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Abstract

We present ASPIRO, an approach for struc-
tured data verbalisation into short template sen-
tences in zero to few-shot settings. Unlike
previous methods, our approach prompts large
language models (LLMs) to directly produce
entity-agnostic templates, rather than relying
on LLMs to faithfully copy the given exam-
ple entities, or validating/crafting the templates
manually. We incorporate LLM re-prompting,
triggered by algorithmic parsing checks, as well
as the PARENT metric induced consistency val-
idation to identify and rectify template genera-
tion problems in real-time. ASPIRO, compared
to direct LLM output, averages 66% parsing
error rate reduction in generated verbalisations
of RDF triples on the DART dataset. Our best
5-shot text-davinci-003 setup, scoring BLEU of
50.62, METEOR of 45.16, BLEURT of 0.82,
NUBIA of 0.87, and PARENT of 0.8962 on
the Rel2Text dataset, competes effectively with
recent fine-tuned pre-trained language models.'

1 Introduction

Data-to-text task (Reiter, 1996) aims to build a
faithful natural language interpretation of struc-
tured data such as relational tables or Resource De-
scription Framework (RDF) triples (Miller, 2001).
However, without proper context, the given struc-
tured data may not sufficiently represent the rela-
tionships between entities, leading to ambiguity
(Dusek et al., 2019). To battle this, some works
rely on fine-tuning pre-trained language models
(PLMs) on task-specific datasets in supervised or
semi-supervised ways (Ke et al., 2021; Agarwal
et al., 2021), but the domain of the resulting sys-
tem is limited and requires well-labelled training
data (Keymanesh et al., 2022). In contrast to fine-
tuning, Kasner and Dusek (2022) prove that zero-
shot neural systems are a possible solution, where
in-domain data is introduced via simple human-
crafted templates for each unique relation in the
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knowledge graph. Xiang et al. (2022) nullify the
requirements for human labelling entirely by utilis-
ing GPT3-davinci (Brown et al., 2020), a large lan-
guage model (LLM) with broad general knowledge,
to disambiguate RDF triples into short sentences
and automatically parse them into reusable sen-
tence templates as an alternative to human-crafted
templates. In this paper we introduce ASPIRO, a ro-
bust N-shot variant of the data disambiguation step
presented by Xiang et al. (2022) and a promising
alternative to fine-tuning PLMs for crafting RDF
verbalisations (Kasner et al., 2023). At its core, AS-
PIRO uses simple rules to algorithmically flag er-
rors in the templates (such as missing subject, mul-
tiple objects, etc.) and re-prompt the LLM until all
errors are alleviated or maximum (V) retries have
been reached. We evaluate changes in automated
metrics and reduction of parsing errors in different
configurations of ASPIRO on DART (Nan et al.,
2021) and Rel2Text (Kasner et al., 2023) and com-
pare the original RDF verbalisation prompt used
by Xiang et al. (2022) with our prompt focused on
enforcing structured json output with intermediate
fields as guidelines.

2 Related Work

Single triple verbalisation: Mainly leveraged
for reducing ambiguity in structured data before
a specific D2T task (Laha et al., 2019; Dusek and
Kasner, 2020; Xiang et al., 2022) as well as trans-
forming inputs to be better suited for existing NLG
models (Gupta et al., 2020; Kasner and Dusek,
2022; Xiang et al., 2022), verbalisation templates
fall into three main categories:

1) human-crafted (Kale and Rastogi, 2020; Kas-

ner and Dusek, 2022)
2) rule-based (Laha et al., 2019; Gupta et al.,

2020)
3) neural model-based (Xiang et al., 2022; Kas-

ner et al., 2023)
ASPIRO combines aspects of both 2) and 3).
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Delexicalization: FEinolghozati et al. (2020) and
Heidari et al. (2021) find that without delexical-
ization, generative models can produce incomplete
representations of the entities and concepts in the
structured data verbalisations, leading to misinter-
pretation and failures in production. Our JSON
structured prompt (§G.2) enforces the LLM to di-
rectly produce named-entity agnostic templates.

0-shot to N-shot: Our work is heavily inspired
and builds upon the disambiguation step from Xi-
ang et al. (2022), which is equivalent to 0O-shot
setting for our N-shot Generator. We also use
their prompt (§G.1) as baseline against our JSON
prompt (§G.2).

Refining LLM outputs: Madaan et al. (2023)
and Shinn et al. (2023) show that iterative prompt-
ing and chain-of-thought reasoning can signifi-
cantly improve the outputs of LLMs. We lean on
their findings in designing our ASPIRO pipeline.
However, back and forth prompting of LLMs can
be expensive, which we counterweight by using our
Rule-based parser (§3.1) and the PARENT (Dhin-
gra et al., 2019) F1 score (§3.2) as cost-efficient
gateways to decide if additional prompting is nec-
essary.

3 Methods

The proposed method (ASPIRO) revolves around
the conversion of structured data samples into ver-
balisation templates using a two-stage pipeline: V-
shot Generator (§3.1) and Consistency Validator
(§3.2). The pipeline processes structured data sam-
ples, wherein each sample comprises of one or
more RDF triples which share the same relation.
ASPIRO (see Figure 1) starts with an initial prompt
to verbally articulate the structured data. This is
equivalent to prompting a single LLM directly. If
the zeroth attempt isn’t accurate, it will retry a max-
imum of N times, refining the previous completion
based on parsing errors (§3.1.2). Subsequently,
the outputs are validated for consistency, ensuring
faithful and reliable verbalisations. We explain the
individual stages and their sub-modules in the sec-
tions below. Refer to Figure 1 for full pipeline and
terminology on general input. Step-by-step flow
of the pipeline and example on specific input are
provided in section §3.3 and Figure 2 respectively.

