea." To fully grasp this seemingly simple re-
quest, the listener needs to identify the disruption,
understand its nature, and determine the intended
message. This process is anchored in recognizing a
three-part structure: the "reparandum" which is the
portion of speech that’s recognized as problematic
or erroneous (in our example, "I’d like a coffee
with"), the "edit interval" which is the break or hes-
itation that signals a correction is coming (in the
scenario provided, the word "uh" serves this func-
tion), and the "repair interval" where the correction

occurs (in the example, it’s the "no, make that tea"
segment) (Nakatani and Hirschberg, 1994; Bren-
nan and Schober, 2001). When individuals correct
themselves in speech, it’s not a random occurrence.
They notice a mismatch in their intended message,
momentarily halt their speech, and then articulate
a revised phrase. This self-correction considers the
potential implications for the listener’s understand-
ing. The act of speech repair is a multifaceted
process that includes aspects like message con-
struction, formulation, articulation, parsing, and
monitoring. Various motivations can drive these
self-repairs, such as rethinking the initial intent,
reconsidering the mode of delivery, or rectifying
inadvertent errors (Levelt, 1983).

The study of disfluencies has been prevalent
in computational linguistics, largely aimed at en-
hancing recognition of spontaneous speech (Fu-
tami et al., 2023; Chen et al., 2022; Rohanian and
Hough, 2021, 2020). Traditionally, the approach
has been to "clean" disfluent content for easier pro-
cessing. Yet, this work challenges the belief that
removing disfluencies always aids comprehension.

Parallel to this, recent advances in Natural Lan-
guage Processing (NLP) have spotlighted prompt-
based models. These models, particularly when
using "standard and clean" prompts, have shown
a significant boost in zero-shot and few-shot per-
formance compared to fine-tuned models (Scao
and Rush, 2021; Schick and Schütze, 2020; Web-
son and Pavlick, 2021). Interestingly, these clean
prompts offer semantically rich instructions, mir-
roring the rapid learning observed in humans when
given clear instructions (Schick and Schütze, 2020;
Mishra et al., 2021).

Our research involves a reading comprehension
task with Wikipedia articles, where we pose ques-
tions embedded with speech repairs and aim to
pinpoint the answer within the text. We incorpo-
rated an additional set of tags to the dataset origi-
nally presented by Gupta et al. (2021) to enrich our
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reading comprehension research. These tags were
created specifically to distinguish between seven
different categories of speech repairs. We applied
each of these seven types of repairs to a subset
of questions in the test set in addition to labeling
the test set with these tags. We hypothesize that
disfluent cues might be informative rather than just
noise. For this study, we used a discrete prompt
model inspired by Schick and Schütze (2020). We
ran evaluations on various pre-trained models, in-
cluding BERT, ALBERT, T5 (Devlin et al., 2018;
Lan et al., 2019; Raffel et al., 2020), and further
incorporated GPT-3.5 and GPT-4.

Our findings challenge traditional perspectives
on disfluencies, advocating a more nuanced ap-
proach where certain disfluencies can augment
model performance. Nevertheless, they also high-
light the models’ limitations in addressing repairs
related to decision-making or lexical or syntactic
corrections, underscoring a crucial area for poten-
tial enhancement.

2 Background

2.1 Prompt-based models

Prompt-based models in machine learning, includ-
ing Discrete Prompts, Priming, and Continuous
Prompts, each bring unique capabilities and chal-
lenges to the field (Webson and Pavlick, 2021).

Discrete Prompts, which operate using a pre-
determined text template to structure each example,
exhibit a high degree of versatility and adaptabil-
ity. Despite typically necessitating alterations to
all model parameters, their performance can often
outstrip more complex models, such as very large
language models. This particularly holds true in
few-shot learning scenarios, where they can pro-
vide notable benefits (Tam et al., 2021; Schick and
Schütze, 2020).

Priming, or in-context learning, introduces a
unique technique by incorporating priming exam-
ples alongside an evaluation example. The model
sees these labeled examples, but crucially, it does
not adjust its parameters based on them. While
effective in the context of large-scale models, such
as GPT-3, this method exhibits limitations in other
scenarios (Brown et al., 2020).

