
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3501–3532
December 6-10, 2023 ©2023 Association for Computational Linguistics

ACT-SQL: In-Context Learning for Text-to-SQL with
Automatically-Generated Chain-of-Thought

Hanchong Zhang, Ruisheng Cao, Lu Chen∗, Hongshen Xu and Kai Yu
X-LANCE Lab, Department of Computer Science and Engineering

MoE Key Lab of Artificial Intelligence, SJTU AI Institute
Shanghai Jiao Tong University, Shanghai, China
{zhanghanchong,chenlusz}@sjtu.edu.cn

Abstract

Recently Large Language Models (LLMs) have
been proven to have strong abilities in vari-
ous domains and tasks. We study the prob-
lem of prompt designing in the text-to-SQL
task and attempt to improve the LLMs’ rea-
soning ability when generating SQL queries.
Besides the trivial few-shot in-context learning
setting, we design our chain-of-thought (CoT)
prompt with a similar method to schema link-
ing. We provide a method named ACT-SQL1

to automatically generate auto-CoT exemplars
and thus the whole process doesn’t need man-
ual labeling. Our approach is cost-saving since
we only use the LLMs’ API call once when
generating one SQL query. Furthermore, we
extend our in-context learning method to the
multi-turn text-to-SQL task. The experiment
results show that the LLMs’ performance can
benefit from our ACT-SQL approach. Our ap-
proach achieves SOTA performance on the Spi-
der dev set among existing in-context learning
approaches.

1 Introduction

The text-to-SQL task (Zhong et al., 2017; Xu et al.,
2017) aims to translate the natural language ques-
tion into the corresponding SQL query with the
given database schema. It is the key technique
to establish the natural language interface on re-
lational databases, which can help common users
access data from relational databases in a more
convenient way.

Recent studies in text-to-SQL research have pri-
marily centered on the development of semantic
parsers within the framework of cross-domain anal-
ysis. In cross-domain text-to-SQL datasets such as
Spider (Yu et al., 2018), SParC (Yu et al., 2019b),
and CoSQL (Yu et al., 2019a), the databases em-
ployed in the train set, dev set, and test set do not

∗The corresponding author is Lu Chen.
1Our code is publicly available at https://github.com/

X-LANCE/text2sql-GPT

overlap. Prior research endeavors have focused on
training specialized text-to-SQL models and op-
timizing their structural components to enhance
overall performance. Notably, these efforts have
yielded impressive model performances across vari-
ous datasets. Nevertheless, the construction of such
models necessitates a substantial number of high-
quality training examples and entails significant
time investments for finetuning. Moreover, these
models often possess intricate structures, rendering
their deployment challenging.

Recent research has provided empirical evidence
establishing the substantial capabilities of Large
Language Models (LLMs), such as GPT-3 (Brown
et al., 2020) and ChatGPT (Ouyang et al., 2022),
across a wide spectrum of domains and tasks. As
the scale of LLMs continues to expand, scholarly
investigations have revealed the presence of emer-
gent abilities (Wei et al., 2022) exclusive to larger
LLMs and absent in their smaller counterparts.
Therefore, the latest studies employ LLMs in the
context of the text-to-SQL task, utilizing the in-
context learning method (Brown et al., 2020). Ow-
ing to the impressive performance demonstrated by
LLMs in zero-shot or few-shot prompting scenar-
ios, the need for extensive finetuning using an abun-
dance of training examples has been rendered un-
necessary. Consequently, the integration of LLMs
in the text-to-SQL process yields notable time and
cost savings.

Nonetheless, contemporary in-context learning
approaches for text-to-SQL encounter certain chal-
lenges. For instance, Rajkumar et al. (2022), in
comparison to SOTA finetuned models, employ a
simplistic prompt designing approach that yields
relatively subpar performance. Similarly, Pour-
reza and Rafiei (2023) employs a convoluted work-
flow to generate the final SQL query, resulting in
achieving SOTA performance on the test set of
the Spider dataset. However, this approach proves
time-consuming and resource-intensive, as it ne-

3501

https://github.com/X-LANCE/text2sql-GPT
https://github.com/X-LANCE/text2sql-GPT

cessitates multiple API calls to LLMs during the
query generation process. Moreover, the recent
advancements in in-context learning methods for
text-to-SQL have yet to be extended to multi-turn
datasets, such as SParC, CoSQL, and DIR (Li et al.,
2023b).

Despite the proficiency of LLMs as zero-shot
and few-shot learners, the mere superficial prompt
design fails to fully activate their capabilities. To
address this limitation, Wei et al. (2023) proposes a
novel prompting technique called chain-of-thought
(CoT). Through the CoT method, the prompt text
encompasses a comprehensive thinking process
that guides LLMs towards accurate deduction of
answers. Notably, the CoT method mirrors the
sequential nature of human reasoning, wherein in-
termediate answers are obtained before arriving at
a final conclusion. Given the intricate nature of the
text-to-SQL task, the CoT method proves highly
suitable, as generating the SQL query entails com-
plex reasoning processes. However, existing CoT
methodologies necessitate extensive time invest-
ments in the selection of canonical examples and
manual labeling. The text-to-SQL task lacks an au-
tomated approach for generating CoT sequences.

In this paper, we propose our in-context learn-
ing method for the text-to-SQL task with the
automatically-generated CoT. First, under the zero-
shot setting, we study the influence on LLMs’
performance caused by the input format of the
database schema. Second, under the few-shot set-
ting, we provide a hybrid strategy to select exem-
plars and study the influence on LLMs’ perfor-
mance caused by the number of exemplars. Our ex-
periment results show that the strategy is effective.
Third, we present our approach named ACT-SQL
to generate auto-CoT for the dataset training exam-
ple consisting of the database schema, the question,
and the corresponding SQL query. The experi-
ment results show that the generated auto-CoT can
indeed improve the LLMs’ performance. The ACT-
SQL achieves the SOTA performance on the Spider
dev set among existing in-context learning meth-
ods. In addition, the ACT-SQL does not need to use
extra LLMs’ API calls, which means that our work-
flow is relatively fast and cheap. Finally, we apply
our approach in multi-turn text-to-SQL datasets in-
cluding SParC and CoSQL and achieve comparable
accuracy scores with finetuned models. Our main
contributions can be summarized as follows:

1. We explore the influence on LLMs’ perfor-

mance under the text-to-SQL task with differ-
ent prompting styles and few-shot exemplar
selection strategies.

2. We propose our approach named ACT-SQL
to generate auto-CoT. The ACT-SQL achieves
the SOTA performance on the Spider dev set
among existing in-context learning methods.
Furthermore, our automatic method is cost-
saving and time-saving and does not need ex-
tra LLMs’ API calls.

3. We extend our method onto the multi-turn text-
to-SQL task and achieve comparable perfor-
mances with finetuned models on the SParC
and CoSQL datasets.

2 Related Work

Text-to-SQL models Over the past several years,
text-to-SQL researches mainly focus on building
well-designed deep neural networks (Chen et al.,
2021b; Cao et al., 2023). RATSQL model (Wang
et al., 2020) and LGESQL model (Cao et al., 2021)
are AST-based approaches, where AST is the ab-
breviation of the abstract syntax tree. They encode
the input and decode the AST of the SQL query
with predefined grammar. AST-based approaches
perform well but are generally complex to deploy.

PICARD (Scholak et al., 2021) is a sequence-
to-sequence model. SQL is a formal language that
follows strict grammar rules. Directly finetuning
pretrained language models (PLMs) on text-to-SQL
datasets would make PLMs likely to generate in-
valid SQL queries. The PICARD model rejects
invalid tokens at each decoding step and constrains
the generated results into a certain output space.

Although these specialized models have
achieved excellent performances, there still exist
some inevitable disadvantages. In order to train a
text-to-SQL model, abundant high-quality training
examples are needed. Constructing and labeling a
large-scale text-to-SQL dataset is always not easy
and would consume a lot of resources and time.
Training and finetuning the model is also a hard
project which costs many computing resources.