3.1 N-shot Generator

N-shot Generator further fractures into an LLM
stack and a Rule-based parser. The LLM Stack is
tasked with generating verbalisation attempts based
on given initial prompt (§G.1). It does so with the
help of the Rule-based parser. This parser checks
the generated completions for structural accuracy,
ensuring they adhere to expected patterns.

3.1.1 LLM Stack

The LLM stack is a sequence of NV + 1 LLMs, in-
dexed from 0 to V. Ly is responsible for the initial
completion and each further retry shot, initiated
by the Rule-based parser (§3.1.2), increments the
index by 1. Each L,, is instantiated separately and
does not have to be the same model. Equation (1)
shows the single completion for structured input
sample x at shot n.

where 7 is a given prompt and can be either 7T;
(initial) or Tg (retry).

3.1.2 Rule-based parser

A purely algorithmic module, which validates y,,
against a set of conditions {C} one by one. If y,
does not pass the condition C;, a respective parsing
error is logged into set £,. The aggregated rules for
each given completion are formally given below
(see §A for detailed Python implementation).

Co ... has exactly one ‘<subject>° substring.

C; ... has exactly one ‘<object>* substring.

Cs ... has no other ‘<...>‘ substrings.
If the parser identifies any error in the structure, the
next LLM in the LLM stack is re-prompted with
Retry prompt (§G.3) to generate new completion.

3.2 Consistency Validator

Even if the outputs from the N-shot Generator
adhere to the structural patterns, they might still
contain inaccuracies, such as hallucinated content.
This module assesses the quality of the verbalisa-
tions, using the PARENT statistical metric (Dhin-
gra et al., 2019). If PARENT F1 score is too low,
the module will utilise an LLM with specialised
Consistency prompt (§G.4) to improve the sen-
tence.

3.2.1 PARENT; threshold

To gauge the quality of the completion y,, from N-
shot Generator, we set a minimal threshold (i) for
the PARENT score of y,,. The score is calculated
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Figure 1: ASPIRO pipeline for general input sample z" € X.

using eq. (3) against artificially constructed table
and reference.

First, we construct the respective hypothesis, ta-
ble and reference entries:

h =y, .replace([s, 0], €)
t = (e,r.split(” "),e) )
p=r

where "<subject>" and "<object>" are replaced
with "<entity>" to prevent penalising order dis-
crepancy between hypothesis and table.

We then calculate the PARENT F1 score using
equation (3).

F1(yn) = PARENT(h, p, t) 3)

3.2.2 Consistency LLM

If the calculated PARENT score from §3.2.1 is not
sufficient, we call another LLM with prompt 7¢ as
ineq. (4).

yo = Lo(To(r, yn)) 4)

The prompt ¢ is designed to guide L to iden-
tify problems with the given completion, provide
advice how to fix it and subsequently produce fixed
completion in a structured json output. See §G.4
for full version of the prompt.

3.3 Stepwise Pipeline Formulation

Given a dataset of structured data samples
{2"}rer, where 2" = {27, 2%, ...,27,} and 27 is
a single RDF triple 27 = (s}, r, o}) with relation
r € R, the pipeline for one =" is as follows:

Step 0 Setn = 0and 7; = Tr(z").

Step 1 Calculate y,, using eq. (1).

N-shot gen. (shot 0)

Initial Prompt / Consistency Validation (i = 0.71 \
uts

= 0.57 (< 0.7)

vvvvvv n
Consistency Prompt

Your task is to evaluate a [string] based on the

following [rules] and output a json

[rules]:

err: "Output is missing <s> placeholder.”

N-shot gen. (shot 1) "~ [string] must concisely and factually

represent the information in [relation], without

embelishment or unnecessary details.
B L [string]: "<0> is the creator of the game <s>.*
Irelation}: creator
ion did ot satisfy the constraints son
<o>

give
|Details: "Output is missing <s> placeholder.”
|Please try again.

Retry Prompt

Comy

|Above

it
“valid":
"advice"
“valid_string":

Prompt

Figure 2: Example flow of ASPIRO pipeline with input
sample 2" = [(Mario, creator, Shigeru Miyamoto)]

Step 2 Use §3.1.2 to validate y;, against all con-
ditions C. If errors (&) are found, run equation (5)
and return to Step 1. Otherwise go to Step 3.

To1 = Tr(2", yp, €,)

n=n+1 ©)

Step 3 Use §3.2.1 and calculate F'1(y;) via eq.
(3). If the calculated F'1 score is lower than our
chosen threshold 0 < p < 1, continue to Step 4.
Otherwise, output current .. as the final comple-
tion y".

Step4 Use §3.2.2 to get revised completion y.

Step S Compute F'1 scores of y;, and y. using
eq. (3) and take the completion with higher score
via eq. (6) to produce the final completion y".

y" = argmax(F1(y)) ©)
USTSTY
4 Experiments

The following sections show results on several se-
tups of ASPIRO. In section §4.1 we compare auto-
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Table 1: Average values from 5 independent runs of 4 ASPIRO configurations on Rel2Text test set using automatic
metrics (desc. §C), compared with Kasner et al. (2023)’s BART-BASE models, fine-tuned on full (full-) or only X
(fewshot-X) examples from Rel2Text training set. See Table 2 for models and Table 7 for standard deviations.

all test samples (616) BLEUT METEOR{ BLEURT{ NB{ SSt C(%)] N(%)! E(%)} PARENTy; |
(Kasner et al., 2023) full-rel2text | 52.54 44.86 0.54 088 472 350 4.65 91.85 -
(Kasner et al., 2023) fewshot-25 | 31.13 35.52 -0.02 065 394 835 2726 6439

