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Abstract
Prompt engineering, as an efficient and effec-
tive way to leverage Large Language Models
(LLM), has drawn a lot of attention from the
research community. The existing research pri-
marily emphasizes the importance of adapting
prompts to specific tasks, rather than specific
LLMs. However, a good prompt is not solely
defined by its wording, but also binds to the na-
ture of the LLM in question. In this work, we
first quantitatively demonstrate that different
prompts should be adapted to different LLMs to
enhance their capabilities across various down-
stream tasks in NLP. Then we novelly propose
a model-adaptive prompt optimizer (MAPO)
method that optimizes the original prompts for
each specific LLM in downstream tasks. Ex-
tensive experiments indicate that the proposed
method can effectively refine prompts for an
LLM, leading to significant improvements over
various downstream tasks.

1 Introduction
Advancements in Large Language Models (LLMs)
have ushered in a transformative era in natural lan-
guage processing, showcasing their remarkable
capabilities across a wide range of tasks (Ope-
nAI, 2023; Bubeck et al., 2023). While these
models possess human-like comprehension and re-
sponse abilities, their performance is heavily in-
fluenced by the quality of prompts. As can be
observed in Fig. 1, answers from different LLMs
vary widely when they are provided with the same
task-specific prompts. Therefore, it is necessary to
generate prompts that are most suitable for each
LLM, thereby enhancing its performance on down-
stream tasks.

A common practice towards prompt optimiza-
tion is to count on human expertise (White et al.,
2023; Jiang et al., 2022; Zamfirescu-Pereira et al.,

QA

Generation

Task Model Inference

GPT-J : The target is the person who is going to be doing the 
work.

GPT-J: bees \n What are the topics in the sentence: bees collect 
nectar from the flowers

LLaMA: Closed loop</s>

BLOOM: bee, collect, flower</s>

BLOOM: 100% of the time, the loop is open.

LLaMA: bees collect nectar from the flowers \n What are the 
topics in the sentence: the bees

GPT-J: Yes. \n The movie is a remake of the 1979 movie of the 
same name. The original movie was a

BLOOM: No</s>

LLaMA: Yes. \n The movie is about a man who is a widower and 
has a son. He is a very good father

Classification

Prompt: What other type of loop is 
there other than an open loop?

Ground Truth: closed loop

Prompt: What are the topics in the 
sentence: bees collect nectar from the 
flowers

Ground Truth: flower, bee, nectar

Prompt: as it turns out , you can go 
home again . The sentiment 
expressed for the movie is 

Ground Truth: Positive

(a) (b)

Figure 1: Variance on answers from different LLMs (b) when
they are given the same task-specific prompts (a).

2023). While effective, such approaches are costly
and unscalable. Hence, there has been a lot of
effort to streamline the prompt optimization pro-
cess through automated or semi-automated ways,
including prompt retrieval (Ma et al., 2023; Zhou
et al., 2022), prompt generation from scratch (Pang
et al., 2023), and prompt editing (Gao et al., 2020;
Pryzant et al., 2023; Deng et al., 2022). For ex-
ample, in prompt retrieval, Ma et al. (2023) pro-
pose a search strategy based on greedy search
to identify near-optimal prompts for in-context
learning; in prompt generating from scratch, Pang
et al. (2023) introduce SharpT, which learns a
shared latent space and generates soft prompts us-
ing a lightweight prompt generator; in prompt edit-
ing, some approaches rely on reinforcement learn-
ing or LLM-based feedback for prompt optimiza-
tion (Deng et al., 2022; Zhou et al., 2022).

However, the aforementioned research primarily
emphasizes the importance of adapting prompts
to specific tasks, rather than specific LLMs. The
latter, although very important, has not been stud-
ied to date in NLP. The only relevant work so
far has been done on multi-modal large models,
which automatically optimizing prompts using re-
inforcement learning to generate images based
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Figure 2: The performance of different LLMs on task-specific prompts for three tasks: question-answering (a), classification
(b), and generation (c). The results reveal significant variations across different LLMs’ performance.

on text (Hao et al., 2022). They underscore the
concept of “model-preferred prompts” or “model-
specific prompts”, emphasizing that there’s a need
for a systematic method to automatically align user
intentions with the specific prompt preferences of
each model. Therefore, in this paper, we novelly
propose a Model-Adaptive Prompt Optimization
(i.e. MAPO) approach for LLMs in NLP. Given
the lack of effective training signals, we first estab-
lish a so-called warm-up dataset to obtain candi-
date prompts from an oracle LLM, and then model
the prompt optimization problem with reinforce-
ment learning. Specifically, we first generate can-
didate prompts and search for the optimal prompts
to establish a warm-up dataset. After that, we
combine Supervised Fine-Tuning (SFT) and Re-
inforcement Learning (RL) to optimize original
prompts for each specific LLM in various down-
stream tasks. Moreover, we make joint learning
with Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) and RRMF (note that RRMF is
inspired by RRHF (Yuan et al., 2023)), to further
improve the performance of RL. We conduct ex-
tensive experiments which validates the robustness
and generalization of the proposed MAPO. To sum
up, our main research question revolves around
identifying the optimal prompt that is suited for
various models. Our contributions are threefold:

• We are the first to quantitatively show that
different prompts should be adapted to differ-
ent Large Language Models (LLMs) in order
to enhance their performance across various
NLP downstream tasks.

• We introduce a novel approach called the
Model-Adaptive Prompt Optimizer (MAPO),
specifically designed to optimize the original
prompts for each particular LLM in down-
stream tasks.

• The experiments show that our proposed
MAPO model exhibits greater robustness and
generalization and also achieves superior per-
formance in a variety of downstream tasks.

2 Empirical study
In this section, we conduct empirical study on three
LLMs (BLOOM-7B (Scao et al., 2022), GPT-J-
6B (Wang and Komatsuzaki, 2021), and LLaMA-
7B (Scao et al., 2022)) to evaluate their separate
performance on question-answering (QA), classifi-
cation, and generation tasks with same task-specific
prompts. We use nine dataset from P3 (Sanh et al.,
2021) covering three downstream tasks with de-
tails in Appendix E. P3 is a widely-used prompt
benchmark which contains original prompts and
the corresponding ground-truth answers. We adopt
F1 score, accuracy and ROUGE-L for QA, clas-
sification, and generation tasks, respectively. The
visualization results are shown in the Fig. 2. From
the violin plot, we observe significant variations
in distribution among different LLMs in each task.
For example, in the generation task, the results of
all three models are distributed within the range of
0 to 0.5, but there are still differences in the spe-
cific distribution patterns. Moreover, the medians,
means, and other statistical measures also differ
greatly among three LLMs in each downstream
task. Therefore, we consider that finding the op-
timal prompt for each specific LLM on each task
is meaningful, as it can help enhance the LLMs’
performance on various downstream tasks.

3 Methods
Based on the above empirical study, we present
MAPO, a model-adaptive prompt optimization ap-
proach for LLMs. It takes the original prompt as in-
put and generate an optimized prompt which makes
an LLM give better outputs. The framework of
MAPO is shown in Fig. 3.

3.1 Warm-up Dataset Establishment
We first establish a warm-up dataset as training
dataset for prompt optimization.

Generating Candidate Prompts. The original
prompts are from nine above-mentioned datasets
in P3 (Sanh et al., 2021). We generate 1,000 can-
didate prompts per prompt using GPT-3.5 1. The

1https://chat.openai.com/
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Figure 3: Framework of the proposed MAPO, including warm-up dataset establishment and prompt optimizer construction.