In-context learning for text-to-SQL Since
LLMs have shown amazing ability across various
domains and have been applied in many academic
and industrial fields, the latest researches begin
to activate the LLMs’ ability for the text-to-SQL
task. Rajkumar et al. (2022) uses the trivial zero-
shot and few-shot learning setting and performs an

3502

empirical evaluation of text-to-SQL capabilities of
LLMs including GPT-3 (Brown et al., 2020) and
Codex (Chen et al., 2021a). They perform the zero-
shot prompt learning on Spider (Yu et al., 2018),
a large-scale human-labeled cross-domain text-to-
SQL dataset. Their work is relatively simple and
the performance falls behind finetuned models.

Nan et al. (2023) mainly concentrates on
the strategy of exemplars selection. Their work
achieves good performance on several cross-
domain datasets including Spider, Spider-Syn (Gan
et al., 2021a), Spider-DK (Gan et al., 2021b) and
Spider-Realistic (Deng et al., 2021). However, their
work requires an extra preliminary predictor to eval-
uate the SQL’s difficulty level and needs to use
LLMs’ API call many times due to the majority
vote method.

DIN-SQL (Pourreza and Rafiei, 2023) provides a
relatively complex approach. DIN-SQL consists of
a complex workflow that decomposes the problem
into several simpler sub-problems. With the LLM
GPT-4, DIN-SQL has surpassed previous finetuned
models and has achieved the best score on the Spi-
der dataset. But DIN-SQL’s workflow is obviously
slow and expensive since it uses LLMs’ API call
many times to generate one SQL.

3 Methodology

With the in-context learning method, the SQL gen-
eration process can be formulated as

S = LLM(I,D,Q, E).
I represents the instruction. D represents the
database schema. Q represents the question. E =
[(D1, Q1, P1), · · · , (Dn, Qn, Pn)] is the list of ex-
emplars where Pi is the answer prompt which con-
tains the correct SQL for the i-th exemplar. Thus
the performance of LLMs is mainly influenced by
the database prompt style, the exemplar selection
strategy, and the exemplar prompt design.

In this section, we first describe the prompt styles
of the database schema. Then we state our strat-
egy of exemplar selection for the few-shot learning
setting. Furthermore, we introduce our ACT-SQL
approach, i.e. the automatically generated CoT
method for constructing effective answer prompts.
Finally, we extend our approach to the multi-turn
text-to-SQL task.

3.1 Database Prompt Style
Previous works have shown that given the database
schema, strong LLMs (e.g. GPT models) can trans-

late the relatively simple natural language question
into the correct SQL query, though no exemplar is
provided. Under the zero-shot setting, the LLMs
merely take the database schema and the question
as the input. Thus the input format of the database
schema would mainly influence the LLMs’ perfor-
mance. Generally, we use five different database
schema styles, which are shown in Appendix C.1:

1. Table(Column) lists each table followed by
its columns in each line. This style follows
the official document provided by OpenAI2.

2. Table(Column)(PF) adds primary keys and
foreign keys at the end of Table(Column).

3. Create(NoPF) describes all tables and
columns with the “create table” statement in
the SQL grammar. “NoPF” represents that no
information on primary keys and foreign keys
is added. Compared with Table(Column),
this input format contains information on col-
umn types (e.g. number and text) and is more
similar to real SQL statements.

4. Create(EoC) adds primary keys and foreign
keys based on Create(NoPF). “EoC” repre-
sents that they are added at the end of the
corresponding column.

5. Create(EoT) adds primary keys and foreign
keys based on Create(NoPF). “EoT” repre-
sents that they are added at the end of the
table.

Furthermore, database contents are concerned.
Specifically c example rows are appended to each
table. Appendix C.2 shows instances where c = 3.

3.2 Exemplar Selection
Given a few exemplars, LLMs can benefit and ac-
quire tips from them and thus generate SQL queries
with a more standard format and higher accuracy.
Exemplar selection is an important work under the
few-shot setting, which would influence the LLMs’
performance a lot.

We select exemplars using a hybrid strategy.
Specifically, we first of all select ns examples from
the training dataset at random. These dataset exam-
ples are named static exemplars. They would be
used in the context of every test case. As for each
specific test case, we select nd extra examples from

2https://platform.openai.com/examples/
default-sql-translate

3503

https://platform.openai.com/examples/default-sql-translate
https://platform.openai.com/examples/default-sql-translate

the training dataset. These dataset examples are
named dynamic exemplars since they are selected
according to some features of the current test case.
Consequently, there are total ns + nd exemplars
for each test case.

In order to get dynamic exemplars that are more
relevant to the current test case, we compare the nat-
ural language question of the current test case with
all questions in the training dataset. We calculate
the similarity scores with the suitable pretrained
model and then select the top-nd training dataset
examples. We believe that dynamic exemplars with
more relevant questions would provide more effec-
tive information to the LLMs.

3.3 Chain-of-Thought Prompt Design

Under the few-shot learning setting, it has been
proven that the LLMs’ performance can benefit a
lot from the chain-of-thought (CoT) (Wei et al.,
2023) method. In the text-to-SQL task, only the
database schema, the question, and the correspond-
ing SQL query are provided in the prompt under
the trivial few-shot learning setting. However, with
the CoT method, the thought process of how to
write the correct SQL query is added to the prompt.
These prompting texts can help the LLMs think
step by step when generating the complete SQL
query and thus can activate the logical reasoning
ability of the LLMs.

In previous works, some grammar-based text-to-
SQL models utilize the graph encoding technique
to jointly encode both the database schema and
the question. Schema linking (Bogin et al., 2019;
Wang et al., 2020; Cao et al., 2021) is a commonly
used algorithm for building the input graph. If the
question tokens exactly or partially match some
schema item (i.e. table and column) names, then
they are linked with the specific graph edge. It is
obvious that the schema linking method can help
the text-to-SQL models fetch the most relevant ta-
bles and columns among a great number of schema
items based on the question.

Figure 1: Manually labeled CoT for the dataset example.

We design our chain-of-thought prompt with a
similar method to schema linking. Figure 1 shows
an instance of the manually labeled CoT for the
example from the train set of the Spider dataset (Yu
et al., 2018). As suggested in Kojima et al. (2023),
the CoT prompt starts with “Let’s think step by
step”. For each slice of the question sentence that
may contain some information about the schema
item, we add them into the CoT prompting text
in the format shown in Figure 1. Furthermore,
the values mentioned in the question and the SQL
query are also a concern. The final SQL query is
appended at the end of the CoT prompt.

Auto-CoT Although CoT prompts can be manu-
ally labeled, it costs a lot of time to find sufficient
canonical and effective training dataset examples
for CoT labeling. In addition, manually labeled
CoT exemplars are fixed, which means that they
are all static exemplars and dynamic exemplars
are deficient. In order to deal with problems in
the manual labeling process, we introduce an au-
tomatic method to generate auto-CoT prompts for
every example in the training dataset.

Given the question q = (q1, q2, · · · , q|q|) and
the SQL query s, the qi represents the i-th to-
ken in the question sentence. We define qi,j =
(qi, qi+1, · · · , qj) as a slice of the original question.
We first enumerate each column [tab].[col] appear-
ing in the SQL query, where [tab] represents the
table name and [col] represents the column name.
For each column, we use the suitable pretrained
model to compute the similarity scores between the
current column and all the question sentence slices.
The most relevant slice is

argmax
qi,j

Sim([tab].[col], qi,j),

where Sim is the similarity function. We link the
column and its most relevant slice and add them
to the auto-CoT prompt in the same format as the
manual labeled CoT prompt. Note that during this
process, we ignore the column appearing in the
GROUP BY clause of the SQL query, since the
GROUP BY column is commonly not mentioned
directly in the question.