(Kasner et al., 2023) fewshot-200 | 48.67 4334 0.44 083 458 540 9.03 85.57 -

(A) G35 51.22 4473 0.82 087 471 488 734 87.77 0.3883

(A) 5xG3.5 (G3.5) 51.40 44.94 0.82 087 472  3.65 7.98 88.38 0.8895

J) G3.5 50.63 45.13 0.82 087 479  1.60 736 91.04 0.8963

(J) 5xG3.5 (G3.5) 50.62 45.16 0.82 087 479 154 7.25 91.21 0.8962

Table 2: LLM variants used in our experiments.

label ‘ full name model family original publication

G3 davinci GPT3 (Winata et al., 2021)
G3.5 | text-davinci-003 InstructGPT ~ (Ouyang et al., 2022)
G3.5T | gpt-3.5-turbo-0301 ChatGPT (OpenAl, 2022)
G4 gpt-4-0314 GPT4 (OpenAl, 2023)

matic metrics on Rel2Text test set (§D.3) with Kas-
ner et al. (2023)’s fine-tuned BART-BASE models.
In section §4.2 we report on the number of parsing
errors tagged by our Rule-based parser (§3.1) on
both DART (§D.1) and Rel2Text (§D.3) datasets.
In §4.3 we also provide brief ablation study of CV.

Setup: For N-shot generator (§3.1), £ marks
initial model choice and NxL,, max N retry shots
using model £,,. We limit our experiments to L,,
being same for all IV shots. For Consistency Valida-
tor (§3.2), we set 4 = 0.7 and only use it in some
setups (marked by L in brackets). For reference
on LLMs used as £ in ASPIRO setups, see Tab. 2.

Prompts: While Retry prompt 7z (§G.3) and
Consistency prompt 7o (§G.4) are constant across
all our experiments, we compare two variants of
the Initial prompt 77:

(A) ASDOT: proposed by Xiang et al. (2022) in
their Data Disambiguation step to produce
short sentence representation of a given triple.
(full form §G.1)

(J) JSON: our proposed prompt, which enforces
json-like output with auxiliary fields to guide
the creation of named-entity agnostic tem-
plates directly. (full form §G.2)

4.1 Automatic Metrics

We evaluate Automatic metrics on Rel2Text test
set (§D.3) with 4 ASPIRO setups (see Table 1 for
5 run averages; Table 7 for standard deviations).
ASPIRO outperforms Kasner et al. (2023)’s
fewshot-fine-tuned PLMs on all metrics and is

competitive to the full-training-set-fine-tuned full-
rel2text model with ca 1-2 point reduction in
BLEU, but 28 % points increase in BLEURT.
This implies higher semantic similarity, however
Semantic Similarity sub-score of NUBIA only
shows small increments. Despite the overall NB
score being same for all ASPIRO setups, the sub-
metrics of NUBIA show steady improvement be-
tween our models. Most noticeable change is in the
Contradiction percentage, which the 5-shot setting
improves by ca 1.2 % points and further 2 % points
by introducing JSON prompt, suggesting higher
capacity to disambiguate the correct direction of
relation between subject and object entities in the
input triples. PARENT F1 score slightly favours
the JSON prompted setups of ASPIRO, but only by
ca 0.6 % points.

Additional experiments: For metric results and
discussion on DART, see appendix §E.1. For full
experiment results with fine-tuned pre-trained lan-
guage models refer to (Kasner et al., 2023).

Table 3: DART dataset counts of templates with parsing
errors. RR %: error Rate Reduction percentage of best
N-shot setup (bold) vs Oshot model.

Initial run N-shot Gen Setup [NxL,, (+L¢)]
T L 0x | 1xG35T 1xG35 1xG4 35T | prg
=0 (+G3.5T)
239 66.76
(A) | G3 719 | 467 490 351 227 | 68.43)
(A) | G3.5T | 996 | 727 833 784 497 50.10
(J) | G3.5T | 194 166 156 58 80 70.10
) | G35 | 94 75 59 24 25 74.47

Table 4: Rel2Text counts of templates with errors.

Initial run N-shot Gen Setup [NxL,, (+L¢)]
T | Lo | 0x | 1XG3.5T 1xG3.5 1xG4 i"é}; SSTT) ffg; 55)
11 21
() | G35 | 21 20 21 19 (?) a 24)
@ G353 3 3 2 W s
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Table 5: Automatic metrics without and with consistency validation (CV) for Rel2Text test set.

Rel2Text test samples (616) | BLEUT METEORT BLEURT{ NBT SST C(%)| N(%)] E(%)T PARENTy T
5xG3.5T 50.88 4497 08215 08725 473 336 8.04 88.59 0.8910
5xG3.5T (CV G3.5T) 50.89 44.95 0.8213 08718 4.73  3.02 8.34 88.64 0.8908
5xG3 50.96 44.69 0.8200  0.8680 471  4.92 7.59 87.48 0.8879
5xG3 (CV G3) 51.32 44.77 0.8200 08702 4.72  3.35 7.70 88.94 0.8895

4.2 Parsing Errors

Parsing error analysis does not require specific
references from the dataset. After ASPIRO pro-
duces the verbalisation templates (y"), we run them
through our Rule-based parser (§3.1) to flag and
count the number of errors. As source data (X),
similar to (Xiang et al., 2022), we collect at most
2 triple examples for each unique relation in the
dataset and use them to prompt our pipeline.

Parsing error counts: For DART (Table 3) we
use the full dataset (§D.1), producing 4299 unique
template sentences in each experiment run. In
Rel2Text (Table 4) we only use the test split
(§D.3) with 226 unique relations and G3.5 (T2)
as base model with either (A)SDOT or (J)SON
prompts and different N-shot Generator setups.
For Rel2Text, we don’t provide RR % as the reduc-
tion is evident from counts.