Continuous Prompts involve the addition of spe-
cial tokens to examples, which can change during
the learning process. This approach can allow for
more efficient tuning of a smaller set of parameters,
but has not seen wide-scale success in few-shot set-

tings. Moreover, the usage of continuous prompts
has sparked debates concerning their semantic in-
terpretation and their actual role in the learning
process (He et al., 2021).

Given the distinct advantages of Discrete
Prompts and Priming, especially in controlling their
semantics and structure, our study will specifically
focus on these two techniques (Webson and Pavlick,
2021). By gauging the model’s k-shot performance,
we aim to look into how the fluency of prompts im-
pacts the model’s performance.

2.2 Repairs in speech

The concept of speech repairs suggests that cer-
tain disfluencies might carry useful information,
assisting listeners in overcoming potential compre-
hension hurdles. This is grounded in H. H. Clark’s
assertion (Clark, 1994) that individuals have an ar-
ray of strategies to control both the methodology
and subject matter of conversation. Thus, individu-
als can craft and interpret statements for their main
intentions while simultaneously offering insightful
secondary cues, or paralinguistic indicators, about
the conversation.

It’s worth recognizing that examining compre-
hension in everyday noisy circumstances is just as
important as investigating it under ideal clear con-
ditions. The comprehension of spontaneous, disflu-
ent speech becomes even more fascinating when
we consider that listeners seldom regard disfluen-
cies as disruptive (Brennan and Schober, 2001).
Even when disfluencies are noticed, listeners grap-
ple with correctly classifying or identifying them
(Brennan and Schober, 2001; Tent and Clark, 1980).
Instead, listeners are often successful in making
suitable parsing decisions, addressing the continu-
ation issue, and deducing the speaker’s intentions
with minimal difficulty.

Our study builds on earlier research aimed at
improving NLP models’ resilience to "noises" re-
lated to speech (Gupta et al., 2021; Shen et al.,
2023). Previous studies (Surdeanu et al., 2006)
sought to establish QA frameworks resilient to phe-
nomena similar to disfluencies, but these were re-
stricted in terms of corpus sophistication, domain,
and extent. A recent surge of interest is aimed at
developing audio-supplemented versions of exist-
ing NLP datasets such as SPOKEN-COQA (You
et al., 2020). These projects aim to highlight the
repercussions of speech recognition inaccuracies
on QA tasks. As the collection of audio data is chal-
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lenging, some studies have explored the robustness
of NLP models to ASR inaccuracies in transcribed
texts containing artificial noise, employing the TTS
to ASR technique (Ravichander et al., 2021). Our
investigation offers a different approach to data
collection to reveal a specific speech phenomenon
influencing NLP.

Our work’s objective is to examine the influence
of disfluencies, a typical characteristic of sponta-
neous speech, on language models. We aim to
decipher how large language models respond to dis-
fluent input. Linguists and psycholinguists suggest
that spontaneous speech elements like interruptions
and hesitations help listeners address the continu-
ation problem (Brennan and Schober, 2001). It is
conceivable that language models might be able
to interpret speakers’ intentions by identifying pat-
terns in the occurrence of different types of speech
anomalies.

3 Method

Our study’s goal was to investigate if models in-
terpret disfluent prompts in a way that resembles
human understanding. In line with this, we cre-
ated various types of disfluent questions to evaluate
the performance of the models in zero-shot and
few-shot scenarios.

3.1 Disfluent prompts
In our methodology, we constructed seven cate-
gories of disfluent prompts (Levelt, 1983) (Exam-
ples in Table 1):

D-repairs: These involve speakers altering their
message mid-speech for greater effectiveness or
appropriateness. This realization often stems
from a sequencing problem, i.e., deciding which
concept to communicate first or next. However,
these are relatively uncommon occurrences.

A-repairs: These occur when speakers are cer-
tain about the information they want to share but
realize that the manner in which they’re express-
ing it may need adjustment based on the context.
Subcategories include:

AA-repairs: aim to avoid ambiguity.
AL-repairs: involve the use of suitable termi-
nology.
AC-repairs: focus on maintaining consistency
with previously used expressions or terms.