Secondly, we enumerate each table [tab] appear-
ing in the SQL query, where [tab] represents the
table name. In this process, we eliminate tables that
have occurred in the columns, since those tables
have been added into the auto CoT prompt. The
left tables only appear in the FROM clause and

3504

indicate some extra information. For each table,
we also compute all the similarity scores and find
out the most relevant question slice, i.e.,

argmax
qi,j

Sim([tab], qi,j).

We link the table and its most relevant slice and
add them to the auto-CoT.

Finally, we enumerate the values in the SQL
query and then add them to the auto-CoT. Figure 2
shows an instance of the auto-generated CoT from
the train set of the Spider dataset.

Figure 2: Auto-CoT for the dataset example.

3.4 Extension for Multi-turn Text-to-SQL
The prompts described in the previous sections
are designed for the single-turn text-to-SQL task.
However, questions in the multi-turn text-to-SQL
task are context-dependent and thus those prompts
cannot be directly used. Moreover, the auto-CoT
method is also disabled under the multi-turn set-
ting, since the auto-CoT method finds information
about schema linking based on the question slices.
Under the multi-turn setting, this information may
distribute into several context-dependent sentences.

In order to deal with the challenge of the multi-
turn text-to-SQL task, we use LLMs to convert
the multi-turn text-to-SQL task into the single-turn
text-to-SQL task. Concretely, with the help of the
LLMs, we can rewrite the question sentences and
remove the context dependency among them. Thus
each rewritten question and its corresponding SQL
query turn into a new independent dataset exam-
ple. We then directly apply the previous in-context
learning method in the converted multi-turn text-to-
SQL task.

The quality of the rewritten questions would in-
fluence the LLMs’ performance a lot. It is neces-
sary to manually label some rewriting exemplars
in order to fix the format and improve the quality
of the LLMs’ outputs. For each multi-turn text-
to-SQL dataset, we select 10 examples from the
train set at random and manually label the rewritten
results.

4 Experiments

4.1 Experiment Setup
Models We mainly use the GPT-3.5-turbo model
to evaluate our proposed approach. The GPT-3.5-
turbo model is a low-cost LLM and is very large
to have the emergent ability (Wei et al., 2022) for
handling the text-to-SQL task. In addition, we
use the GPT-4 model to evaluate our auto-CoT
method on the Spider dataset (Yu et al., 2018), since
the GPT-4 model has a stronger reasoning ability
but is much more expensive. We use the PLM
text2vec-base-chinese to compute the similar-
ity scores when selecting dynamic exemplars and
generating auto-CoT prompts.

Hyperparameters The temperature in LLMs’
API is set to 0, i.e. the greedy decoding strat-
egy is applied. The text-to-SQL tasks require the
model to generate SQL queries with strict gram-
mar rules. The LLMs are likely to generate invalid
SQL queries or to write SQL queries that are not
relevant to the given questions if the temperature is
too high. The number of max tokens is set to 150
for the trivial in-context learning setting and 750
when using the CoT method.

Datasets We mainly evaluate our proposed ap-
proach on Spider, a large-scale human-labeled
cross-domain text-to-SQL dataset across 200
databases covering 138 domains. The Spider
dataset contains 8,659 examples in the train set
and 1,034 examples in the dev set. It also provides
the evaluation script which divides SQL queries
into four categories (i.e. easy, medium, hard, and
extra) according to the difficulty level. The test set
of Spider is not publicly available. We conduct the
experiments on the dev set.

In addition, we also conduct the in-context
learning experiments on Spider-Syn (Gan et al.,
2021a), Spider-DK (Gan et al., 2021b) and Spider-
Realistic (Deng et al., 2021). Based on Spider,
Spider-Syn replaces some schema-related tokens
in the question with synonyms, which would make
models unable to discover useful schema items
with the simple string-matching method. Spider-
DK defines five types of domain knowledge and
modifies some examples by adding domain knowl-
edge that reflects real-world question paraphrases.
Spider-DK evaluates the models’ generalization
ability across domains when domain knowledge
does not frequently appear in the train set. Spider-
Realistic removes explicit mentions of column

3505

names to evaluate the model’s ability to capture
text-table alignment.

As for multi-turn text-to-SQL datasets, we con-
duct our experiments on SParC (Yu et al., 2019b)
and CoSQL (Yu et al., 2019a). SParC totally con-
sists of 4,298 coherent question sequences includ-
ing 12k+ individual questions and the correspond-
ing SQL queries. CoSQL totally contains 10k+
annotated SQL queries. Each dialogue in CoSQL
simulates a real-world scenario where the common
user is exploring the database and the expert is
retrieving answers with SQL.

Evaluation metrics We use three commonly
used evaluation metrics of the text-to-SQL task:
exact match accuracy (EM), execution accuracy
(EX), and test-suite accuracy (TS). The EM metric
requires each component of the predicted SQL to
be equivalent to the corresponding component of
the gold SQL. Values in the SQL query are not
concerned with the EM metric. The EX metric
requires the execution result of the predicted SQL
to be correct. Since there may exist different SQL
queries that represent the same semantic, the EX
metric is commonly more precise than the EM met-
ric. The TS metric also evaluates the execution
result but requires the result to be correct under
multiple database instances per database schema3.

For multi-turn text-to-SQL datasets, we evalu-
ate our approach with question match accuracy
(QM) and interaction match accuracy (IM). The
QM score is 1 if the predicted SQL query for the
single question is correct. The IM score is 1 if all
the predicted SQL queries in the interaction are
correct.

4.2 Zero-shot Results

Figure 3: Zero-shot performances of GPT-3.5-turbo
using Table(Column) DB style with different rows of
DB contents on Spider dev set.

3https://github.com/taoyds/
test-suite-sql-eval

As discussed in Section 3.1, the LLMs’ perfor-
mance is mainly influenced by the database prompt
style and the rows of database contents under the
zero-shot learning setting. We first conduct experi-
ments for studying the influence on LLMs’ perfor-
mance caused by the rows of database contents. We
fix the LLM as the GPT-3.5-turbo model and the
database style as Table(Column) and only change
the rows of database contents for each table in the
prompt. Figure 3 shows the result on the Spider
dev set. The LLM achieves the lowest score when
no database content is provided. This indicates
that database contents can provide useful tips for
LLMs, especially when the testing case is sensitive
to values in SQL where Table 1 shows two cases.
In the first case, the 3 records from the database
contain exactly one cell value “France” instead of
“French” for the column “singer.Citizenship”. Thus
the LLM successfully predicts the correct value
when these records are added to the prompt. In the
second case, the database contents point out that
“Aberdeen” is the city name so that the LLM can
predict the correct SQL structure.

Question: What are the names of the singers who
are not French citizens?
DB content 0: SELECT Name FROM singer
WHERE Citizenship != ’French’
DB content 3: SELECT Name FROM singer
WHERE Citizenship != ’France’
Questions: Give the flight numbers of flights leav-
ing from Aberdeen.
DB content 0: SELECT FlightNo FROM flights
WHERE SourceAirport = ’Aberdeen’
DB content 3: SELECT FlightNo FROM flights
WHERE SourceAirport IN (SELECT AirportCode
FROM airports WHERE City = ’Aberdeen’)

Table 1: Case study for different rows of DB contents.

The LLM gets the best score when the rows of
database contents is set to 3. Too much database
content in the prompt would not improve the LLMs’
performance. Therefore, we always set the rows of
database contents to 3 for the subsequent experi-
ments.