Discussion: Introducing /V-shot Generator (§3.1)
shows significant reduction in parsing error counts
(Tables 3 and 4) even with N = 1. In the 1 retry
shot setting, GPT4 (G4) is most effective at reduc-
ing parsing errors. However, if we introduce up to 5
retry shots, we can see that gpt-3.5-turbo (G3.5T)
reduces parsing errors further. The exception is
(J)SON prompt on DART where G4 keeps the lead.
Interestingly, while text-davinci-003 (G3.5) per-
forms well as 0-shot model, it generally performs
worse than G3.5T in N-shot settings, contrasted
again on DART by J prompt. It is also evident
that J prompt provides more robust 0-shot base-
line compared to (A)SDOT prompt. The values in
parentheses reveal that including Consistency Vali-
dation yields only slight reduction in error count.

4.3 Ablation of Consistency Validator

To investigate the efficacy of Consistency Valida-
tor, we conduct a brief ablation study on Rel2Text
test set (§D.3). For statistical metrics (Table 5),
CV provides only marginal gains. This effect may
be attributed to the improvement of Contradiction
score and degradation of Neutrality score, implying
that CV moves the templates closer to general state-

ments with less informational value. Conversely,
parsing errors (Table 6) are reduced notably by CV,
with counts decreasing from 12 to 10 and 23 to 16.

Table 6: Individual error counts (|€|) without and with
CV on Rel2Text test set with (A)SDOT prompt.

NxLLM (CV) Total [€] |Templates] w/ € Missing SUBJ. Missing OBJ.
5xG3.5T 2 11 2 10
5xG3.5T (G3.5T) 10 9 2 8
5xG3 23 21 5 18
5xG3 (G3) 16 14 3 13

5 Conclusion

We proposed and evaluated ASPIRO, a general
domain-agnostic pipeline for verbalisation of sin-
gle triple data entries to short template sentences,
utilising rule-based re-prompting of LLMs. The
pipeline comprises of /V-shot Generator (§3.1) and
Consistency Validator (§3.2). We show that AS-
PIRO compares to fine-tuned pre-trained language
models’ automatic scores on the Rel2Text test set
(§4.1) and significantly reduces the parsing error
count in 0-shot outputs of LLMs (§4.2). The ab-
lation study (§4.3) revealed that Consistency Val-
idator of ASPIRO further reduces error counts, but
does not significantly affect automatic metrics.
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Limitations

Operational costs: When contrasted with 0-shot
setting, ASPIRO significantly escalates the opera-
tional costs (see appendix §F) due to the repeated
calls of the IV-shot Generator and the lengthy Con-
sistency prompt (§G.4) associated with the Consis-
tency Validator (§3.2). Following the brief ablation
study of CV (§4.3) and the cost analysis, it remains
debatable whether the performance of the Consis-
tency Validator reported in this paper justifies the
additional expense incurred in prompting the LLM
for the flagged examples.

Isolated triples: Generating verbalisations from
single isolated triples doesn’t account for situations
where context from other triples is necessary to
fully interpret the final natural language verbalisa-
tion. As exemplified by the DART dataset, con-
textual integration is significant and should be ex-
plored further.

Backup template: In instances where the pars-
ing of the <subject> and <object> within the gener-
ated completion of the LLM proved unsuccessful,
Xiang et al. (2022) introduced a general backup
template as fallback. In our research, we did not
use any backup templates and did not investigate
their potential impact on automated metric scores.
Nonetheless, it’s important to acknowledge that
within a production environment, the incorporation
of a backup template is a fundamental necessity,
warranting further assessment of its effects.

Direction of relation: The capacity to accurately
discern the correct direction of the relation between
subject and object is a notable feature of Data-to-
text systems. In our experiments, we report on
contradiction statistic (C %), which can roughly
translate to measure this ability. Although ASPIRO
generally shows to improve on this statistic, there
are no specific guardrails to validate the ambiguity
other than the general knowledge of the LLM itself.

Variance of experiment runs: Due to the sub-
stantial expenses associated with prompting large
language models (LLMs) and the considerable size
of the DART dataset, each experiment on DART
was conducted only once. The same is true for
Rel2Text parsing error analysis in Table 4. It should
be noted that, although the temperature parameter
was uniformly set to O for all the employed LLMs,
the underlying generative process remains reliant

on maximum likelihood estimation, which inher-
ently leaves room for potential variation errors in
our experimental results.

Ethics Statement

In the course of this research, we have employed
various Generative Pre-trained Transformer mod-
els, including GPT3 davinci, InstructGPT text-
davinci-003 and gpt-3.5-turbo-0301, and gpt-4-
0314, each demonstrating inherent biases as out-
lined in their respective publications, which are
listed in Table 2. These biases often favour popular
opinions and can lead to a distortion in the model’s
outputs. This reflects the models’ training on large-
scale internet text, which is not entirely neutral
and contains biased or skewed perspectives. We ac-
knowledge this limitation and highlight that despite
implementing a pipeline designed to minimise the
inclusion of unnecessary and irrelevant informa-
tion, the potential for biased outcomes cannot be
entirely eliminated.
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Table 7: Standard deviations of results from Table 1. The values for pre-trained language models in first three rows
are copied for reference from Kasner et al. (2023)’s Table 6.

all Rel2Text test samples (616) | BLEUT METEORT BLEURTt NB1T SStT C(%)] N(%)| E(%)t PARENTy; 1
(Kasner et al., 2023) full-rel2text 0.60 0.30 0.01 0.01 0.02 0.41 0.38 0.65 -
(Kasner et al., 2023) fewshot-25 1.60 1.18 0.05 0.03 0.14 1.19 2.67 3.58 -
(Kasner et al., 2023) fewshot-200 0.80 0.35 0.02 0.01 0.02 0.60 1.37 1.25 -

(A) G3.5 0.10 0.02 0.00 0.00 0.00 0.00 0.10 0.09 0.0002
(A) 5xG3.5 (G3.5) 0.63 0.11 0.00 0.00 0.01 0.16 0.12 0.14 0.0005
J) G3.5 0.13 0.06 0.00 0.00 0.00 0.08 0.08 0.13 0.0004
(J) 5xG3.5 (G3.5) 0.18 0.07 0.00 0.00 0.00 0.03 0.25 0.25 0.0002

A Rule-based Parser

Below is a code snippet of all rules checked by the
Rule-based parser. For full implementation refer to
our GitHub?.