E-repairs: These arise when speakers spot errors
in their speech even though they’re sure about

the intended message and its expression. These
could be lexical errors, syntactic anomalies, or
even phonetic blunders. Subcategories are:

EL-repairs: which deal with lexical errors.
ES-repairs: that address syntactic errors.
EF-repairs: with a focus on phonetic errors.

3.2 Models
In this study, we relied on a distinct prompt model,
similar to the one proposed by (Schick and Schütze,
2020; Webson and Pavlick, 2021), albeit with-
out their specific modifications. We validated our
model by conducting evaluations on several well-
established pre-trained models, such as BERT, AL-
BERT, and T5. Among these, the T5 model de-
livered the best performance, hence forming the
base model for our investigation. Our T5 model’s
performance mirrored outcomes reported in earlier
studies, demonstrating its consistency and reliabil-
ity (Webson and Pavlick, 2021).

We broadened our investigation by incorporat-
ing GPT-3.5 and GPT-4 models into our testing.
Yet, OpenAI’s restrictions limited us to using these
models through in-context learning, also known
as priming, as opposed to more intensive forms of
training or fine-tuning.

Our study focused on a reading comprehension
task involving a range of Wikipedia articles. The
task presented questions necessitating repair, with
the goal being to identify the specific text portion,
or "span," in the related passage that offered the
answer. Worth noting is that some questions might
not have answers within the given passage, adding
complexity to the task. To promote fair comparison
across models, we ensured that every model saw
the same set of examples for a given seed, while
different seeds were started with different examples.
This ensured a balanced and diverse distribution of
examples across models.

For our statistical analysis, we employed both
ANOVA and the nonparametric Kruskal–Wallis test
to examine the disparities among various groups.
These statistical methods allowed us to conduct a
thorough comparison of our model’s performance
against others.

3.3 Data
For our reading comprehension task, we chose to
use the DISFL-QA dataset (Gupta et al., 2021).
The DISFL-QA effectively builds upon the pre-
existing SQuAD-v2 dataset (Rajpurkar et al., 2016),
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Type Fluent Question Disfluent Question

D-repairs
Who had established the Russian empire
to its former glory prior to 1921?

Who had established the right to limited self-determination
for oh no Russian empire to its former glory prior to 1921?

A-repairs
AA-repairs

In which century was the Grand Canal
d’Alsace ended?

In which century was the Grand Canal ended.. that is..the
Grand Canal d’Alsace?

AL-repairs
What tool do they use in public schools
to maintain discipline?

What tool do they use in schools or... rather public schools
to maintain discipline?

AC-repairs
What increases or decreases in response
to applied friction?

What increases or less.. rather decreases in response to
applied friction?

E-repairs
EL-repairs What did Artur Triton give to the world?

What did Artur Oppman oh sorry shoot uh Artur Triton
give to the world?

ES-repairs What is included with each packet label? What is included by... with each packet label?

EF-repairs
What did the number of legions in Roman
times depend on?

What did the number of legions in Noma...
Roman times depend on?

Table 1: Seven categories of disfluent prompts

a widely used question-answering dataset that
comprises meticulously selected paragraphs from
Wikipedia, accompanied by corresponding ques-
tions. In order to introduce contextual disfluencies
into each corresponding question, it is employed
a human annotation task, utilizing the provided
paragraph as a source of potential misdirection. To
ensure the quality and reliability of the dataset, an
additional round of human evaluations was con-
ducted, offering the opportunity for re-annotation
where necessary. All aspects of the SQuAD-v2
dataset, including questions that were classified
as non-answerable, were utilized for the model’s
training phase. Evaluation was performed against
the entire test set. The experiments incorporated
three distinct datasets: SQuAD-v1, SQuAD-v2,
and DISFL-QA. Within the DISFL-QA dataset, a
total of 11,825 annotated questions are categorized
into a training set, development set, and test set,
comprising 7,182, 1,000, and 3,643 questions re-
spectively.