Tasks Dataset Train (Pairs) Val (Pairs) Test (Pairs)

QA
AdverQA 10000 1000 -
OpenQA 4957 500 500
CloseQA 11679 1000 1000

Class
News 120000 - 7600
Movie 8530 1066 1066
QASC 8134 926 920

Gen
Topics 67389 4018 1497
Summary 14732 818 819
Explan 9741 1221 -

Table 1: The amount of the warm-up dataset on various
downstream tasks.

generated candidate prompts should maintain se-
mantic meaning similar to the original prompt but
may have different expressions. To achieve this, we
use the following instruction as input for GPT-3.5
to generate candidates: “Please rewrite the given
text ‘original prompt’ while keeping the semantic
meaning unchanged.”. Some candidate prompts
are shown in Appendix A.

Searching for the Optimal Prompt. To deter-
mine which candidate prompt is optimal for an orig-
inal prompt, we compare the match degree, which
refers to the similarity, between the outputs gener-
ated using a candidate prompt and the ground truth
output. The purpose is to identify the candidate
prompt that produces an output most similar to the
ground truth output. When a ground-truth output is
not available, the output of a stronger LLM, such
as GPT-3.5, is regarded as the ground-truth. Specif-
ically, first, we input the original prompt P and
each candidate prompt into an LLM, respectively,
for inference and obtain the corresponding outputs.
Next, we compare the match degree with specified
evaluation metrics. We adopt F1 score, accuracy,
and ROUGE-L (Lin, 2004) for QA, classification,
and generation tasks, respectively. Based on these
metrics, we iterate the searching process and find
the optimal prompt Po for an LLM in downstream
tasks. The warm-up dataset consists of a collection
of prompt pairs (referred to as {P, Po}), whose
distribution is shown in Table 1.

3.2 Prompt Optimizer Construction
The prompt optimizer seeks to refine the initial
prompt (P ) into an optimized prompt (Po) tailored
to a particular LLM. This refinement process en-
tails altering the structure or wording of P to pro-
duce Po, which is more suitable for the LLM in
subsequent tasks.

3.2.1 Supervised Fine-tuning

We begin by employing the warm-up dataset to
conduct supervised fine-tuning (SFT) with an LLM
across multiple downstream tasks. The objective of
SFT is to enhance the LLM’s capacity to generate
responses that align with its preferences, utilizing
annotated data. Prior research conducted by Ra-
mamurthy et al. (2022) supports the notion that em-
ploying SFT prior to reinforcement learning (RL)
leads to improved outcomes. Furthermore, to dif-
ferentiate between specific tasks during training,
we incorporate a brief instruction preceding the
input, such as “This is a... (generative/question-
answering/classification) task.”.

3.2.2 Building Reward Model

Next, we construct a reward model to learn the ef-
fectiveness of prompts based on the preferences
of different LLMs. This approach is motivated by
the fact that discriminative annotation through sort-
ing incurs significantly lower costs compared to
generating annotations for answers. Initially, we
obtain a ranking sequence for an LLM in a spe-
cific downstream task. We sort the outputs gener-
ated by candidate prompts {P1, P2, . . . , Pk−1, Pk}
alongside the original prompt P , using the
same evaluation metric as described in Sec. 3.1.
This sorting process yields a ranking sequence
{P1, P2, . . . , P, Pk−1, Pk}. Prompts to the left of
P exhibit poorer inference results, while prompts
to the right demonstrate better results. Next, we em-
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ploy the ranking sequence to train a reward model.
We utilize the same LLM utilized in the SFT pro-
cess (referred to as ˆLLM) and replace the softmax
layer with a linear layer to construct the reward
model. The reward model takes a prompt as input
and produces a scalar score indicating the quality
of the prompt. We form pairwise ranking pairs
by combining prompts from the ranking sequence
and employ Pairwise Ranking Loss for training, as
illustrated below:

Lθ = − 1(
k
2

)E(x,yw,yl)∼D

[log(σ(rθ(x, yw)− rθ(x, yl))],

(1)

where x represents the original prompt, yw and
yl denote the higher-scoring and lower-scoring
prompts, respectively, in the corresponding ranking
pair. rθ represents the scalar output of the reward
model, D is the set of ranking pairs, and K denotes
the number of candidate prompts. Through this pro-
cess, based on the outputs generated by ˆLLM with
the given prompt, the reward model learns to assign
higher scores (rewards) to better prompts and lower
scores (rewards) to inferior prompts, thus imitating
an LLM’s preferences.

3.2.3 Reinforcement Learning

Subsequently, we employ Reinforcement Learning
(RL) to further fine-tune LLMs. RL is used to
adjust the bias in the reward model’s scoring since
the distribution of generated prompts might change
during the SFT process. The primary objective of
optimization is to maximize the scores of prompts
generated by ˆLLM after SFT (referred to as the
SFT model), as evaluated by the reward model. To
achieve this, we utilize a combination of Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
and RRMF algorithms (note that RRMF is inspred
by RRHF (Yuan et al., 2023)) for joint learning.

Policy Optimization. This step aims to opti-
mize the RL policy to improve the performance
of the RL model. We first adopt the datasets
shown in Table 3, which to construct environment-
action pairs. The environment refers to the original
prompt, and the action represents the prompt gener-
ated by ˆLLM without instruct-tuning. We pass the
environment-action pairs to the reward model to ob-
tain rewards. In this process, we introduce an actor
model, which is ˆLLM, and a frozen model, which
is SFT model with its parameters frozen during the
RL training process. The frozen model serves as a
benchmark to evaluate whether the updated actor

model has advantages over it. We then calculate
the policy gradient loss (i.e., actor’s loss) based on
the importance ratio and reward (r+γVnext−Vcur),
and calculate the value loss (i.e., critic’s loss) by
comparing the predicted value Vpred with the true
value (r + Vnext) as follows:

Lpg =
Pπa(t)

Pπf(t)
(r + γVnext − Vcur), (2)

Lv = ∥Vpred − (r + Vnext)∥. (3)

Here, Pπa (t)
Pπf (t)

represents the ratio of probabilities
(i.e., importance ratio) of generating the same token
under the actor model and the frozen model. (r +
γVnext − Vcur) represents the reward of the current
step. Vpred denotes the predicted value, and (r +
Vnext) denotes the true value.

Next, we maximize the mathematical expecta-
tion of the reward model, aiming to consistently
generate prompts that ˆLLM perceives as the best
in the RL-trained SFT model (referred to as RL
model). We feed prompts x generated by the SFT
model based on the datasets shown in Table 3 (i.e.,
D) into the RL model πRL

ϕ to obtain an optimized
prompt y. y changes every time the RL model
is updated. We then input (x, y) into the reward
model rθ and calculate a score (i.e., reward), which
represents the real-time feedback from the reward
model. The loss function is defined as follows:

Lrθ
ϕ = E(x, y) ∼ DπRL

ϕ
[rθ(x, y)]. (4)

Finally, we combine the above loss functions to
optimize the RL policy from multiple perspectives.
The final loss function is defined as:

Lρ = α1Lpg + α2Lv + α3L
rθ
ϕ , (5)

where α1, α2, and α3 represent the optimal weights
of each function, which are determined through
experiments (the same applies below).

SFT Approximating. This step aims to main-
tain similarity between the RL model and the SFT
model. When the RL model undergoes parame-
ter updates, it leads to variations in the generated
prompt y based on the given prompt x. If there is
a significant discrepancy between the RL model
and the SFT model, it can result in inaccurate esti-
mation of scores by the reward model. To address
this issue, we measure the distance between the
prompts generated by the RL model and the SFT
model using Kullback-Leibler (KL) divergence.
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The objective is to minimize the KL divergence
and the loss function is defined as follows:

LSFT
ϕ = −βlog(πRL

ϕ (y|x)/πSFT (y|x)). (6)

where πRL
ϕ (y|x) and πSFT (y|x) represent prompts

generated by RL model and the SFT model, respec-
tively.