SUBJECT = "<subject>"
OBJECT = "<object>"
errors = []

# SUBJECT entity errors:
if SUBJECT not in text:
errors.append(TemplateErrors.NO_SUBJECT)
elif text.count(SUBJECT) > 1:
errors.append(TemplateErrors.
MULTIPLE_SUBJECTS)
# OBJECT entity errors:
if OBJECT not in text:
errors.append(TemplateErrors.NO_OBJECT)
elif text.count(OBJECT) > 1:
errors.append(TemplateErrors.MULTIPLE_OBJECTS
)
# PLACEHOLDER mismatch errors
# e.g. “<author>" instead of ~“<subject> /"<
object>"
if contains_illegal_placeholder(text):
errors.append(TemplateErrors.
ILLEGAL_PLACEHOLDER)

2https ://github.com/vejvarm/ASPIR0/blob/
0f86ead6218b0100aff650656ef1ca9a8e2e485c/parsing.

Py

B Tools and Repositories

We used Python 3.9 and 3.10 to run our experi-
ments with LangChain® and OpenAI API* for ef-
ficient work with large language model pipelines.
Metrics were calculated using the following exist-
ing implementations:

BLEU/METEOR: GEM-metrics benchmark?®

PARENT: multiprocessing variant from Clé-
ment Rebuffel®

BLEURT: code from google-research’ with
default BLEURT-20 checkpoint®

NUBIA: original NUBIA repository’

3python.langchain.com
*platform.openai.com/docs/api-reference

3 github.com/GEM-benchmark/GEM-metrics
b github.com/KaijuML/parent

7 github.com/google-research/bleurt
8bleurt/blob/master/checkpoints.md
?github.com/wl-research/nubia
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C Metrics

For comparability of our automatic metric evalu-
ations (§4.1), we leverage most of the lexical and
semantic similarity metrics used by Kasner et al.
(2023). Below is a brief explanation of their signif-
icance.

BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005) are metrics that quan-
tify the lexical similarity between model-generated
outputs and (typically human-produced) references
by utilising n-gram overlap.

PARENT (Dhingra et al., 2019) additionally as-
sesses n-gram overlap of generated outputs with
source structured data (i.e., table), which acts as
an auxiliary reference beyond the reference text.
This metric rewards instances where the hypothesis
encapsulates all the information derived from the
table, even if some elements are absent from the
reference. Conversely, the PARENT score discrim-
inates situations where the reference text contains
supplementary information, which is absent in the
structured data, implying the integration of external
knowledge or embellishments in the reference.

BLEURT (Sellam et al., 2020) is a trained met-
ric that complements the above lexical similarity
metrics by capturing semantic similarity.

NUBIA (Kane et al., 2020) is also a trained met-
ric that combines multiple sub-metrics to assess
the interchangeability or equivalence of two texts.
On the surface, this metric generates a single score
(NB), that ranges between 0 and 1. Similar to Kas-
ner et al. (2023), we also report on the sub-metrics
which are used for the total NB value:

SS Semantic Similarity operates on a scale of 0-5,
where higher values suggest higher semantic
similarity

C% Contradiction percentage increases as the out-
put and reference contradict each other in their
meaning.

N% Neutral percentage (also referred to as
"chance of irrelevancy")' increases if the out-
put contains new information or information
which is irrelevant to the reference.

E% Entailment percentage increases as the infor-
mation in reference is entailed by the model
output.

github.com/wl-research/nubia

D Datasets

D.1 DART

DART dataset introduced by Nan et al. (2021)
is a large <triple-set, sentence> pair dataset
aggregated from WikiSQL, WikiTableQues-
tions, WebNLG2017 and CleanedE2E with
62,659/6,980/12,552 samples in the train/dev/test
sets respectively. All splits combined have total of
4299 unique relations. Each sample contains a set
of up to 7 RDF triples with different relations, and
human-crafted sentences as natural verbalisations
of the given structured data.

D.2 DART-SingleRDF Dataset

As DART (§D.1) combines multiple relations
within one sample, we opted to extract only
samples with single triple in the input set from
all DART splits and combine them into DART-
SingleRDF subset. DART-SingleRDF contains a
total of 2,947 <single-triple, sentence> entries with
1,439 unique relations.

D.3 Rel2Text

Rel2Text is specifically designed by Kasner et al.
(2023) for the verbalisation task of single-triples
focused on out-of-domain and previously unseen
relations. It contains a total of 4,097 <relation,
description, single-triple, verbalisation> samples.
In §4.1, we use the test split of Rel2Text!! with
616 total samples and 226 unique relations, unseen
in the training set.

D.4 WebNLG

WebNLG is commonly used dataset by Gardent
et al. (2017) where entries contain up to 7 triples
extracted from DBpedia categories and labelled
by human-crafted sentences. We specifically use
the enrichment of WebNLG version 1.4 from (Cas-
tro Ferreira et al., 2018), which contains 354 unique
relations in total.

E Additional Experiments

E.1 Automatic metrics for DART-SingleRDF

We used DART-SingleRDF (§D.2) as test set for
automatic metric evaluation of ASPIRO. The Full
results are reported in Table 8 and Reduced results
in Table 9.