Table 3 shows the different performances of
the GPT-3.5-turbo model when using different
database styles. In general, Table(Column) and
Table(Column)(PF) achieve higher scores than
the other three database styles with the zero-
shot learning setting because these two database
styles follow the OpenAI’s official document and

3506

https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval

Finetuned Model EM EX TS
T5-3B+PICARD (Scholak et al., 2021) 75.5 79.3 71.9

RASAT+PICARD (Qi et al., 2022) 75.3 80.5 -
N-best List Rerankers + PICARD (Zeng et al., 2022) 76.4 80.6 -

Graphix-3B+PICARD (Li et al., 2023c) 77.1 81.0 -
RESDSQL-3B+NatSQL (Li et al., 2023a) 80.5 84.1 -

LLM Approach API per SQL EM EX TS
Codex Davinci Rajkumar et al. (2022) 1 - 67.0 55.1
Codex Davinci Chang and Fosler-Lussier (2023) 1 - 76.8 -
Codex Davinci DIN-SQL (Pourreza and Rafiei, 2023) 4 57.2 - 69.9

GPT-4 DIN-SQL (Pourreza and Rafiei, 2023) 4 60.1 82.8 74.2
GPT-3.5-turbo ACT-SQL (Ours) 1 62.7 80.4 71.4

GPT-4 ACT-SQL (Ours) 1 61.7 82.9 74.5

Table 2: Performances of ACT-SQL and other previous works on Spider dev set.

DB Style EM EX TS
Table(Column) 45.3 78.3 69.4

Table(Column)(PF) 45.4 79.0 69.1
Create(NoPF) 45.3 77.0 66.1
Create(EoC) 44.8 79.2 67.7
Create(EoT) 44.8 78.3 67.9

Table 3: Zero-shot performances of GPT-3.5-turbo with
different DB styles on Spider dev set.

may be more similar to LLMs’ pretrained data.
Create(EoC) and Create(EoT) performs better
than Create(NoPF) in EX and TS metrics. This
indicates that primary keys and foreign keys in the
prompt can offer LLMs effective information.

4.3 Few-shot Results

Table 11 shows all the few-shot experiment results
on the Spider dev set, where different database
styles and different numbers of static and dynamic
exemplars are used. Compared with the zero-shot
results, it is obvious that all the EM scores increase
a lot. This is because SQL queries from the same
dataset usually share similar grammar and structure
and thus the exemplars from the Spider train set
lead LLMs to output a similar SQL query.

Under the trivial few-shot learning setting,
the TS scores also get improved by 1%-3%
except for the Table(Column) database style.
Table(Column) no longer performs better than
Table(Column)(PF), since LLMs’ accuracy for
predicting hard and extra hard SQL queries get
increased with the few-shot exemplars and thus pri-
mary keys and foreign keys in the prompt become
more important.

The experiment results prove that our ACT-
SQL approach is effective. When the GPT-3.5-
turbo model uses the ACT-SQL approach with the
Create(EoT) database style, it achieves the best
EM score of 62.7% and the best TS score of 71.4%.
The best database style changes because LLMs can
learn from exemplars. Table 13 shows the case
study for the ACT-SQL method. With the trivial
few-shot learning setting, there is a redundant col-
umn “TV_Channel.Hight_definition_TV” appear-
ing in the SELECT clause. When the ACT-SQL
method is applied, the entire output generated by
the LLM contains the complete thinking process
which successfully does the schema linking. After
clarifying all the tables and columns that may be
used in SQL, the LLM eventually writes the correct
SQL query without any redundant schema item.

Since the GPT-4 model is expensive, we use
the GPT-4 model to evaluate our ACT-SQL ap-
proach only with the Create(EoT) database style
and ns = nd = 2. Table 2 shows the performances
of our ACT-SQL and other previous works using
in-context learning with LLMs. The ACT-SQL
approach uses the LLMs’ API call only once for
generating one SQL query and achieves the highest
EM, EX, and TS scores among existing in-context
learning approaches. ACT-SQL’s performance is
also comparable to finetuned models. Actually,
finetuned models would get higher scores on the
dev set than the test set, since these models are
selected by the dev set performance. Instead, in-
context learning methods would not suffer the per-
formance gap between the dev set and the test set.
Table 4 shows some previous works’ performances
on Spider dev set and test set. For finetuned ap-

3507

proaches mentioned in the table, the performances
drop from the dev set to the test set. On the con-
trary, for in-context learning approaches mentioned
in the table, the performances increase from the dev
set to the test set. After all, finetuned models are
selected by the dev set performance, which would
lead to the overfitting on the dev set and the per-
formance dropping on the test set. For in-context
learning approaches, the dev set and the test set are
equal to the model. Performances between the dev
set and the test set are only affected by the dataset
feature.

Finetuned Approach Dev Test
Graphix-3B+PICARD 81.0 77.6

RESDSQL-3B+NatSQL 84.1 79.9
In-context Learning Dev Test
C3 (Dong et al., 2023) 81.8 82.3

DIN-SQL (Pourreza and Rafiei, 2023) 82.8 85.3

Table 4: Performances of different previous approaches
on Spider dev set and test set.

Table 5, Table 6 and Table 7 shows the GPT-
3.5-turbo’s performances on Spider-Syn, Spider-
DK, and Spider-Realistic dev set. We use the
Create(EoT) database style and set ns = nd = 2.
The experiment results show that our approach is
still comparable to finetuned models on Spider-Syn
and Spider-Realistic datasets. On the Spider-DK
dataset, our approach’s EX score surpasses fine-
tuned models. This is due to the wide range of
domain knowledge stored in LLMs.

Approach EM EX TS
Graphix-3B+PICARD 66.9 - -

RESDSQL-3B+NatSQL 69.1 76.9 -
Few-shot (Ours) 47.2 63.7 54.5
ACT-SQL (Ours) 51.5 67.9 59.3

Table 5: Performances of GPT-3.5-turbo and other pre-
vious works on Spider-Syn dev set.

Approach EM EX TS
Graphix-3B+PICARD 51.2 - -

RESDSQL-3B+NatSQL 53.3 66.0 -
Few-shot (Ours) 50.7 68.8 61.7
ACT-SQL (Ours) 49.5 68.2 62.4

Table 6: Performances of GPT-3.5-turbo and other pre-
vious works on Spider-DK dev set.

Approach EM EX TS
Graphix-3B+PICARD 72.4 - -

RESDSQL-3B+NatSQL 77.4 81.9 -
Few-shot (Ours) 52.4 76.4 62.0
ACT-SQL (Ours) 53.5 75.8 61.2

Table 7: Performances of GPT-3.5-turbo and other pre-
vious works on Spider-Realistic dev set.

Approach QM IM
EM EX TS EM EX TS

GAZP+BERT (Zhong et al., 2020) 48.9 47.8 - - - -
RASAT+PICARD (Qi et al., 2022) 67.7 73.3 - 49.1 54.0 -

Few-shot (Ours) 48.4 64.0 55.8 24.6 39.8 31.5
ACT-SQL (Ours) 51.0 63.8 56.9 24.4 38.9 29.6

Table 8: Performances of GPT-3.5-turbo and other pre-
vious works on SParC dev set.

4.4 Multi-turn Datasets Results

Table 8 and Table 9 show the GPT-3.5-turbo’s per-
formances on two multi-turn text-to-SQL datasets,
i.e. SParC and CoSQL. The database style is set
to Create(CoT) and nd, ns are set to 2 as before.
The ACT-SQL approach is not that effective when
applied to multi-turn datasets. We believe that our
two-phase method causes bad performance. In the
first phase, we use LLMs to rewrite questions in
the interaction and convert the multi-turn dataset
into the single-turn dataset. Sometimes the rewrit-
ten result’s quality is bad, which influences the
schema-linking process. Table 10 shows two rewrit-
ten instances from the SParC dev set. In the first
instance, the LLM correctly rewrites all sentences
without missing any key information. However, in
the second instance, the LLM does not remove the
context dependency for the second sentence. This
also leads to the error in the third sentence, where
the keyword “airline” in the first sentence is miss-
ing. In general, our in-context learning method is
comparable to finetuned models (GAZP + BERT)
though there is still a big room for improvement.
Improving LLMs’ performance on this difficult
task is a challenging future work. We just complete
the initial exploration.

Approach QM IM
EM EX TS EM EX TS

GAZP+BERT 42.0 38.8 - - - -
RASAT+PICARD 58.8 67.0 - 27.0 39.6 -
Few-shot (Ours) 45.4 63.9 55.5 14.7 29.4 22.9
ACT-SQL (Ours) 46.0 63.7 55.2 13.3 30.7 21.5

Table 9: Performances of GPT-3.5-turbo and other pre-
vious works on CoSQL dev set.