In an effort to further enhance the richness of the
DISFL-QA dataset, we introduced a new set of tags
designed to differentiate between seven distinct
types of speech repairs. Alongside labeling the test-
set, we applied each of these seven types of repairs
to a subset of 100 questions within the test set,
thereby creating a total of 700 additional disfluent
questions. Evaluation was conducted on a subset of
the SQuAD-v2 development set that corresponded
with the DISFL-QA test set, to ensure an equitable
and fair comparison across the board.

4 Result

Our research has revealed several intriguing pat-
terns related to the model’s performance when
trained with different types of repair-laden ques-

tions.

D-repairs: The F1 performance scores, both in
the Fluent and D-repairs categories, displayed rel-
ative consistency across varying numbers of shots
(4, 8, 16, and 32) (Figure 1). For Fluent F1 values,
there was a steady range between 88 and 89, while
the F1 values for D-repairs remained within a band
of 53 to 59. This reveals a notable gap in perfor-
mance at all shot values, indicative of a substantial
performance decline when dealing with questions
that incorporate D-repairs compared to those in the
Fluent category. This pattern held true across all
examined models, including the highly advanced
GPT-4.

A-repairs: Our results showed that increasing
the number of shots from 4 to 32 did not cause a
significant alteration in the model’s performance
according to the F1 metric (Figure 1). After 8
shots, the performance plateaued for 3 out of the
4 groups. Interestingly, the models demonstrated
comparable performance levels when tested with
A-repairs and Fluent questions from the SQUAD
benchmark. We did not find any clear correlation
between the effectiveness of models trained with
AA-repair-inclusive questions and those trained
with AL-repair or AC-repair questions. Notably,
the T5 model consistently outperformed others
when presented with AL-repairs. In several cases,
models trained with AL-repair questions outper-
formed those trained with Fluent questions, though
the difference was not significant. While no consis-
tent pattern emerged within the A-repairs, models
often matched or even surpassed their performance
on Fluent questions when compared with certain
disfluent question categories.

E-repairs: Models trained with E-repairs under-
performed relative to their performance with Fluent
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(a)

(b)

(c)

Figure 1: The F1 performance scores, both in the Fluent
and repairs categories with T5 model (a) D-repairs. (b)
A-repairs. (c) E-repairs

questions (Figure 1). For EL, ES, and EF, the F1
scores showed a rising trend as the number of shots
increased. This suggests an improvement in the
model’s performance, with the F1 score elevating
from 62 at 4 shots to 67 at 32 shots. While E-repairs
overall presented a challenge, certain subsets (no-
tably EF) displayed better performance than oth-
ers. The findings indicate a noticeable performance
decrease when handling questions with E-repairs
(specifically EL and ES) when compared to the
performance on the Fluent SQUAD benchmark.

Zero-Shot: In Table 2, we evaluate the per-
formance of various language models: ALBERT,

BERT-QA, T5-QA, GPT-3.5, and GPT-4. Their
proficiency in handling different types of repairs in
conversation was assessed using F1 scores. Higher
F1 scores indicate better model performance. T5-
QA and ALBERT consistently outperformed other
models across most categories.

GPT-3.5 registered the lowest F1 scores across
all categories, implying its weaker performance
in addressing repairs. Although GPT-4 showed
improved performance over GPT-3.5, it was still
surpassed by the other models in the study. No-
tably, ALBERT was particularly adept at handling
phonetic errors, underscoring its capabilities in this
domain.

Our analysis reveals that A-repairs, when us-
ing the Zero-Shot approach, competed favorably
against fluent models. AL-repairs outshone the
Fluent models in four of the five models evalu-
ated. This underscores the potency of the Zero-Shot
approach, especially with AL-repairs, which fre-
quently exceeded the Fluent models’ performance.

Fine-tuning and prompt-tuning: The Figure
2 reports F1 scores for two different methods of
model fine-tuning - "Prompt-based fine tuning" and
"Traditional fine tuning". The results are given
for three categories of repairs: "D-repairs", "A-
repairs", and "E-repairs". Comparing the two fine-
tuning methods, "Prompt-based fine tuning" consis-
tently outperforms "Traditional fine tuning" in F1
score for all types of repairs. The performance gap
seems to widen as the number of shots increases.