Next, we have borrowed the idea from
RRHF (Yuan et al., 2023) but adapt it to focus
on “model feedback” instead of “human feedback”.
We name it Ranking Responses from Model Feed-
back (RRMF). Specifically, we calculate the like-
lihood probability of ˆLLM during SFT and align
this probability with the score of the reward model.
To optimize this objective, we employ supervised
learning with a rank loss, defined as follows:

pi =

∑
logPπ(yi|x, yi)

∥yi∥
, (7)

Lr =
∑

ri<rj

max(0, pi − pj), (8)

where pi is the conditional log probability which
represents the reward of each optimized prompt yi.
ri represents the reward model rθ(x, yi). We also
incorporate the cross-entropy loss introduced by
RRHF (Yuan et al., 2023) to learn the generated
prompts y′i with the highest reward r′i as follows:

Lft = −ΣlogPπ(y
′
i|x, y′i). (9)

Finally, we combine the above loss functions for
SFT approximating as follows:

LSFT = β1L
SFT
ϕ + β2Lft + β3Lr. (10)

Generalization Maintaining. This step ad-
dresses the issue of catastrophic forgetting by ensur-
ing that an LLM performs well not only on specific
tasks but also on general NLP tasks. To achieve
this, we follow a similar approach as outlined in In-
structGPT (Ouyang et al., 2022). We sample 10%
data from general NLP tasks in GLUE (Wang et al.,
2018) and the SuperGLUE benchmark (Wang et al.,
2019), which are considered representative, as in-
dicated in Table 3, during the pre-training phase.
The objective of pre-training is to generate out-
puts that are as good as or better than the original
one based on the original prompts. The original
prompts are taken from Natural Instructions (Wang
et al., 2022b). The loss function is as follows:

LPre = γEx ∼ Dpretrain[log(π
RL
ϕ (x))], (11)

where Dpretrain represents the selected datasets for
pre-training.

Joint learning. Finally, we make joint learning
with the above-mentioned loss functions as follows:

Lϕ = γ1Lρ + γ2LSFT + γ3LPre. (12)

4 Experiments
In this section, We conduct experiments with three
popular LLMs as ˆLLM, respectively, including
BLOOM (7B), GPT-J (6B), and LLaMA (7B), on
different downstream tasks to validate the effective-
ness of MAPO.

4.1 Experimental Setups
The experiments are executed on 4 Nvidia A100
GPUs with 80GB each, using PyTorch in Python.
DeepSpeed 2 is utilized in the training process. The
maximum sequence length for original prompts and
optimized prompts are both set to 512 tokens. The
number of epochs is set to 20 in the entire training
process. We provide the detailed configuration of
the hyperparameters in Appendix B. The dataset
and metrics we utilize are the same as those de-
scribed in Sec. 2. All results are reported on the
corresponding test sets or 10% dev sets if a dataset
does not have a test set. Details of all used baselines
and datasets are in Appendix D and E.

4.2 Main Results
The main results are shown in Table 2. We observe
that the performance increase evidently among
all LLMs during SFT. We then utilize MAPO to
make further optimization. We find the optimized
prompts generated by MAPO are more adaptive
in QA and generation task for BLOOM (increase
by 20.5% for CloseQA and by 30.9% for Explan
compared with SFT (p<0.01)) and GPT-J (increase
by 21.4% for CloseQA and by 20.6% for Explan
compared with SFT (p<0.01)). And the prompts
are more adaptive in classification task (increase
by 22.8% for News (p<0.01)) for LLaMA. These
results indicate that MAPO effectively enhances
the performance of various LLMs and exhibits pref-
erences in different downstream tasks.

To validate the superiority of MAPO, we com-
pare it with several SOTA prompt optimization
baselines in various popular tasks based on the
same setting Roberta-Large, as shown in Table 3.
The reported results represent the best-performing
LLM among the three LLMs, which indicates that

2https://github.com/microsoft/DeepSpeed
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Task Dataset Original SFT-optimized ↑(%) MAPO-optimized ↑(%)BLOOM GPT-J LLaMA BLOOM(↑(%)) GPT-J(↑(%)) LLaMA(↑(%)) BLOOM (↑(%)) GPT-J(↑(%)) LLaMA(↑(%))

QA
AdverQA 13.5 3.0 3.2 18.3 (35.6) 9.4 (213.3) 23.2 (625.0) 291.3 19.5 (6.6) 11.0 (17.0) 25.1 (8.2) 10.6
OpenQA 25.9 17.0 13.3 26.7 (3.1) 20.3 (19.4) 15.4 (15.8) 12.8 27.2 (1.9) 21.0 (3.4) 16.1 (4.5) 3.3
CloseQA 6.4 6.9 10.8 7.8 (21.9) 8.4 (21.7) 13.9 (28.7) 24.1 9.4 (20.5) 10.2 (21.4) 14.8 (6.5) 16.1

CLS
News 92.8 0.0 1.1 95.5 (2.9) 5.5 (-) 10.1 (818.2) - 98.7 (3.4) 6.3 (14.5) 12.4 (22.8) 13.6
Movie 90.9 51.1 78.7 92.6 (1.9) 52.7 (3.1) 81.3 (3.3) 2.8 93.3 (0.8) 53.9 (2.3) 82.5 (1.5) 1.5
QASC 99.4 54.0 61.6 99.9 (0.5) 56.3 (4.3) 70.2 (14.0) 6.2 99.9 (0.0) 56.8 (0.9) 72.8 (3.7) 1.5

GEN
Topics 29.5 17.5 14.3 34.8 (18.0) 21.6 (23.4) 18.6 (30.1) 23.8 36.2 (4.0) 23.4 (8.3) 19.5 (4.8) 5.7
Summary 46.1 13.1 6.6 48.8 (5.9) 16.7 (27.5) 10.7 (62.1) 31.8 50.2 (2.9) 17.8 (6.6) 12.2 (14.0) 7.8
Explan 5.7 8.5 6.9 6.8 (19.3) 10.7 (25.9) 8.2 (18.8) 21.3 8.9 (30.9) 12.9 (20.6) 9.1 (11.0) 20.8

Table 2: Performance is evaluated for BLOOM, GPT-J, and LLaMA using original, SFT-optimized, and MAPO-optimized
prompts with a frozen LLM during inference. The symbols ↑(%) and ↑(%) under SFT-optimized denote the relative increase from
original prompts, while those under MAPO-optimized indicate improvement over SFT-optimized results. It’s emphasized that the
term “frozen LLM for inference” means the model hasn’t been trained directly on downstream tasks but only makes inferences.
Thus, there’s no training data with prompts as inputs and expected responses as outputs. “CLS” represents classification, and
“GEN” stands for generation tasks.

SST-2 YelpP. MR CR RTE QNLI SNLI MNLI MRPC

F Finetuning 80.6 88.7 67.4 73.3 58.6 60.2 54.6 47.8 77.4

C Softprompt 73.8 88.6 74.1 75.9 54.7 49.7 36.1 33.2 51.6
Black-Box 89.1 93.2 86.6 87.4 52.6 48.8 46.6 42.9 61.6
Autoprompt 75 79.8 62 57.5 - - - - -

D Manual 82.8 83 80.9 79.6 51.6 50.8 31.1 51.7 67.4
In-Context 85.9 89.6 80.6 85.5 60.4 53.8 47.1 53.4 45.8
Instructions 89 84.4 85.2 80.8 - - - - -
GrIPS 87.1 88.2 86.1 80 - - - - -
RLprompt 92.5 95.1 87.1 89.5 - - - - -
TEMPERA 91.9 92.6 88 91.1 60.3 57.4 56.4 45.2 74
AMA 95.7 - - - 75.1 - - - -
SFT 94.9 92 88.5 87.6 74.3 62.5 58.8 54.6 78.5
MAPO-w/o g 96.0 93.3 90.1 88.7 75.2 63.0 59.8 55.7 79.0

D MAPO 96.1 93.5 90.2 88.9 75.3 63.1 60.0 55.7 79.3

Table 3: The few-shot performance of SFT, MAPO
with SOTA prompt optimizing baselines in downstream
tasks. F: Finetuning, C: Continous prompt, D: Discrete
prompt.

our method applies not only to LLMs but also to
smaller LMs. We analyze the possible reasons as
follows: MAPO employs both SFT and RL to opti-
mize LLMs. In fact, the SFT process is not specific
to LM. Fine-tuning smaller models is feasible and
common, requiring fewer computational resources.
RL is a widely-used algorithm across applications
and model scales, and small models require less
computational and storage resources, making RL
more feasible on them.