3508

Original questions:
1. What are all the flights that leave from Ab-
erdeen?
2. Of those, which land in Ashley?
3. How many are there?
Rewritten questions:
1. What are all the flights that depart from Ab-
erdeen? ✓
2. What are the flights that depart from Aberdeen
and land in Ashley? ✓
3. How many flights depart from Aberdeen and
land in Ashley? ✓
Original questions:
1. What are all the airlines?
2. Of these, which is Jetblue Airways?
3. What is the country corresponding it?
Rewritten questions:
1. What are all the airlines? ✓
2. Which one of them is Jetblue Airways? $
3. What is the country corresponding to Jetblue
Airways? $

Table 10: Case study for rewritten questions from SParC
dev set.

5 Conclusion

LLMs have shown a strong ability in various do-
mains with the in-context learning method. The lat-
est studies have attempted to use LLMs to solve the
text-to-SQL task. However, previous prompting ap-
proaches either perform worse than finetuned mod-
els or need to use LLMs’ API call many times. We
design the CoT prompt which can be automatically
generated and propose our ACT-SQL approach.
The ACT-SQL approach uses LLMs’ API call only
once to generate one SQL query. The experiment
results prove that our approach achieves state-of-
the-art performance on the Spider dev set among
existing in-context learning approaches. Further-
more, we extend our approach to multi-turn text-to-
SQL datasets.

Limitations

There are some limitations in our work. First of
all, we use a hybrid strategy for the exemplar selec-
tion. The numbers of static and dynamic exemplars
are hyperparameters and still need manually deter-
mined. In addition, it is a relatively simple strategy
that still needs improvement. Furthermore, our
approach achieves relatively poor scores on some
robustness variants of the Spider dataset and some
multi-turn text-to-SQL datasets. Exploration of

these datasets can be conducted in future work.

Acknowledgements

We thank all the anonymous reviewers for
their thoughtful comments. This work has
been supported by the China NSFC Project
(No.62106142 and No.62120106006), Shanghai
Municipal Science and Technology Major Project
(2021SHZDZX0102), and Startup Fund for Young-
man Research at SJTU (SFYR at SJTU).

References
Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.

Representing schema structure with graph neural net-
works for text-to-SQL parsing. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4560–4565, Florence, Italy.
Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph
enhanced text-to-SQL model with mixed local and
non-local relations. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2541–2555, Online. Association
for Computational Linguistics.

Ruisheng Cao, Lu Chen, Jieyu Li, Hanchong Zhang,
Hongshen Xu, Wangyou Zhang, and Kai Yu. 2023.
A heterogeneous graph to abstract syntax tree frame-
work for text-to-sql. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(11):13796–
13813.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,

3509

https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.1109/TPAMI.2023.3298895
https://doi.org/10.1109/TPAMI.2023.3298895
http://arxiv.org/abs/2305.11853
http://arxiv.org/abs/2305.11853
http://arxiv.org/abs/2305.11853

Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code.

Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zi-
han Xu, Su Zhu, and Kai Yu. 2021b. ShadowGNN:
Graph projection neural network for text-to-SQL
parser. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5567–5577, Online. Association for
Computational Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337–1350, Online. As-
sociation for Computational Linguistics.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-sql with chatgpt.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505–
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8926–8931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql.

Jieyu Li, Zhi Chen, Lu Chen, Zichen Zhu, Hanqi Li,
Ruisheng Cao, and Kai Yu. 2023b. Dir: A large-scale
dialogue rewrite dataset for cross-domain conversa-
tional text-to-sql. Applied Sciences, 13(4).

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023c. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-to-
sql capabilities of large language models: A study on
prompt design strategies.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215–3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabilities
of large language models.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and

3510

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
http://arxiv.org/abs/2307.07306
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2302.05965
http://arxiv.org/abs/2302.05965
https://doi.org/10.3390/app13042262
https://doi.org/10.3390/app13042262
https://doi.org/10.3390/app13042262
http://arxiv.org/abs/2301.07507
http://arxiv.org/abs/2301.07507
http://arxiv.org/abs/2301.07507
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682

Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

Lu Zeng, Sree Hari Krishnan Parthasarathi, and Dilek
Hakkani-Tur. 2022. N-best hypotheses reranking for
text-to-sql systems.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

3511

http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
http://arxiv.org/abs/2210.10668
http://arxiv.org/abs/2210.10668
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

A Detailed Experiment Results

DB Style ns nd
Few-shot ACT-SQL

EM EX TS EM EX TS

Table(Column)
0 4 58.0 77.5 68.8 58.3 78.9 69.2
2 2 59.7 77.9 68.7 60.7 78.7 69.4
4 0 55.1 78.6 68.6 55.9 78.1 69.4

Table(Column)(PF)
0 4 59.3 79.9 70.6 60.8 79.8 70.2
2 2 60.1 79.1 69.3 62.3 79.1 71.0
4 0 54.8 80.0 70.3 57.0 77.9 69.6

Create(NoPF)
0 4 58.8 78.2 68.8 58.8 79.8 68.7
2 2 60.0 79.2 68.9 60.6 79.1 69.1
4 0 56.3 79.4 69.8 57.4 80.7 70.7

Create(EoC)
0 4 58.5 79.5 69.0 58.6 78.7 68.7
2 2 60.1 79.4 68.7 61.9 79.0 71.1
4 0 55.1 79.5 68.9 58.1 80.8 71.0

Create(EoT)
0 4 59.4 79.3 69.5 60.3 79.1 69.8
2 2 61.4 79.4 69.0 62.7 80.4 71.4
4 0 56.6 80.1 69.6 55.5 78.0 68.5

Table 11: Few-shot performances of GPT-3.5-turbo with different DB styles and different numbers of static and
dynamic exemplars on Spider dev set.

LLM Approach Easy Medium Hard Extra All
GPT-3.5-turbo ACT-SQL (Ours) 89.1 77.8 62.6 36.7 71.4

GPT-4 ACT-SQL (Ours) 91.1 79.4 67.2 44.0 74.5

Table 12: Detailed performances of ACT-SQL on Spider dev set.

B Auto-CoT by LLM

Question: Find the package choice and series name of the TV channel that has high definition TV.
Few-shot: SELECT series_name, Hight_definition_TV, Package_Option FROM TV_Channel WHERE
Hight_definition_TV = ’yes’
ACT-SQL: SELECT package_option , series_name FROM TV_Channel WHERE Hight_definition_TV
= ’yes’
Entire Output:
Let’s think step by step.
According to "TV channel that has high definition TV", columns [TV_Channel.Hight_definition_TV]
may be used.
According to "package choice and series name", columns [TV_Channel.Package_Option] and
[TV_Channel.series_name] may be used.
So the final answer is:
SELECT package_option , series_name FROM TV_Channel WHERE Hight_definition_TV = ’yes’

Table 13: Case study for ACT-SQL. The entire output is totally generated by the LLM with the ACT-SQL approach.

C Prompts

In this section, we list detailed prompts used in our experiments.