" github.com/kasnerz/rel2text/tree/main/data/full
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Table 8: Evaluation of ASPIRO with 7; =(A)SDOT/(J)SON and £y =G3.5/G3.5T on DART-SingleRDF dataset
using automatic metrics. See Table 2 for for model descriptions, C for metric descriptions.

all samples (2947) | bleu t meteor T BLEURT{ NB{1 SSt C(%)] N(%)| E(%)1T PARENTg; T

(A) G3.5= L 34.41 34.48 0.69 0.67 4.00 16.97 14.50 68.53 0.8257
(A) Lo+1xG3.5T | 33.60 34.19 0.68 0.67 4.01 15.56 15.20 69.24 0.8286
(A) Lo+1xG3.5 34.11 34.38 0.69 0.67 4.00 17.04 14.50 68.47 0.8250
(A) Lo+1xG4 33.23 34.39 0.69 0.67 4.01 16.82 14.60 68.58 0.8261
(A) Lo+5xG3.5T | 33.69 34.59 0.69 0.68 4.07 14.02 15.36 70.61 0.8348

all samples (2947) | bleu T meteor T BLEURT T NB{ SST C (%), N(%)| E(%)!T PARENTy; |

(A) G3.5T= Ly 33.76 35.25 0.71 071 4.12 14.53 14.32 71.16 0.8290
(A) Lo+1xG3.5T | 34.23 35.58 0.71 0.72 4.19 11.38 14.49 74.13 0.8347
(A) Lo+1xG3.5 34.03 35.88 0.71 073 420 11.16 14.52 74.32 0.8342
(A) Lo+1xG4 33.48 35.67 0.71 0.73  4.20 11.29 14.75 73.96 0.8341
(A) Lo+5xG3.5T | 34.25 3591 0.71 0.73 4.24 9.84 14.97 75.18 0.8406

all samples (2947) | bleu T meteor T BLEURTT NB1 SS1T C(%)! N(%)| E(%)1T PARENTpg; T

J) G3.5= Ly 35.49 36.96 0.72 0.76 4.42 4.68 12.05 83.27 0.8534
J) Lo+1xG3.5T 35.16 36.64 0.72 0.75 440 4.86 12.13 83.01 0.8517
J) Lo+1xG3.5 35.48 36.95 0.72 0.76 442 4.67 11.98 83.35 0.8534
J) Lo+1xG4 35.49 36.97 0.72 0.76 4.43 4.62 11.95 83.43 0.8535
J) Lo+5xG3.5T 35.44 36.90 0.72 0.76  4.42 4.66 11.94 83.41 0.8532

all samples (2947) | bleu T meteor T BLEURTT NBT SST C(%)! N(%)} E(%)T PARENTp; 1

J) G3.5T= Ly 32.76 36.34 0.70 0.74 4.36 5.56 16.03 78.41 0.8408
J) Lo+1xG3.5T 31.13 35.82 0.70 0.73 4.33 5.72 1591 78.38 0.8375
J) Lo+1xG3.5 32.76 36.35 0.70 0.74 4.36 5.55 15.94 78.51 0.8408
J) Lo+1xG4 32.89 36.40 0.70 0.74 4.37 5.47 15.67 78.87 0.8408
J) Lo+5xG3.5T 32.13 36.15 0.70 0.73  4.35 5.63 16.01 78.36 0.8400

Table 9: (Subsets of only generated templates with F'1(Ly) < 0.7) Evaluation of ASPIRO with
Tr =(A)SDOT/(J)SON and £y, =G3.5/G3.5T on DART-SingleRDF dataset using automatic metrics. See Ta-
ble 2 for for model descriptions, C for metric descriptions.

F1(Ly) < 0.7 only (491) | bleu T meteor T BLEURT1 NBT SSt C(%)|l N(%)| E(%)t PARENTy; 1

(A) G3.5= L 16.76 24.20 0.57 049 3.19 2774 23.56 48.70 0.5324
(A) Lo+1xG3.5T 17.09 24.59 0.56 049 327 2412 24.60 51.27 0.5470
(A) Lo+1xG3.5 16.09 24.01 0.56 048 3.17  28.09 23.37 48.55 0.5331
(A) Lo+1xG4 15.66 24.49 0.57 049 325 2743 22.47 50.10 0.5397
(A) Lo+5xG3.5T 18.10 25.76 0.58 052 346 20.70 23.60 55.69 0.5706

F1(Ly) < 0.7 only (473) | bleu T meteor T BLEURT{ NBT SST C(%)| N(%)| E(%)!T PARENTg; 1

(A) G3.5T= L 17.24 25.13 0.60 055 345 23.09 22.08 54.83 0.5300
(A) Lo+1xG3.5T 18.16 26.12 0.61 0.58 3.58 17.24 22.56 60.21 0.5513
(A) Lo+1xG3.5 17.71 26.70 0.62 058 3.60 18.28 22.90 58.81 0.5453
(A) Lo+1xG4 16.74 26.31 0.62 0.58 3.61 18.29 22.90 58.82 0.5499
(A) Lo+5xG3.5T 19.42 27.24 0.62 059 373 14.16 23.22 62.63 0.5691

F1(Lo) < 0.7 only (334) | bleu T meteor T BLEURTT NB{ SST C(%)! N(%)] E(%)T PARENTp |

J) G3.5= Ly 19.23 28.26 0.64 0.64 4.01 7.95 17.79 74.26 0.5317
(J) Lo+1xG3.5T 19.34 28.19 0.63 0.64 4.00 7.99 18.14 73.87 0.5310
J) Lo+1xG3.5 19.22 28.21 0.64 0.64 4.01 8.03 17.89 74.08 0.5316
J) Lo+1xG4 19.27 28.34 0.64 0.64 4.02 7.89 17.62 74.49 0.5322
(J) Lo+5xG3.5T 19.42 28.08 0.63 0.64 4.00 791 17.80 74.29 0.5304