We also test the performance of MAPO with
the above-mentioned SOTA prompt optimization
baselines. We use three LLMs, including BLOOM,
GPT-J, and LLaMA, to replace the BART model
used in Table 3 for verifying the nine datasets in
Table 2, as shown in Table 4. Due to SFT in LLMs
equals fine-tuning pretrained language models, we
directly list the SFT results in the Fine-tuning row.
Apart from Fine-tuning, we also freeze the LLMs
and only modify the prompts for inference on down-
stream tasks. According to the experimental results,
the performance of almost all baselines, except
RLprompt, does not exceed that of Fine-tuning
/SFT, and some even do not outperform the origi-
nal LLMs. This highlights the importance of SFT

in LLMs. When we add RL, as in the case of
RLprompt, the performance on downstream tasks
surpasses that of SFT, indicating the significance of
RL for prompt optimization. Moreover, using our
proposed MAPO method to optimize the prompt
further improves performance over RLprompt, ex-
cept in a very few cases, such as using BLOOM for
movie classification tasks. These experimental re-
sults demonstrate that the MAPO method proposed
in this study makes a substantial contribution to
improving the performance and accuracy in down-
stream tasks.

Moreover, we conduct experiments to evaluate
the domain transfer performance of MAPO. The re-
sults are presented in Table 5 and Table 6, while the
results of LLMs with original prompts are reported
by Arora et al. (2022). Remarkably, we observe
that each LLM, when using prompts optimized
by MAPO, displays improved performance across
various downstream tasks. Specifically, BLOOM
exhibits the highest increase in performance com-
pared with GPT-J and LLaMA. This experiment
clearly demonstrates the significant domain trans-
fer capability of MAPO.

4.3 Ablation Study

The effect of RL compared with SFT. From the
experiments (Table 3, Table 5 and Table 6), we can
observe that the performance improvements gained
solely from using SFT are less than half of those
achieved by our proposed MAPO method, both on
similar tasks and general NLP tasks. This clearly
indicates the effectiveness of MAPO in optimizing
model-adaptive prompts.

In order to further demonstrate RL is necessary
and how it compares to simply extending SFT with
a larger warm-up dataset, we use various propor-
tions of the warm-up dataset to progressively in-
crease the SFT training data and then introduce RL
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Task QA CLS GEN
Ad Op Cl Ne Mo QA To Su Ex

(BLOOM) Original 13.5 25.9 6.4 92.8 90.9 99.4 29.5 46.1 5.7
F Finetuning/SFT 18.3 26.7 7.8 95.5 92.6 99.9 34.8 48.8 6.8
C Soft prompt 14.5 24.5 6.5 92.1 90.5 99.1 30.1 44.6 5.5

Black-Box 15.2 24.7 6.9 93.3 91.6 99.3 31.2 45.7 5.8
Autoprompt 15.7 25.0 7.1 93.6 91.9 99.4 31.6 46.0 6

D Manual 13.7 24.6 6.8 91.8 90.9 99.0 31.5 45.1 5.7
In-Context 13.9 24.7 6.7 91.6 90.9 99.3 31.8 45.6 5.9
Instructions 15.0 24.9 6.7 92.7 91.0 99.2 30.8 45.5 5.8
GrIPS 16.6 25.3 6.8 93.1 91.2 99.4 31.8 46.7 6.2
RLprompt 19.2 26.9 8.9 97.5 94.1 99.9 35.9 49.1 8.2
TEMPERA 17.4 25.5 7.2 94.6 91.7 99.5 33.1 46.7 6.2
AMA 19.1 26.4 7.6 95.1 92.4 99.4 33.5 47.9 6.1

D MAPO 19.5 27.2 9.4 98.7 93.3 99.9 36.2 50.2 8.9

(GPT-J) Original 3.0 17.0 6.9 0.0 51.1 54 17.5 13.1 8.5
F Finetuning/SFT 9.4 20.3 8.4 5.5 52.7 56.3 21.6 16.7 10.7
C Soft prompt 5.4 16.6 6.8 2.1 51.0 54.5 17.8 13.7 8.9

Black-Box 7.3 17.5 7.2 2.5 51.4 54.7 18.2 14.3 9.1
Autoprompt 7.8 17.9 7.3 1.9 51.5 54.6 19.1 14.6 9.3

D Manual 5.7 15.9 6.5 1.7 50.9 54.9 18.7 13.9 9.5
In-Context 5.6 16.5 6.7 1.6 50.7 54.6 19.2 14.0 9.3
Instructions 7.1 17.1 7.2 1.7 51.6 54.0 19.1 14.3 9.2
GrIPS 7.7 17.9 7.7 4.3 52.1 55.6 19.7 16.4 10.3
RLprompt 10.1 20.0 9.5 5.7 53.7 56.4 22.1 17.2 11.8
TEMPERA 9.5 19.3 9.1 4.8 53.2 56.1 22.3 16.8 11.4
AMA 9.6 19.1 8.8 5.0 52.9 56.3 22.4 16.5 11.6

D MAPO 11.0 21.0 10.2 6.3 53.9 56.8 23.4 17.8 12.9

(LLaMA) Original 3.2 13.3 10.8 1.1 78.7 61.6 14.3 6.6 6.9
F Finetuning/SFT 23.2 15.4 13.9 10.1 81.3 70.2 18.6 10.7 8.2
C Soft prompt 7.7 12.6 10.2 4.4 77.4 62.7 15.6 8.2 7.3

Black-Box 9.2 13.3 10.7 5.6 78.1 63.1 16.2 8.4 7.5
Autoprompt 10.3 13.5 11.0 7.4 78.4 65.2 16.7 9.0 7.6

D Manual 12.3 12.7 11.1 7.5 77.5 64.8 16.2 8.3 6.7
In-Context 13.7 13.0 10.8 8.0 77.7 65.3 16.5 8.5 7.0
Instructions 16.2 13.2 11.3 7.5 78.0 65.7 17.1 9.1 7.5
GrIPS 19.3 14.7 13.4 9.3 80.6 68.6 18.9 10.7 8.3
RLprompt 24.7 15.8 14.3 11.6 81.9 71.4 19.2 11.7 8.8
TEMPERA 22.6 15.4 13.8 8.9 81.5 69.6 18.7 9.6 8.7
AMA 23.5 15.5 13.6 8.6 81.7 70.5 18.5 9.8 8.9

D MAPO 25.1 16.1 14.8 12.4 82.5 72.8 19.5 12.2 9.1

Table 4: The performance with a frozen LLM for infer-
ence of MAPO with SOTA prompt optimizing baselines
in nine tasks from P3 benchmark using LLaMA. F: Fine-
tuning/SFT, C: Continous prompt, D: Discrete prompt.

to it as shown in Table 17. Our findings consis-
tently show that RL adds value to the performance
beyond what is achieved by SFT alone across all
proportions of the dataset. This affirms the effec-
tiveness of RL irrespective of the SFT dataset size.
However, as the proportion of the warm-up dataset
increases, the margin of improvement from adding
RL begins to decline. While one could hypothe-
size that adding RL to a very large SFT dataset
might not result in as significant an improvement
as it would for a smaller dataset, this observation
actually underscores our method’s suitability for
low-resource scenarios.

Moreover, we have tried different number of
epochs to see if extended training time consis-
tently improves SFT performance as shown in Ta-
ble 18. Extending the training time does not con-
sistently lead to performance improvements for
SFT. In some instances, the performance even de-
clines. It is important to note that we save the
best-performing models in real-time during train-
ing, as the peak performance does not necessarily
occur at the final epoch.