3512

C.1 Database Styles

C.1.1 Table(Column)
stadium(Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average)
singer(Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male)
concert(concert_ID, concert_Name, Theme, Stadium_ID, Year)
singer_in_concert(concert_ID, Singer_ID)

C.1.2 Table(Column)(PF)
stadium(Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average)
singer(Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male)
concert(concert_ID, concert_Name, Theme, Stadium_ID, Year)
singer_in_concert(concert_ID, Singer_ID)
primary keys = [stadium.Stadium_ID, singer.Singer_ID, concert.concert_ID,
singer_in_concert.concert_ID]
foreign keys = [concert.Stadium_ID = stadium.Stadium_ID, singer_in_concert.Singer_ID =
singer.Singer_ID, singer_in_concert.concert_ID = concert.concert_ID]

C.1.3 Create(NoPF)
create table stadium (

Stadium_ID number,
Location text,
Name text,
Capacity number,
Highest number,
Lowest number,
Average number

)
create table singer (

Singer_ID number,
Name text,
Country text,
Song_Name text,
Song_release_year text,
Age number,
Is_male others

)
create table concert (

concert_ID number,
concert_Name text,
Theme text,
Stadium_ID text,
Year text

)
create table singer_in_concert (

concert_ID number,
Singer_ID text

)

C.1.4 Create(EoC)
create table stadium (

Stadium_ID number primary key,
Location text,

3513

Name text,
Capacity number,
Highest number,
Lowest number,
Average number

)
create table singer (

Singer_ID number primary key,
Name text,
Country text,
Song_Name text,
Song_release_year text,
Age number,
Is_male others

)
create table concert (

concert_ID number primary key,
concert_Name text,
Theme text,
Stadium_ID text references stadium(Stadium_ID),
Year text

)
create table singer_in_concert (

concert_ID number primary key references concert(concert_ID),
Singer_ID text references singer(Singer_ID)

)

C.1.5 Create(EoT)
create table stadium (

Stadium_ID number,
Location text,
Name text,
Capacity number,
Highest number,
Lowest number,
Average number,
primary key (Stadium_ID)

)
create table singer (

Singer_ID number,
Name text,
Country text,
Song_Name text,
Song_release_year text,
Age number,
Is_male others,
primary key (Singer_ID)

)
create table concert (

concert_ID number,
concert_Name text,
Theme text,

3514

Stadium_ID text,
Year text,
primary key (concert_ID),
foreign key (Stadium_ID) references stadium(Stadium_ID)

)
create table singer_in_concert (

concert_ID number,
Singer_ID text,
primary key (concert_ID),
foreign key (Singer_ID) references singer(Singer_ID),
foreign key (concert_ID) references concert(concert_ID)

)

C.2 Database Contents

We only use the Table(Column) and the Create(EoT) database styles in the following prompt examples.
The other three database styles are similar. The rows of database contents is set to 3 in the following
prompt examples.

C.2.1 Table(Column)

stadium(Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average)
/*
3 example rows from table stadium:
Stadium_ID Location Name Capacity Highest Lowest Average
1 Raith Rovers Stark’s Park 10104 4812 1294 2106
2 Ayr United Somerset Park 11998 2363 1057 1477
3 East Fife Bayview Stadium 2000 1980 533 864
**/
singer(Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male)
/*
3 example rows from table singer:
Singer_ID Name Country Song_Name Song_release_year Age Is_male
1 Joe Sharp Netherlands You 1992 52 F
2 Timbaland United States Dangerous 2008 32 T
3 Justin Brown France Hey Oh 2013 29 T
**/
concert(concert_ID, concert_Name, Theme, Stadium_ID, Year)
/*
3 example rows from table concert:
concert_ID concert_Name Theme Stadium_ID Year
1 Auditions Free choice 1 2014
2 Super bootcamp Free choice 2 2 2014
3 Home Visits Bleeding Love 2 2015
**/
singer_in_concert(concert_ID, Singer_ID) /*
3 example rows from table singer_in_concert:
concert_ID Singer_ID
1 2
1 3
1 5
**/

3515

C.2.2 Create(EoT)

create table stadium (
Stadium_ID number,
Location text,
Name text,
Capacity number,
Highest number,
Lowest number,
Average number,
primary key (Stadium_ID)

)
/*
3 example rows from table stadium:
Stadium_ID Location Name Capacity Highest Lowest Average
1 Raith Rovers Stark’s Park 10104 4812 1294 2106
2 Ayr United Somerset Park 11998 2363 1057 1477
3 East Fife Bayview Stadium 2000 1980 533 864
**/
create table singer (

Singer_ID number,
Name text,
Country text,
Song_Name text,
Song_release_year text,
Age number,
Is_male others,
primary key (Singer_ID)

)
/*
3 example rows from table singer:
Singer_ID Name Country Song_Name Song_release_year Age Is_male
1 Joe Sharp Netherlands You 1992 52 F
2 Timbaland United States Dangerous 2008 32 T
3 Justin Brown France Hey Oh 2013 29 T
**/
create table concert (

concert_ID number,
concert_Name text,
Theme text,
Stadium_ID text,
Year text,
primary key (concert_ID),
foreign key (Stadium_ID) references stadium(Stadium_ID)

)
/*
3 example rows from table concert:
concert_ID concert_Name Theme Stadium_ID Year
1 Auditions Free choice 1 2014
2 Super bootcamp Free choice 2 2 2014
3 Home Visits Bleeding Love 2 2015
**/

3516

create table singer_in_concert (
concert_ID number,
Singer_ID text,
primary key (concert_ID),
foreign key (Singer_ID) references singer(Singer_ID),
foreign key (concert_ID) references concert(concert_ID)

)
/*
3 example rows from table singer_in_concert:
concert_ID Singer_ID
1 2
1 3
1 5
**/

C.3 In-context Learning Prompts

We only use the Create(EoT) database styles in the following prompt examples. The other four database
styles are similar. The rows of database contents is set to 3 in the following prompt examples. Under the
few-shot setting, the first two shots are static exemplars and the last two shots are dynamic exemplars.

C.3.1 Zero-shot
role: system
content:
Given the database schema, you need to translate the question into the SQL query.

role: user
content:
Database schema:
create table stadium (

Stadium_ID number,
Location text,
Name text,
Capacity number,
Highest number,
Lowest number,
Average number,
primary key (Stadium_ID)

)
/*
3 example rows from table stadium:
Stadium_ID Location Name Capacity Highest Lowest Average
1 Raith Rovers Stark’s Park 10104 4812 1294 2106
2 Ayr United Somerset Park 11998 2363 1057 1477
3 East Fife Bayview Stadium 2000 1980 533 864
**/
create table singer (

Singer_ID number,
Name text,
Country text,
Song_Name text,
Song_release_year text,
Age number,

3517

Is_male others,
primary key (Singer_ID)

)
/*
3 example rows from table singer:
Singer_ID Name Country Song_Name Song_release_year Age Is_male
1 Joe Sharp Netherlands You 1992 52 F
2 Timbaland United States Dangerous 2008 32 T
3 Justin Brown France Hey Oh 2013 29 T
**/
create table concert (

concert_ID number,
concert_Name text,
Theme text,
Stadium_ID text,
Year text,
primary key (concert_ID),
foreign key (Stadium_ID) references stadium(Stadium_ID)

)
/*
3 example rows from table concert:
concert_ID concert_Name Theme Stadium_ID Year
1 Auditions Free choice 1 2014
2 Super bootcamp Free choice 2 2 2014
3 Home Visits Bleeding Love 2 2015
**/
create table singer_in_concert (

concert_ID number,
Singer_ID text,
primary key (concert_ID),
foreign key (Singer_ID) references singer(Singer_ID),
foreign key (concert_ID) references concert(concert_ID)

)
/*
3 example rows from table singer_in_concert:
concert_ID Singer_ID
1 2
1 3
1 5
**/
Question: How many singers do we have?