In terms of "repair" types, the "A-repairs" con-
sistently show high F1 values, indicating that
both models perform relatively well on this task,
whereas the "D-repairs" and "E-repairs" have lower
F1 values, indicating more room for improvement
in these areas.

The last number of shot with the value 7182
shows a notable jump in F1 scores for "Prompt-
based fine tuning" as compared to the previous
rows, especially for "D-repairs" and "E-repairs".
This could suggest that with larger data or more
computational resources, "Prompt-based fine tun-
ing" may yield significantly improved results. The
same can be said for "Traditional fine tuning", al-
beit to a lesser extent.

Existing literature commonly assumes that dis-
fluencies should be eliminated from speech data.
However, Table 2 and Figures 1 and 2 presents com-
pelling evidence suggesting otherwise, particularly
in the context of zero-shot scenarios. Surprisingly,
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Figure 2: F1 scores for two different methods of model
fine-tuning - "Prompt-based fine tuning" and "Tradi-
tional fine tuning" with T5

all models evaluated in the study exhibit compara-
ble performance when presented with certain dis-
fluent prompts as they do with fluent ones. This
finding holds true even for advanced models like
GPT-3.5 and GPT-4, which possess significantly
larger architectures than their competitors. Thus, it
becomes apparent that merely scaling up the model
does not change this outcome.

On the topic of model tuning, the results are
somewhat inconsistent. As the number of shots
increases, the performance gap between disfluent
and fluent questions tends to diminish, especially
concerning E-repairs. In other words, with more
training iterations or fine-tuning, the models dis-
play improved ability to handle disfluent speech
and narrow the disparity in accuracy compared to
their performance on fluent speech.

5 Discussion

Large-scale language models (LMs) are not ro-
bust when it comes to changing the mind mid-
utterance ("Do I want to say this now?") and
making repairs for lexical or syntactic errors
("Am I making an error?")

Our experiments have revealed that large-scale
language models (LMs) lack robustness when it
comes to handling mind repairs, which involve
the decision-making process of what to say at a
given moment, and lexical/syntactic error repairs,
which involve correcting potential errors in speech
or writing. We found that when large-scale lan-
guage models were directly tested on these types
of disfluent input, their performance suffered a no-
ticeable decline.

The introduction of noise through the disfluent
transformation proved to be a significant factor in
diminishing the models’ effectiveness. The dis-

fluencies disrupted the flow and coherence of the
input, challenging the models’ ability to process
and generate accurate responses.

Repairs resulting from context-based adjust-
ments ("Do I want to say it this way?") can
benefit large-scale language models.

Repairs made as a result of adjustments based
on contextual cues have the potential to benefit
large-scale language models. Our findings indi-
cate that there is valuable information embedded
within adjustment-based disfluencies that involves
avoiding ambiguity, using appropriate level termi-
nology, or maintaining coherence with previously
used terms, which aids the models in their pro-
cessing capabilities. Notably, this advantage stem-
ming from disfluencies becomes even more clear
in a zero-shot setting, where the models exhibit
enhanced performance when faced with unfamiliar
or unseen data. These observations highlight the
significance of leveraging adjustment-based disflu-
encies as a means to optimize the functionality and
comprehension of large-scale language models.

Adjustments made for errors were conserva-
tive and aimed to stay faithful to the original
expression, while repairs for appropriateness al-
lowed more flexibility and required the creation
of new concepts

The investigation revealed notable variations in
the methods used to make adjustments depending
on the type of repairs required. In the case of ac-
tual errors, such as mistakenly mentioning "Artur
Oppman" instead of "Artur Triton" or using "blue"
instead of "red," the adjustments made were char-
acterized by a highly conservative approach. The
participants aimed to remain faithful to the original
expression, resulting in relatively minor modifica-
tions to rectify the mistake.

Conversely, for appropriateness-related repairs,
participants exhibited significant flexibility in their
adjustments. This contrast in approach can be eas-
ily understood within the framework of the cate-
gories proposed in 3.1. When an error occurs, the
same message, or a portion thereof, is essentially
reprocessed. In contrast, repairing an inappropri-
ateness often requires the creation of an entirely
new concept or message, which consequently ne-
cessitates a fresh beginning.