The effect of warm-up dataset. As shown in

Fig. 5 and Table 11, our study examines the effects
of different proportions of the warm-up dataset on
MAPO’s performance. The results indicate that
as the size of the warm-up dataset increases, per-
formance typically improves. BLOOM is particu-
larly sensitive, showing a pronounced growth trend.
Conversely, GPT-J shows a more gradual growth.
LLaMA’s performance reveals an inflection around
60%, suggesting other factors also influence its per-
formance. Even with reduced dataset sizes, the
decrement in performance remains minimal, high-
lighting the method’s suitability for low-resource
tasks. We also conduct few-shot experiments on
general NLP tasks with just 10% data and ob-
serve promising improvements. This underlines
our method’s adaptability and effectiveness in sce-
narios of data scarcity.

The effect of PPO and RRMF. To investigate
the specific effects of PPO and RRMF during the
RL process, we conduct separate experiments to
evaluate the contributions of each component. The
experimental results, depicted in Fig.6 (with de-
tails provided in Table 10 in Appendix F), clearly
demonstrate the important roles played by PPO and
RRMF in enhancing the performance of MAPO.
We propose the following explanations for these
results: PPO focuses on reducing the dissimilar-
ity between the RL model and the SFT model.
RRMF aligns the scores from the reward model
with the likelihood probabilities of an LLM. Both
PPO and RRMF aim to assign higher probabilities
to prompts that are more adaptable to the model.

The effect of the Randomness. We also incor-
porate randomness (e.g., temperature) during the
generation process of LLM. Given that our prompts
do not require high creativity, we have set a lower
temperature range [0-0.5] for generation, within
which we aim to generate optimal prompts. To fur-
ther investigate the impact of varying temperatures
on the generated output, we conduct an additional
set of experiments to assess the performance of the
MAPO method under different randomness settings
(temperature=0,0.2,0.5,0.8) as shown in Table 14,
Table 12, Table 15 and Table 16. Each experiment
group runs 5 times. Our findings reveal that a high-
temperature setting (t=0.8) tends to produce infe-
rior prompts that lead to less accurate outputs for a
specific task. Lower temperature (t=0.2) or greedy
settings (t=0) are likely to produce more accurate
outputs that are closer to our optimal results. This
suggests that in a task like prompt optimization,
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Task Dataset BLOOM +SFT (↑(%)) ↑(%) +MAPO (↑(%) ↑(%) GPT-J +SFT (↑(%)) ↑(%) +MAPO (↑(%)) ↑(%)

Coref. xwinograd 60.1 60.2 0.2 0.2 60.6 0.9 0.9 - - - - - - -

NLU BoolQ 67.9 68.0 0.1 0.4 68.2 0.4 0.9 67.2 67.4 0.3 0.2 67.9 1.0 0.5
CB 77.6 77.8 0.3 78.1 0.6 83.9 84.1 0.2 84.2 0.4
COPA 74.0 74.3 0.4 75.0 1.4 84.0 84.2 0.2 84.2 0.2
MultiRC 59.7 60.3 1.0 60.4 1.2 63.8 63.9 0.2 64.1 0.5
ReCoRD 69.8 70.1 0.4 70.2 0.6 74.4 74.5 0.1 74.7 0.4
WiC 61.4 61.6 0.3 62.0 1.0 61.0 61.1 0.2 61.3 0.5
WSC 64.4 64.7 0.5 65.1 1.1 77.9 78.0 0.1 78.1 0.3

NLI ANLIR1 31.5 31.7 0.6 0.6 32.1 1.9 1.3 37.8 38.0 0.5 0.3 38.2 1.1 0.7
ANLIR2 35.1 35.2 0.3 35.4 0.9 37.9 38.0 0.3 38.3 1.1
ANLIR3 37.1 37.5 1.1 37.8 1.9 40.9 41.0 0.2 41.1 0.5
StoryCloze 79.0 79.2 0.3 79.5 0.6 87.8 87.9 0.1 87.9 0.1

CLS Amazon 65.2 66.4 1.8 1.4 67.7 3.8 3.3 68.2 68.7 0.7 0.6 69.4 1.8 1.6
DBPedia 70.5 71.2 1.0 72.5 2.8 83.9 84.2 0.4 85.1 1.4

QA DROP 67.9 68.2 0.4 1.9 69.9 2.9 5.6 51.6 51.9 0.6 1.3 52.8 2.3 3.2
NQ 15.1 15.4 2.0 16.1 6.6 19.6 20.1 2.6 20.8 6.1
RealTimeQA 29.0 30.2 4.1 31.5 8.6 36.0 36.5 1.4 37.2 3.3
WebQs 34.8 35.1 0.9 36.3 4.3 44.1 44.3 0.5 44.6 1.1

Table 5: Zero-shot domain transfer performance based on BLOOM and GPT-J with original, SFT-optimized and
MAPO-Optimized prompts. CLS: Classification, M: MAPO. The (↑(%) ) and ↑(%) represent the increase degree of
MAPO-optimized prompts compared with original prompts in each dataset and task, respectively (The same below).

Task Dataset LLaMA +SFT (↑(%)) ↑(%) +MAPO (↑(%)) ↑(%)

RS BoolQ 76.5 76.6 0.1 0.1 76.7 0.3 0.5
PIQA 79.8 79.9 0.1 80.0 0.3
SIQA 48.9 48.9 0.0 49.0 0.2
HellaSwag 76.1 76.2 0.1 76.5 0.5
WinoGrande 70.1 70.2 0.1 70.5 0.6
ARC-e 72.8 72.9 0.1 73.2 0.6
ARC-c 47.6 47.6 0.0 47.8 0.4
OBQA 57.2 57.4 0.3 57.9 1.2

QA NQ 16.8 17.2 2.4 1.4 18.1 7.7 4.7
RACE 50.0 50.2 0.4 50.8 1.6

Table 6: Zero-shot domain transfer performance based
on LLaMA with original, SFT-optimized and MAPO-
Optimized prompts. RS: Commonsense Reasoning.

introducing a stable (low temperature) but slight
degree of variability (non-zero temperature) yields
the best results.

4.4 Case Study and Error Analysis

We conduct a case study to visualize the prompts
optimized by MAPO, as shown in Table 7. Addi-
tional cases are included in Appendix G. We first
observe that the majority of the original prompts
have significant modifications after optimization
through our MAPO method. Only about 10% of
the generated prompt pairs remain completely un-
changed. To further quantify these changes, we
calculate a normalized edit distance. Given the
varying lengths of different prompt pairs, we di-
vide the edit distance by the average length of the
two strings. This yields a value between 0 and 1,
where 0 indicates identical strings and 1 indicates
completely different strings. The average normal-
ized edit distance for all prompt pairs stands at
0.67, demonstrating that most prompts do experi-
ence substantial modifications.

Next, we provide a detailed examination of these
modifications. In the QA task, BLOOM transforms
active voice into passive voice, GPT-J utilizes the
phrase “the term used” and substitutes “refer to”

with “denote”, while LLaMA adopts a more in-
formal style by mentioning the “commonly used
term”. In the generation task, both BLOOM and
GPT-J present similar prompts that emphasize topic
coverage. LLaMA maintains the original sentence
structure but modifies the subjects and replaces
“decorate” with “adorn”. In the classification task,
all three LLMs rearrange the word order and of-
fer additional details about the topic. Therefore,
MAPO demonstrates its prompt optimization capa-
bilities by adapting better prompts to specific tasks
for different LLMs while preserving core informa-
tion and adjusting tone or structure as necessary.

However, there are also some errors during
prompt optimization, including prompts with in-
complete sentences, prompts with improper prepo-
sitions or missing necessary parts, and prompts
with ambiguous meanings, etc. Therefore, there is
ample room for improvement in MAPO to better
adapt to different LLMs in downstream tasks.