C.3.2 Few-shot
role: system
content:
Given the database schema, you need to translate the question into the SQL query.

role: user
content:
Database schema:
create table ACCOUNTS (

custid number,

3518

name text,
primary key (custid)

)
/*
3 example rows from table ACCOUNTS:
custid name
1 Brown
2 Wang
3 O’mahony
**/
create table SAVINGS (

custid number,
balance number,
primary key (custid),
foreign key (custid) references ACCOUNTS(custid)

)
/*
3 example rows from table SAVINGS:
custid balance
1 200000.0
2 999999999.0
3 230000.0
**/
create table CHECKING (

custid number,
balance number,
primary key (custid),
foreign key (custid) references ACCOUNTS(custid)

)
/*
3 example rows from table CHECKING:
custid balance
1 10000.0
2 2000.0
3 3000.0
**/
Question: Find the name and savings balance of the top 3 accounts with the highest saving balance sorted
by savings balance in descending order.

role: assistant
content:
SELECT T1.name , T2.balance FROM accounts AS T1 JOIN savings AS T2 ON T1.custid = T2.custid
ORDER BY T2.balance DESC LIMIT 3

role: user
content:
Database schema:
create table flight (

flno number,
origin text,
destination text,

3519

distance number,
departure_date time,
arrival_date time,
price number,
aid number,
primary key (flno),
foreign key (aid) references aircraft(aid)

)
/*
3 example rows from table flight:
flno origin destination distance departure_date arrival_date price

aid
99 Los Angeles Washington D.C. 2308 04/12/2005 09:30 04/12/2005 09:40

235.98 1
13 Los Angeles Chicago 1749 04/12/2005 08:45 04/12/2005 08:45

220.98 3
346 Los Angeles Dallas 1251 04/12/2005 11:50 04/12/2005 07:05 182

2
**/
create table aircraft (

aid number,
name text,
distance number,
primary key (aid)

)
/*
3 example rows from table aircraft:
aid name distance
1 Boeing 747-400 8430
2 Boeing 737-800 3383
3 Airbus A340-300 7120
**/
create table employee (

eid number,
name text,
salary number,
primary key (eid)

)
/*
3 example rows from table employee:
eid name salary
242518965 James Smith 120433
141582651 Mary Johnson 178345
11564812 John Williams 153972
**/
create table certificate (

eid number,
aid number,
primary key (eid),
foreign key (aid) references aircraft(aid),
foreign key (eid) references employee(eid)

3520

)
/*
3 example rows from table certificate:
eid aid
11564812 2
11564812 10
90873519 6
**/
Question: Which destination has least number of flights?

role: assistant
content:
SELECT destination FROM Flight GROUP BY destination ORDER BY count(*) LIMIT 1

role: user
content:
Database schema:
create table Activity (

actid number,
activity_name text,
primary key (actid)

)
/*
3 example rows from table Activity:
actid activity_name
770 Mountain Climbing
771 Canoeing
772 Kayaking
**/
create table Participates_in (

stuid number,
actid number,
foreign key (actid) references Activity(actid),
foreign key (stuid) references Student(StuID)

)
/*
3 example rows from table Participates_in:
stuid actid
1001 770
1001 771
1001 777
**/
create table Faculty_Participates_in (

FacID number,
actid number,
foreign key (actid) references Activity(actid),
foreign key (FacID) references Faculty(FacID)

)
/*
3 example rows from table Faculty_Participates_in:
FacID actid

3521

1082 784
1082 785
1082 790
**/
create table Student (

StuID number,
LName text,
Fname text,
Age number,
Sex text,
Major number,
Advisor number,
city_code text,
primary key (StuID)

)
/*
3 example rows from table Student:
StuID LName Fname Age Sex Major Advisor city_code
1001 Smith Linda 18 F 600 1121 BAL
1002 Kim Tracy 19 F 600 7712 HKG
1003 Jones Shiela 21 F 600 7792 WAS
**/
create table Faculty (

FacID number,
Lname text,
Fname text,
Rank text,
Sex text,
Phone number,
Room text,
Building text,
primary key (FacID)

)
/*
3 example rows from table Faculty:
FacID Lname Fname Rank Sex Phone Room Building
1082 Giuliano Mark Instructor M 2424 224 NEB
1121 Goodrich Michael Professor M 3593 219 NEB
1148 Masson Gerald Professor M 3402 224B NEB
**/
Question: How many female Professors do we have?

role: assistant
content:
SELECT count(*) FROM Faculty WHERE Sex = ’F’ AND Rank = "Professor"

role: user
content:
Database schema:
create table region (

Region_ID number,

3522

Region_name text,
Date text,
Label text,
Format text,
Catalogue text,
primary key (Region_ID)

)
/*
3 example rows from table region:
Region_ID Region_name Date Label Format Catalogue
1 United Kingdom 1 July 2002 Parlophone CD 540 3622
2 United Kingdom 1 July 2002 Parlophone 2× LP 539 9821
3 Japan 3 July 2002 Toshiba-EMI CD TOCP-66045
**/
create table party (

Party_ID number,
Minister text,
Took_office text,
Left_office text,
Region_ID number,
Party_name text,
primary key (Party_ID),
foreign key (Region_ID) references region(Region_ID)

)
/*
3 example rows from table party:
Party_ID Minister Took_office Left_office Region_ID Party_name
1 Dr. Kwame Nkrumah (MP) 1957 1958 1 Convention Peoples Party
2 Kojo Botsio (MP) 1958 1959 2 Progress Party
3 Ebenezer Ako-Adjei (MP) 1959 1960 3 3
**/
create table member (

Member_ID number,
Member_Name text,
Party_ID text,
In_office text,
primary key (Member_ID),
foreign key (Party_ID) references party(Party_ID)

)
/*
3 example rows from table member:
Member_ID Member_Name Party_ID In_office
1 Hon Tony Abbott 3 1994–present
2 Hon Dick Adams 2 1993–2013
3 Anthony Albanese 2 1996–present
**/
create table party_events (

Event_ID number,
Event_Name text,
Party_ID number,
Member_in_charge_ID number,

3523

primary key (Event_ID),
foreign key (Member_in_charge_ID) references member(Member_ID),
foreign key (Party_ID) references party(Party_ID)

)
/*
3 example rows from table party_events:
Event_ID Event_Name Party_ID Member_in_charge_ID
1 Annaual Meeting 1 4
2 Conference 1 12
3 Annaual Meeting 2 2
**/
Question: How many parties do we have?

role: assistant
content:
SELECT count(DISTINCT party_name) FROM party

role: user
content:
Database schema:
create table stadium (

Stadium_ID number,
Location text,
Name text,
Capacity number,
Highest number,
Lowest number,
Average number,
primary key (Stadium_ID)

)
/*
3 example rows from table stadium:
Stadium_ID Location Name Capacity Highest Lowest Average
1 Raith Rovers Stark’s Park 10104 4812 1294 2106
2 Ayr United Somerset Park 11998 2363 1057 1477
3 East Fife Bayview Stadium 2000 1980 533 864
**/
create table singer (

Singer_ID number,
Name text,
Country text,
Song_Name text,
Song_release_year text,
Age number,
Is_male others,
primary key (Singer_ID)

)
/*
3 example rows from table singer:
Singer_ID Name Country Song_Name Song_release_year Age Is_male
1 Joe Sharp Netherlands You 1992 52 F

3524

2 Timbaland United States Dangerous 2008 32 T
3 Justin Brown France Hey Oh 2013 29 T
**/
create table concert (

concert_ID number,
concert_Name text,
Theme text,
Stadium_ID text,
Year text,
primary key (concert_ID),
foreign key (Stadium_ID) references stadium(Stadium_ID)

)
/*
3 example rows from table concert:
concert_ID concert_Name Theme Stadium_ID Year
1 Auditions Free choice 1 2014
2 Super bootcamp Free choice 2 2 2014
3 Home Visits Bleeding Love 2 2015
**/
create table singer_in_concert (

concert_ID number,
Singer_ID text,
primary key (concert_ID),
foreign key (Singer_ID) references singer(Singer_ID),
foreign key (concert_ID) references concert(concert_ID)

)
/*
3 example rows from table singer_in_concert:
concert_ID Singer_ID
1 2
1 3
1 5
**/
Question: How many singers do we have?