F1(Lo) < 0.7 only (387) | bleu T meteor 1 BLEURTT NB{T SST C(%)! N(%)] E(%)7 PARENTy |

J) G3.5T= Ly 16.70 27.25 0.61 0.61 391 8.45 21.34 70.21 0.5313
(J) Lo+1xG3.5T 14.31 26.01 0.60 0.60 3.82 8.56 21.81 69.63 0.5215
) Lo+1xG3.5 16.44 27.27 0.61 0.61 391 8.42 21.23 70.35 0.5314
(J) Lo+1xG4 16.73 27.43 0.62 0.62 3.93 8.08 21.31 70.61 0.5325
J) Lo+5xG3.5T 16.04 26.75 0.61 0.60 3.87 8.35 22.18 69.47 0.5296
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Full: Results in Table 8 show slight or no discrep-
ancies in the metrics between all the experiments,
which could be attributed to variational error. Con-
sidering the high API model costs (§F), we did
not run DART experiments multiple times to pro-
vide deviations. Instead, we reduce the data to
only problematic samples by taking a subset of
Yo = Lo(z") generated templates which satisfy
PARENT1(yp) < 0.7. In other words, we take
a subset of samples, for which outputs of 0-shot
model in the respective sub-table were flagged as
inconsistent by the Consistency Validator (§3.2) us-
ing 1 = 0.7. We report the same metric evaluation
process in Table 9.

Discussion: For the Reduced evaluation in Table
9, we found that ASPIRO shows significant im-
provement only when (A)SDOT is initial prompt
and only with 5-shot gpt-3.5-turbo setting. A point
of interest is also the Neutral (irrelevance) score (N
%), which the 5-shot setting generally increases,
suggesting the IV-shot setting is reducing the rele-
vance of generated verbalisations to the references.
For JSON prompts 1-shot gpt-4 setting has slight,
albeit marginal lead over other settings.

E.2 Performance on WebNLG

We additionally evaluated performance on
WebNLG (§D.4), following a similar approach
as with Rel2Text in the main experiments (§4).
GPT-3.5-turbo-0301 is used as LLM instances of
all calls to both N-shot generator LLM stack and
Consistency Validator.

Parsing errors: We observed (Table 10) that for
WebNLG, ASPIRO is generally not able to fix any
errors and CV conversely increases the number
of total errors, making 3 of the templates more
"flawed" than without CV.

Automatic metrics: We compare the templates
generated by ASPIRO to the manually crafted tem-
plates from Kasner and Dusek (2022) to evaluate
lexical similarity using PARENT, BLEU and ME-
TEOR. The results, seen in Table 11, are marginal
at best and we can only observe improvement in
BLEU score, while PARENT F1 and METEOR
are highest for zero-shot setting. Due to time re-
straints, we did not include BLEURT and NUBIA
evaluations.

Conclusion: Contrary to our original belief, we
can conclude that ASPIRO pipeline does not pro-

vide significant improvement over 0-shot method
on the WebNLG dataset.

F Run time and cost of ASPIRO

$191 US is the overall expenditure for OpenAl
API calls during our experiments. However, it is
important to note that we made many redundant
API calls in the development of ASPIRO so the
necessary costs should be lower. The main bulk
of the costs amounts to GPT3-davinci and text-
davinci-003 calls.

F.1 Run time analysis

Table 12 presents the average run time in seconds
across five experimental runs using the WebNLG
dataset, which comprises 354 unique relations.
This translates to a total of 354 calls required for
the Ox model, a zero-shot call to the initial model
(GPT3.5-turbo). Subsequent retry shots only need
as many calls as there are templates with parsing
errors.

Cumulative mean time: Given the nature of our
experiments, where subsequent runs leverage re-
sults from preceding runs (for instance, the 2-shot
run utilises results from the 1-shot run and only
re-prompts those with parsing errors), we intro-
duce Cumulative mean time to illustrate the total
time necessary to execute all shots of the respective
experiment.

F.2 Estimated API call costs

For a "worst-case-scenario” cost estimate of AS-
PIRO (all templates are tagged for retry shot), we
made calculations for the GPT3.5-turbo model,
which charges $0.002 per 1000 tokens (as of the
time of our experiments). Table 13 provides cost
estimations for the experiments conducted on the
Rel2Text, WebNLG, and DART datasets using
GPT3.5-turbo. To derive the costs associated
with the GPT3-davinci or text-davinci-003 mod-
els (charged at $0.02 per 1000 tokens), multiply
the presented Table 13 values by a factor of 10.
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Table 10: Number of errors tagged in generated templates by our Rule-based parser (§3.1.2) for different experiment
setups with gpt3.5-turbo-0301 on the full Enriched WebNLG v1.4 dataset. All models (base, retry and CV) are
instances of GPT-3.5-turbo-0301. Multiple SUBJECTSs column was ommitted (0 for all experiments).

;gibNLG dataset Total Errors Template Errors Missing SUBJECT Missing OBJECT Multiple OBJECTs Illegal PLACEHOLDER
(Oshot) ) 80 79 24 56 0 0
(Oshot) (CV) 83 79 23 57 2 1
(1shot) () 80 79 2 58 0 0
(2shot) 81 80 23 58 0 0
(3shot) 80 79 23 57 0 0
(dshot) 80 79 2 58 0 0
(5shot) () 80 79 2 58 0 0
(5shot) (CV) 83 79 23 57 2 1

Table 11: Automatic Metrics on WebNLG v1.4 against human-crafted verbalisation templates from Kasner and

Dusek (2022).