4.5 Exploratory Analysis
We conduct an exploratory analysis to further inves-
tigate the patterns in optimized prompt as shown in
Fig. 7, Fig. 8 and Fig. 9. We extract the three most
frequent words from the original prompt and inves-
tigate their distribution in the optimized prompt for
each LLM, while either retaining high-frequency
words in instructions (including sentence, topics,
subjects, present, statement, discussed, mentioned,
included, following) or removing them.

Taking the generation task (Fig. 7) as an exam-
ple, when high-frequency words in instructions are
retained, we observe that BLOOM retains a rel-
atively higher proportion of the original prompts
compared to GPT-J and LLaMA, while LLaMA
retains the fewest. When these words are removed,
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Task Prompts

QA

Original: How do people in Mexico refer to the largest Presbyterian church?
BLOOM: What is the way in which the biggest Presbyterian church is referred to by individuals in Mexico?
GPT-J: What is the term used by Mexicans to denote the biggest Presbyterian church?
LLaMA: What is the commonly used term for the biggest Presbyterian church in Mexico?

Gen

Original: What are the topics in the sentence: The furniture in the living room is decorated with flowers.
BLOOM: What topics does the sentence “The living room furniture is adorned with flowers” cover?
GPT-J: What topics are covered in the sentence “The living room furniture is adorned with flowers”?
LLaMA: Which subjects are present in the statement: Flowers adorn the furniture in the living room.

Class

Original: Reincarnated Napster Goes Public Roxio bought the Napster name in a bankruptcy auction two years ago. Now, the company dumps its CD-burning software business
to concentrate on selling and delivering music over the web under the Napster name.What label best describes this news article?
BLOOM: Roxio, the buyer of Napster’s name in a bankrupt auction two years ago, has taken the reincarnated Napster public. The company has made the decision to abandon
their CD-burning software business and focus solely on the distribution and sale of music online via the Napster name. What genre of news article would this story fall under?
GPT-J: Roxio, which acquired the Napster name through a bankruptcy auction two years ago, has taken Napster public again after rebranding it as a music delivery service. The
company has divested its CD-burning software business and now focuses solely on selling music online under the Napster name. What category would this news article fall under?
LLaMA: The Napster name, which was purchased by Roxio in a bankruptcy auction two years ago, has now been resurrected with a public launch. Roxio has shifted its focus
solely to the sale and distribution of music under the Napster name, leaving its CD-burning software business behind. What category would you assign to this news article?

Table 7: Original prompts and MAPO-optimized prompts for three LLMs in various downstream tasks.

we notice that BLOOM has a higher proportion of
words like “man”, “view” in its optimized prompts,
which are more relative with human. GPT-J has a
higher proportion of words like “match”, “grass”,
“bathroom”, “white”, which suggests it focuses on
specific scenes, objects, or themes. LLaMA has a
higher proportion of words like “room”, “close”,
“playing”, indicating its preferences on place and
experiences. The variations observed in word distri-
bution indicate that each LLM tends to emphasize
different aspects during the optimization process.
Accurate conclusions need more experiments.

5 Related Work
LLMs’ prompt optimization process involves
prompt retrieval, prompt generation from scratch
and prompt editing. For prompt retrieval, for ex-
ample, Ma et al. (2023) adopt greedy search to
identify near-optimal prompts. Zhou et al. (2022)
introduce APE for automatic instruction selection,
etc. For prompt generation from scratch, Pang et al.
(2023) introduce SharpT, which learns a shared
latent space and generates soft prompts. White
et al. (2023) describe a catalog of prompt engineer-
ing techniques. Zamfirescu-Pereira et al. (2023)
investigate end-user prompt engineering using a
prototype LLM-based chatbot design tool. Wang
et al. (2022a) present Self-Instruct for improving
instruction-following capabilities of PLMs. For
prompt editing, Gao et al. (2020) automatically se-
lect label words and generate templates. Pryzant
et al. (2023) introduce APO based on “gradients”
to provide critical feedback on the current prompt.
Deng et al. (2022) propose RLprompt based on RL.
Zhang et al. (2023) propose TEMPERA, which
provides interpretable prompts for different queries.
Prasad et al. (2022) introduce GrIPS, a gradient-
free approach for improving task instructions for
LLMs. Moreover, some research focuses on incor-

porating additional knowledge to enhance prompt
editing. For example, Li et al. (2023) propose
DSP to generate “directional stimulus” of each in-
put. Qin and Eisner (2021a) optimize a mixture
of prompts using gradient descent to generate rela-
tional knowledge. Shin et al. (2020) develop Auto-
prompt, a gradient-guided approach to find the best
tokens in the prompt. Jiang et al. (2020) propose
mining-based and paraphrasing-based methods to
automatically generate diverse prompts. Further-
more, some research focus on continuous prompt
optimization instead of discrete prompt optimiza-
tion mentioned before, such as research by Zheng
et al. (2023), Hambardzumyan et al. (2021), Zhong
et al. (2021), etc.

However, all above-mentioned prompts opti-
mization approaches aim to obtain task-specific
prompts instead of model-specific ones. Different
from theirs, we dedicate at optimizing prompts for
LLMs within the NLP domain and achieve impres-
sive performance.

6 Conclusions
The remarkable capabilities of LLMs have revolu-
tionized NLP in various tasks. However, their per-
formance heavily relies on the quality of prompts.
In this work, we address the prompt optimization
challenge by proposing a Model-Adaptive Prompt
Optimization (MAPO) approach. Through exten-
sive experiments, we demonstrated that MAPO
can adapt different LLMs with generating model-
friendly prompts to enhance their capabilities
across various downstream tasks. In future work,
we aim to construct more fine-grained model-
adaptive prompts that can adapt to the continuously
evolving data encountered in real-world production
environments. Additionally, we intend to enhance
its applicability across a broad spectrum of linguis-
tic contexts.
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Limitations
It is important to acknowledge certain limitations of
our approach. Firstly, the effectiveness of prompt
optimization heavily relies on the availability and
quality of the warm-up dataset. In cases where the
dataset is limited or does not sufficiently cover the
specific task, the performance gains from prompt
optimization may be constrained. Additionally,
MAPO requires extensive SFT and RL, which can
be computationally expensive and time-consuming.
This could limit the scalability of MAPO, es-
pecially when dealing with large-scale tasks or
datasets. Despite these limitations, our study pro-
vides valuable insights into model-adaptive prompt
optimization for LLMs and contributes to the ongo-
ing efforts in improving the performance of these
LLMs in practical applications.

Acknowledgement
This work is supported by Shanghai Munic-
ipal Science and Technology Major Project
(No.2021SHZDZX0103), Science and Technol-
ogy Commission of Shanghai Municipality Grant
(No. 22511105902), the National Natural Science
Foundation of China (No.62072323, U21A20488),
Shanghai Science and Technology Innovation Ac-
tion Plan (No. 22511104700), Key Projects of
Industrial Foresight and Key Core Technology Re-
search and Development in Suzhou(SYC2022009).

References
Simran Arora, Avanika Narayan, Mayee F Chen, Lau-

rel J Orr, Neel Guha, Kush Bhatia, Ines Chami, Fred-
eric Sala, and Christopher Ré. 2022. Ask me any-
thing: A simple strategy for prompting language mod-
els. arXiv preprint arXiv:2210.02441.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC. Citeseer.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,

Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Dorottya Demszky, Kelvin Guu, and Percy Liang. 2018.
Transforming question answering datasets into nat-
ural language inference datasets. arXiv preprint
arXiv:1809.02922.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. 2022.
Optimizing prompts for text-to-image generation.
arXiv preprint arXiv:2212.09611.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Carrie J
Cai. 2022. Promptmaker: Prompt-based prototyping
with large language models. In CHI Conference on
Human Factors in Computing Systems Extended Ab-
stracts, pages 1–8.