C.3.3 Auto-CoT
role: system
content:
Given the database schema, you need to translate the question into the SQL query.

role: user
content:
Database schema:
create table ACCOUNTS (

custid number,
name text,
primary key (custid)

)
/*
3 example rows from table ACCOUNTS:
custid name
1 Brown

3525

2 Wang
3 O’mahony
**/
create table SAVINGS (

custid number,
balance number,
primary key (custid),
foreign key (custid) references ACCOUNTS(custid)

)
/*
3 example rows from table SAVINGS:
custid balance
1 200000.0
2 999999999.0
3 230000.0
**/
create table CHECKING (

custid number,
balance number,
primary key (custid),
foreign key (custid) references ACCOUNTS(custid)

)
/*
3 example rows from table CHECKING:
custid balance
1 10000.0
2 2000.0
3 3000.0
**/
Question: Find the name and savings balance of the top 3 accounts with the highest saving balance sorted
by savings balance in descending order.

role: assistant
content:
Let’s think step by step.
According to "savings balance", columns [SAVINGS.balance] may be used.
According to "accounts", columns [ACCOUNTS.name] may be used.
Values [3] may be used.
So the final answer is:
SELECT T1.name , T2.balance FROM accounts AS T1 JOIN savings AS T2 ON T1.custid = T2.custid
ORDER BY T2.balance DESC LIMIT 3

role: user
content:
Database schema:
create table flight (

flno number,
origin text,
destination text,
distance number,
departure_date time,

3526

arrival_date time,
price number,
aid number,
primary key (flno),
foreign key (aid) references aircraft(aid)

)
/*
3 example rows from table flight:
flno origin destination distance departure_date arrival_date price

aid
99 Los Angeles Washington D.C. 2308 04/12/2005 09:30 04/12/2005 09:40

235.98 1
13 Los Angeles Chicago 1749 04/12/2005 08:45 04/12/2005 08:45

220.98 3
346 Los Angeles Dallas 1251 04/12/2005 11:50 04/12/2005 07:05 182

2
**/
create table aircraft (

aid number,
name text,
distance number,
primary key (aid)

)
/*
3 example rows from table aircraft:
aid name distance
1 Boeing 747-400 8430
2 Boeing 737-800 3383
3 Airbus A340-300 7120
**/
create table employee (

eid number,
name text,
salary number,
primary key (eid)

)
/*
3 example rows from table employee:
eid name salary
242518965 James Smith 120433
141582651 Mary Johnson 178345
11564812 John Williams 153972
**/
create table certificate (

eid number,
aid number,
primary key (eid),
foreign key (aid) references aircraft(aid),
foreign key (eid) references employee(eid)

)
/*

3527

3 example rows from table certificate:
eid aid
11564812 2
11564812 10
90873519 6
**/
Question: Which destination has least number of flights?

role: assistant
content:
Let’s think step by step.
According to "flights", columns [flight.destination] may be used.
Values [1] may be used.
So the final answer is:
SELECT destination FROM Flight GROUP BY destination ORDER BY count(*) LIMIT 1

role: user
content:
Database schema:
create table Student (

StuID number,
LName text,
Fname text,
Age number,
Sex text,
Major number,
Advisor number,
city_code text,
primary key (StuID)

)
/*
3 example rows from table Student:
StuID LName Fname Age Sex Major Advisor city_code
1001 Smith Linda 18 F 600 1121 BAL
1002 Kim Tracy 19 F 600 7712 HKG
1003 Jones Shiela 21 F 600 7792 WAS
**/
create table Dorm (

dormid number,
dorm_name text,
student_capacity number,
gender text

)
/*
3 example rows from table Dorm:
dormid dorm_name student_capacity gender
100 Smith Hall 85 X
110 Bud Jones Hall 116 M
140 Fawlty Towers 355 X
**/
create table Dorm_amenity (

3528

amenid number,
amenity_name text

)
/*
3 example rows from table Dorm_amenity:
amenid amenity_name
900 TV Lounge
901 Study Room
902 Pub in Basement
**/
create table Has_amenity (

dormid number,
amenid number,
foreign key (amenid) references Dorm_amenity(amenid),
foreign key (dormid) references Dorm(dormid)

)
/*
3 example rows from table Has_amenity:
dormid amenid
109 900
109 901
109 903
**/
create table Lives_in (

stuid number,
dormid number,
room_number number,
foreign key (dormid) references Dorm(dormid),
foreign key (stuid) references Student(StuID)

)
/*
3 example rows from table Lives_in:
stuid dormid room_number
1001 109 105
1002 100 112
1003 100 124
**/
Question: How many dorms have amenities?

role: assistant
content:
Let’s think step by step.
According to "dorms have amenities ?", columns [Has_amenity.dormid] may be used.
So the final answer is:
SELECT count(DISTINCT dormid) FROM has_amenity

role: user
content:
Database schema:
create table Student (

StuID number,

3529

LName text,
Fname text,
Age number,
Sex text,
Major number,
Advisor number,
city_code text,
primary key (StuID)

)
/*
3 example rows from table Student:
StuID LName Fname Age Sex Major Advisor city_code
1001 Smith Linda 18 F 600 1121 BAL
1002 Kim Tracy 19 F 600 7712 HKG
1003 Jones Shiela 21 F 600 7792 WAS
**/
create table Dorm (

dormid number,
dorm_name text,
student_capacity number,
gender text

)
/*
3 example rows from table Dorm:
dormid dorm_name student_capacity gender
100 Smith Hall 85 X
110 Bud Jones Hall 116 M
140 Fawlty Towers 355 X
**/
create table Dorm_amenity (

amenid number,
amenity_name text

)
/*
3 example rows from table Dorm_amenity:
amenid amenity_name
900 TV Lounge
901 Study Room
902 Pub in Basement
**/
create table Has_amenity (

dormid number,
amenid number,
foreign key (amenid) references Dorm_amenity(amenid),
foreign key (dormid) references Dorm(dormid)

)
/*
3 example rows from table Has_amenity:
dormid amenid
109 900
109 901

3530

109 903
**/
create table Lives_in (

stuid number,
dormid number,
room_number number,
foreign key (dormid) references Dorm(dormid),
foreign key (stuid) references Student(StuID)

)
/*
3 example rows from table Lives_in:
stuid dormid room_number
1001 109 105
1002 100 112
1003 100 124
**/
Question: How many diffrent dorm amenities are there?

role: assistant
content:
Let’s think step by step.
According to "dorm amenities are there ?", tables [Dorm_amenity] may be used.
So the final answer is:
SELECT count(*) FROM dorm_amenity

role: user
content:
Database schema:
create table stadium (

Stadium_ID number,
Location text,
Name text,
Capacity number,
Highest number,
Lowest number,
Average number,
primary key (Stadium_ID)

)
/*
3 example rows from table stadium:
Stadium_ID Location Name Capacity Highest Lowest Average
1 Raith Rovers Stark’s Park 10104 4812 1294 2106
2 Ayr United Somerset Park 11998 2363 1057 1477
3 East Fife Bayview Stadium 2000 1980 533 864
**/
create table singer (

Singer_ID number,
Name text,
Country text,
Song_Name text,
Song_release_year text,

3531

Age number,
Is_male others,
primary key (Singer_ID)

)
/*
3 example rows from table singer:
Singer_ID Name Country Song_Name Song_release_year Age Is_male
1 Joe Sharp Netherlands You 1992 52 F
2 Timbaland United States Dangerous 2008 32 T
3 Justin Brown France Hey Oh 2013 29 T
**/
create table concert (

concert_ID number,
concert_Name text,
Theme text,
Stadium_ID text,
Year text,
primary key (concert_ID),
foreign key (Stadium_ID) references stadium(Stadium_ID)

)
/*
3 example rows from table concert:
concert_ID concert_Name Theme Stadium_ID Year
1 Auditions Free choice 1 2014
2 Super bootcamp Free choice 2 2 2014
3 Home Visits Bleeding Love 2 2015
**/
create table singer_in_concert (

concert_ID number,
Singer_ID text,
primary key (concert_ID),
foreign key (Singer_ID) references singer(Singer_ID),
foreign key (concert_ID) references concert(concert_ID)

)
/*
3 example rows from table singer_in_concert:
concert_ID Singer_ID
1 2
1 3
1 5
**/
Question: How many singers do we have?

3532