These disparities in the adjustment methods em-
ployed reflect the distinct nature of repairing ac-
tual errors versus addressing appropriateness issues.
While errors involve solving specific inaccuracies
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Fluent D-repairs
A-repairs E-repairs

AA-repairs AL-repairs AC-repairs EL-repairs ES-repairs EF-repairs
ALBERT 87 54 85 89 87 58 61 81
BERT-QA 77 54 77 79 78 54 56 74

T5-QA 90 59 87 90 86 61 64 84
GPT-3.5 58 34 62 62 60 43 44 61
GPT-4 63 46 67 68 67 48 51 65

Table 2: Comparing the performance of various language models, namely ALBERT, BERT-QA, T5-QA, GPT-3.5,
and GPT-4, their effectiveness in handling different types of repairs in zero-shot setting

or misattributions, appropriateness repairs necessi-
tate a broader restructuring or introduction of ideas
to align with the intended context (Levelt, 1983).
Understanding these differences sheds light on the
varying levels of flexibility and conservatism ob-
served in adjustment strategies and may help us
understand why appropriateness repairs benefit the
reading comprehension task with large-scaled lan-
guage models.

6 Conclusion

We study the ability of large language models
to handle disfluent inputs, revealing patterns and
significant distinctions across different types of
repairs—D-repairs, A-repairs, and E-repairs.

Our findings showed a significant decline in
model performance when dealing with D-repairs
compared to the Fluent category. This trend was
consistent across all models studied, including the
advanced GPT-4, indicating an area with substan-
tial potential for improvement. In contrast, A-
repairs often demonstrated performance on par
with, or even exceeding, performance on Fluent
questions in some models, emphasizing the value
of incorporating A-repairs into the training process.
Despite an overall decline in model performance
when faced with E-repairs, we observed an excep-
tion within the phonological repairs subset, which
displayed a positive trend as the shot values in-
creased.

These observations challenge conventional as-
sumptions regarding disfluencies in speech data.
Contrary to the traditional view advocating for the
elimination of disfluencies, our research supports a
more nuanced perspective. We found that certain
types of disfluencies, particularly adjustment-based
repairs, can actually enhance model performance.
However, our study also exposed a limitation in the
robustness of large-scale language models when ad-
dressing repairs related to decision-making or the
correction of lexical or syntactic errors. This find-

ing underlines a crucial area where these models
could be improved.

Identifying disfluencies parallels the challenge
humans face when deciphering a disfluent utter-
ance. Typically, it’s not until encountering the in-
terregnum, or perhaps the onset of the repair, that
we recognize the preceding content as marked "to
be repaired," identifying it as the reparandum (Ro-
hanian and Hough, 2021). In forthcoming research,
we intend to look into the intricacies of incremental
processing, aiming for real-time, left-to-right word
analysis. However, it’s crucial to underscore that
our goal in this study wasn’t to equate the model’s
processing with human real-time comprehension.
Our focus was to gauge the model’s ability to han-
dle disfluencies, akin to offline human processing.

Limitations

Disfluency detection is a complex task that in-
volves analyzing multiple modalities in sponta-
neous speech. In our approach, we focused on
synthetic disfluency and did not incorporate acous-
tic features. Our studies in dialogue processing
have predominantly relied on transcripts rather than
actual speech data.

To investigate the impact of different types of
disfluencies on comprehension, we conducted a se-
ries of studies focusing on repairs with and without
fillers. We chose this specific disfluency type based
on Levelt’s (Levelt, 1983; Brennan and Schober,
2001) suggestions and the availability of sufficient
tokens for analysis. Furthermore, we restricted
our research to tokens with the reparandum and re-
pairs occurring directly after each other, providing
for greater control over the experimental circum-
stances.

When analyzing disfluent speech in machine
learning studies, it is crucial to consider all relevant
characteristics, especially linguistic components.
This is because spontaneous speech reflects cogni-
tive performance across multiple functions rather
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than solely depicting language impairment. It is im-
portant to avoid the assumption that all distinctive
machine learning characteristics can be accurately
characterized based solely on basic cognitive pro-
cesses, as this oversimplification fails to capture
the complexity of disfluent speech.
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