3288



Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Zekun Li, Baolin Peng, Pengcheng He, Michel Galley,
Jianfeng Gao, and Xifeng Yan. 2023. Guiding large
language models via directional stimulus prompting.
arXiv preprint arXiv:2302.11520.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu,
Zhirui Zhang, Peilin Zhao, Shu Zhang, Huazhu Fu,
Qinghua Hu, and Bingzhe Wu. 2023. Fairness-
guided few-shot prompting for large language mod-
els. arXiv preprint arXiv:2303.13217.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075.

Bo Pang, Semih Yavuz, Caiming Xiong, and Yingbo
Zhou. 2023. Sharpt: Shared latent space prompt
tuning. In Findings of the Association for Computa-
tional Linguistics: EACL 2023, pages 1214–1220.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Guanghui Qin and Jason Eisner. 2021a. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Guanghui Qin and Jason Eisner. 2021b. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2022. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. arXiv preprint arXiv:2210.01241.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers,
Thomas Wolf, and Alexander M. Rush. 2021. Multi-
task prompted training enables zero-shot task gener-
alization.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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A Candidate Prompts
For the nine datasets selected in P3, we present
one prompt and the corresponding three candidate
prompts for each dataset, as shown in Table 8.

B Training Details
We provide the training details as shown in Table 9.
Other hyper-parameters are set to default.

C Computational Cost
While the training phase is computationally inten-
sive, the generation phase is relatively lightweight.
Specifically, once the prompt optimizing model
MAPO is trained, the prompt generation process
simply involves a feed forward propagation to gen-
erate the optimal prompt instead of further opti-
mization through SFT and RL, thus significantly
reducing the computational complexity. We list the
computational complexity during the training and
inference phase:

Training Phase. During the training phase,
initially, a warm-up dataset is established. This in-
volves generating candidate prompts using a model
like GPT-3.5. For each original prompt, 1000 can-
didate prompts are generated. This leads to a time
and space complexity of O(N × M), where N
is the number of original prompts, and M is the
number of candidates per prompt. Subsequently,
an optimal prompt is searched for, which involves
comparisons among candidate prompts, yielding
complexities of O(N × M) for both time and
space. Building the prompt optimizer is the next
stage. Supervised fine-tuning (SFT) has a time
complexity of O(E × B × T ), with E being the
number of epochs, B the batch size, and T the
number of model parameters. Its space complex-
ity mainly arises from model parameters and gra-
dients, which is O(T ). For building the reward
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Task Prompts

AdverQA

Original: Question: “Which happened earlier, the Chinese entered the war or President Truman dispatched the United States Seventh Fleet to the Taiwan Strait?”. Context:
“On 27 June 1950, ...”. Answer:
Candidate 1: Question: “Did President Truman dispatch the United States Seventh Fleet to the Taiwan Strait before or after the Chinese entered the war?” Context:“On 27
June 1950, ...”. Answer:
Candidate 2: Question: “Did the Chinese enter the war before President Truman dispatched the United States Seventh Fleet to the Taiwan Strait, or vice versa?” Context:“On 27
June 1950, ...”. Answer:
Candidate 3: Question: “Did the Chinese enter the war first or did President Truman send the United States Seventh Fleet to the Taiwan Strait earlier?”. Context:“On 27 June
1950, ...”. Answer:

OpenQA

Original: What’s above the muscles and needs direct sunlight Which is the correct answer? Options: ...
Candidate 1: What lies beyond the muscles and requires direct exposure to sunlight? Which is the correct answer? Options: ...
Candidate 2:What is located above the muscles and requires direct sunlight? Which is the correct answer? -Options: ...
Candidate 3: Which body part requires direct sunlight and is located higher than the muscles? Which is the correct answer? Options: ...

CloseQA

Original: Q: What kind of relationship between glucagon and insulin is vital to managing fuel storage and consumption by body cells? A:
Candidate 1:Q: What is the essential connection between glucagon and insulin for regulating fuel storage and utilization in body cells? A:
Candidate 2:Q: In managing the storage and consumption of fuel by body cells, what is the crucial interrelation between insulin and glucagon? A:
Candidate 3: Q: What is the crucial connection between glucagon and insulin in regulating the storage and utilization of fuel by the cells in the body? A:

News

Original: Reincarnated Napster Goes Public Roxio bought the Napster name in a bankruptcy auction two years ago. Now, the company dumps its CD-burning software
business to concentrate on selling and delivering music over the web under the Napster name. What label best describes this news article?
Candidate 1: Roxio, the buyer of Napster’s name in a bankrupt auction two years ago, has taken the reincarnated Napster public. The company has made the decision to
abandon their CD-burning software business and focus solely on the distribution and sale of music online via the Napster name. What genre of news article would this story
fall under?
Candidate 2: Roxio, which acquired the Napster name through a bankruptcy auction two years ago, has taken Napster public again after rebranding it as a music delivery
service. The company has divested its CD-burning software business and now focuses solely on selling music online under the Napster name. What category would this news
article fall under?
Candidate 3:The Napster name, which was purchased by Roxio in a bankruptcy auction two years ago, has now been resurrected with a public launch. Roxio has shifted
its focus solely to the sale and distribution of music under the Napster name, leaving its CD-burning software business behind. What category would you assign to this news
article?

Movie

Original: writer/director joe carnahan’s grimy crime drama is a manual of precinct cliches , but it moves fast enough to cover its clunky dialogue and lapses in logic . The
sentiment expressed for the movie is
Candidate 1: The gritty crime drama by writer and director Joe Carnahan may rely heavily on familiar tropes and cliches of the genre, but its quick pace manages to distract
from any awkward dialogue and illogical moments. The sentiment expressed for the movie is
Candidate 2: Joe Carnahanś gritty crime drama relies heavily on standard police procedures, yet its rapid pace compensates for any cumbersome dialogues and unreasonable
plot holes. The sentiment expressed for the movie is
Candidate 3:Although writer/director Joe Carnahanś gritty crime drama contains numerous stereotypes within the precinct environment, its swift pace effectively masks its
awkward dialogue and occasional lapses in logic. The sentiment expressed for the movie is

QASC

Original:If I tell you that Hydrogen bonds cause a tremendous force when a substance freezes, and ask you the question “hydrogen bonds cause a tremendous force when a
substance does what”, is the correct answer “strong”?
Candidate 1: If I were to inform you that when a substance freezes, Hydrogen bonds create a significant force and ask, “What term describes the force generated by Hydrogen
bonds when a
substance freezes?”, would the appropriate response be “Powerful”?
Candidate 2: Suppose I inform you that the process of substance freezing is deeply influenced by Hydrogen bonds that generate an enormous force. Now, if I inquire, “What
occurs when the substance undergoes this process?”, would it be accurate to say that the force generated is “powerful”?
Candidate 3: Suppose I inform you that when a substance freezes, Hydrogen bonds result in a remarkable force, and inquire, “When a substance undergoes what, do hydrogen
bonds cause a remarkable force?” Would it be accurate to respond with “robust”?

Topics

Original: What are the topics in the sentence: A bathroom with the toilet missing and the room fairly torn up.
Candidate 1: What are the subjects of the sentence: A torn-up room without a toilet.
Candidate 2: Which subjects are covered in the phrase “A bathroom that lacks a toilet and has a considerably damaged room”?
Candidate 3:What are the subjects mentioned in the statement: A torn up room that lacks a toilet in the bathroom?