Oshot model = G3.5T
(retry model) (Nshot) (CV model)

0 (0shot) ()

() (0shot) (G3.5T)
(G3.5T) (1shot) ()
(G3.5T) (2shot) ()
(G3.5T) (3shot) ()
(G3.5T) (4shot) ()
(G3.5T) (5shot) ()
() (Sshot) (G3.5T)

0.7455
0.7461
0.7454
0.7455
0.7456
0.7456
0.7456
0.7461

PARENTr PARENTp PARENTr; BLEU METEOR (%)
0.9594 0.8308 54.50 46.71
0.9524 0.8278 55.00 46.20
0.9591 0.8305 54.37 46.54
0.9592 0.8306 54.44 46.56
0.9595 0.8308 54.47 46.58
0.9595 0.8308 54.44 46.59
0.9595 0.8308 54.44 46.59
0.9537 0.8285 54.89 46.34

Table 12: Average run time (in seconds) of experimental
runs on the WebNLG dataset with the GPT3.5-turbo

Table 13: Calculated API call cost (USD) estima-
tions for the experiments conducted on the Rel2Text,

model. WebNLG, and DART datasets using the GPT3.5-turbo
(x10 for GPT3-davinci and text-davinci-003) model
Experiment | Mean time (s) Cumulative mean time (s) with either ASDOT initial prompt (A) or JSON initial
gx 3715 3715 prompt (J). The costs are detailed for both individual
1X (V) }471;431 g?gg N-Shot settings and Consistency Validation, with the
X . . . .
2% 1183 638.1 total cost calculated for each experiment setting.
3x 159.3 797.5 (77) dataset NxModel | Total N-Shot Total CV (G3.5T) | Total Cost (G3.5T)
4x 111.7 909.2 (A) Rel2Text 0xG3.5T 0.07 0.14 022
5x 108.1 1017.2 (A) Rel2Text 1xG3.5T 0.14 0.14 029
(A) Rel2Text 5xG3.5T 043 0.14 0.58
5x (CV) 1388 1156.0 (J) Rel2Text 0xG3.5T 0.14 0.14 0.28
(J) Rel2Text 1XG3.5T 027 0.14 042
(J) Rel2Text 5xG3.5T 081 0.14 0.96
(A) WebNLG 0xG3.5T 0.11 023 034
(A) WebNLG 1xG3.5T 023 023 045
(A) WebNLG 5xG3.5T 0.68 023 091
(J) WebNLG 0xG3.5T 021 023 044
(J) WebNLG 1xG3.5T 042 0.23 0.65
(J) WebNLG 5xG3.5T 127 0.23 150
(A) DART 0xG3.5T 0.46 092 138
(A) DART 1xG3.5T 0.92 0.92 1.84
(A) DART 5xG3.5T 2776 092 3.68
(J) DART 0xG3.5T 0.86 092 178
(J) DART IxG3.5T 173 092 2.65
(J) DART 5xG3.5T 518 092 6.10

3562



G Prompt Templates
G.1 Inmitial Prompt: ASDOT

Table: Michael | birth Place | USA
Text: Michael was born in the USA.

Table: First Clearing | location | OnNYS 52 1 Mi.
Youngsville

Text: First Clearing is located at On NYS 52 1 Mi.
Youngsville.

Table: Abilene Regional Airport | city Served |
Abilene Texas
Text: Abilene Regional Airport serves Abilene Texas.

Table: Alfred Moore Scales | active Years Start Date |
1875-03-04

Text: Alfred Moore Scales started to be active on
1875-03-04.

{ example_table_str }
Text:

G.2 Initial Prompt: JSON

### example:

* T json

{{" intput_data ": [[" World Trade Center", " architect ",
"Minoru Yamasaki"], ["Seymour Centre", " architect
", "Allen Jack+Cottier "]]}}

json
{{" subject_entities ": ["World Trade Center", "Seymour
Centre"],
" relation ": " architect ",
" object_entities ": ["Minoru Yamasaki", "Allen Jack+
Cottier "],
" agnostic_template ": "<object> is the architect of <
subject>."
N

#iH

### your task:
*T7 json
{{"input_data ": { example_rdf list }}}

T json

{

G.3 Retry Prompt'?

**7 " Completion
{completion}

Above, the Completion did not satisfy the constraints
given in the Prompt.

Details : " {error}"

Please try again.

*7 Prompt
{prompt}

G.4 Consistency Prompt

Your task is to evaluate a [ string ] based on the
following [rules] and output a " valid® flag
which is either 1 ([ string ] complies with [ rules
1) or O ([ string] breaks some [rules ]) and an °
advice® which explains in one short sentence how
to fix [string] to comply with all [rules] (if
valid==1, advice=""). You will also output a °
valid_string *, which will follow the advice and
comply to the rules (if valid==1, valid_string =[
string ])

[ rules ]:

— [ string ] must contain exactly one " <subject>"
substring .

— [ string ] must contain exactly one " <object>"
substring .

— [ string ] must #*not contain any named entities or
specific references other than " <subject>" and
" <object>" #x.

— [ string ] should align with the semantic meaning of
the [ relation ] provided, without adding or
implying any information beyond it .

— [ string ] must concisely and factually represent the
information in [ relation ], without embellishment
or unnecessary details .

[ string ]: {template }

[ relation ]: {data}

*t7 json

{{

"valid ":
"advice ":
" valid_string ":

We use a modification of LangChain’s
NAIVE_COMPLETION_RETRY_WITH_ERROR prompt from Retry-
WithErrorOutputParser (langchain/output_parsers/retry.py)
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https://github.com/hwchase17/langchain/blob/master/langchain/output_parsers/retry.py