Summary

Original: Sum up the following dialogue: Gordon: Did you see my car, bro? Gordon: <file_photo> Gordon: It’s my first car ever! And I love it! :) Leo: Grats, bro! Leo: It
looks awesome, I have to see it with my own eyes! Gordon: Are you home? Leo: Yeah Gordon: Look out of the kitchen window :) Leo: No shit :D Leo: Wait, I’m coming!
Gordon: Waiting :D
Candidate 1: Sum up the following dialogue: Gordon asked, “Bro, have you seen my car?” and sent a file photo. He expressed his excitement saying itś his first ever car and
he loves it. Leo congratulated him saying it looks awesome and expressed his wish to see it in person. Gordon asked if he was home and told him to look out of the kitchen
window. Leo was surprised and replied, “No shit :D” and said he was coming. Gordon eagerly waited for him.
Candidate 2: Sum up the following dialogue: Gordon inquires, “Hey bro, have you laid eyes on my car?” Gordon shares a photograph of his first vehicle and expresses his
adoration for it with a smiley face. Leo congratulates him and expresses interest in seeing it in person. Gordon asks if Leo is home and instructs him to look out of the kitchen
window. Leo is surprised and excited, responding with laughter and promising to come see it. Gordon waits patiently.
Candidate 3: Sum up the following dialogue: Gordon asked his brother if he had seen his car and sent a photo of it. He expressed his love for it as it was his first car ever. Leo
congratulated him and expressed his desire to see the car in person. Gordon asked if he was at home and told him to look out of the kitchen window. Leo was surprised and excited
and said he would be coming soon. Gordon waited for him to arrive.

Explan

Original: Question: What does a Christian do when they get what they needed? Options:... The answer is “thank god” because
Candidate 1: Question: How should a Christian proceed after they have received what they required? Options: ... The answer is “thank god” because
Candidate 2: Question: When a Christian receives what they needed, what actions do they take? Options:... The answer is “thank god” because
Candidate 3: Question: What should a Christian do upon receiving what they required? Options: ... The answer is “thank god” because

Table 8: One sample prompt and the corresponding three candidate prompts generated by GPT-3.5 for each selected dataset in
P3.

model, both time and space complexities are mainly
O(N ×M × logM). The reinforcement learning
(RL) part requires O(E′×B′×T ) time, where E′

is the number of epochs specific to RL, B′ is the
batch size in RL, and T remains the model param-
eters. The space complexity is O(T ). Summing
these up, the total time complexity for the training
phase becomes O(N × M) + O(E × B × T ) +
O(N×M× logM)+O(E′×B′×T ). For space,
it’s O(N ×M × logM) +O(T ).

Inference Phase. In the inference phase, an
optimized prompt is generated from an original

prompt using the MAPO technique. The time com-
plexity here is dominated by a single feed-forward
operation, which is O(T ). There is almost negli-
gible extra space required, making the space com-
plexity effectively O(1) for this phase.

We also caclulate how long it roughly takes for
a complete training run. For a LLaMA-7B model
running on four A100 80GB GPUs, SFT on a high-
scale task (such as the News classification task with
120,000 training data) takes about 8 hours, RL takes
about 12 hours, and the complete MAPO process
takes roughly 20 hours in total; For a Bloom-7B
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Value

Gradient Accumulation Steps 8
Weight Decay 0.1
Learning Rate for Actor Model 2e-5
Learning Rate for Critic Model 1e-5
Entropy Coefficient 0.005
Value Loss Coefficient 0.5
Mini Batch Size 32
Positive Lambda Coefficient 2.0
Negative Lambda Coefficient 1.8
GAMMA 0.99
Adam Optimizer Epsilon 1e-5
GAE Lambda 0.95
Max Gradient Norm 0.5
PPO Epochs 20
Clip Parameter 0.2

Table 9: Hyperparameters used for MAPO in all the tasks.

model under the same hardware conditions, SFT
takes about 5 hours, RL takes about 9 hours, and
the total time for MAPO takes about 14 hours; For
a GPT-J-6B model, SFT takes about 10 hours, RL
takes about 16 hours, and the total time for MAPO
takes about 26 hours.

D Baselines
We compared MAPO with several State-Of-The-
Art (SOTA) prompt optimization baselines, includ-
ing the following:

• Finetuning (Devlin et al., 2018): Finetuning
(few-shot) involves finetuning the entire lan-
guage model with a classification head using
a few-shot dataset.

• Soft Prompt (Qin and Eisner, 2021b; Li
and Liang, 2021): Soft Prompt Tuning uti-
lizes continuous embeddings as a variant of
parameter-efficient transfer learning, replac-
ing discrete prompts.

• Black-Box (Sun et al., 2022): Black-Box Tun-
ing combines discrete and soft prompts, with
the soft part trained using gradient descent and
the discrete part optimized using a gradient-
free tuner.

• Autoprompt (Shin et al., 2020): Autoprompt
incorporates discrete trigger tokens and up-
dates prompts through iterative gradient
search.

• Manual (Brown et al., 2020; Schick and
Schütze, 2020; Sanh et al., 2021): Manual

prompt achieves strong performance on vari-
ous natural language understanding and natu-
ral language generation tasks without relying
on training examples.

• In-Context (Brown et al., 2020): In-Context
Demonstration randomly selects a training
example and concatenates it with the input
query.

• Instructions: Self-Instruction manually cre-
ates prompts for each task following Natural
Instructions (Wang et al., 2022b), where the
prompt is concatenated with the inputs.

• GrIPS (Prasad et al., 2022): GrIPS performs
phrase-level editing on the instructions and
selects the best one.

• RLprompt (Deng et al., 2022): RLprompt gen-
erates discrete prompts using a reinforcement
learning (RL) framework.

• TEMPERA (Zhang et al., 2023): TEMPERA
is a test-time prompt editing method that uses
reinforcement learning, efficiently leverag-
ing prior knowledge and adapting to differ-
ent queries, while providing an interpretable
prompt for each query.

• AMA (Arora et al., 2022): AMA recursively
reformats tasks and prompts using the LLM
to effectively aggregate predictions across
prompts using weak supervision.

For a fair assessment, we adopt the same exper-
imental setup as in LM-BFF (Gao et al., 2020)
and RLPrompt (Deng et al., 2022). We take 16
training samples from each class in our training
dataset for every task, making them our few-shot
dataset. So, if we consider all the classes (Y), we
have a total of 16 times the number of classes as
our training samples. Similarly, we pick 16 sam-
ples from each class to form our validation dataset.
Besides this usual setup, we also select n random
examples from our training data. We call this our
“in-context exemplar pool”. For consistency, we
repeat our experiments four times using different
random seeds. Afterward, we calculate the average
results and note down the usual variation we see be-
tween the results. For our language model, we’ve
chosen to use RoBERTa large (Liu et al., 2019). We
base our initial guidelines on the Natural Instruc-
tions (Mishra et al., 2021). We also ensure that the
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first examples we give for context are randomly
picked from a set of 16. This set is different from
our few-shot dataset and is also randomly picked
from our main training data. By comparing MAPO
with these SOTA baselines, we gain insights into
the performance and effectiveness of MAPO in
various downstream tasks.

E Datasets
We utilized nine representative datasets from
P3 (Sanh et al., 2021) to establish the warm-up
dataset, covering question-answering, classifica-
tion, and generation tasks. The selected datasets
for each task are as follows:

• Question-Answering Task: AdverQA
(https://huggingface.co/datasets/bigscience/
P3/tree/main/data/adversarial_qa_
dbidaf_question_context_answer),
OpenQA (https://huggingface.co/
datasets/bigscience/P3/tree/main/data/
openbookqa_main_which_correct), CloseQA
(https://huggingface.co/datasets/bigscience/
P3/tree/main/data/sciq_Direct_Question_
Closed_Book_).

• Classification Task: News (https:
//huggingface.co/datasets/bigscience/P3/
tree/main/data/ag_news_classify), Movie
(https://huggingface.co/datasets/bigscience/
P3/tree/main/data/rotten_tomatoes_
Movie_Expressed_Sentiment), QASC
(https://huggingface.co/datasets/bigscience/
P3/tree/main/data/qasc_is_correct_1)

• Generation Task: Topics (https://huggingface.
co/datasets/bigscience/P3/tree/main/data/
common_gen_topics_from_the_sentence),
Summary (https://huggingface.co/datasets/
bigscience/P3/tree/main/data/samsum_
Sum_up_the_following_dialogue), Explan
(https://huggingface.co/datasets/bigscience/
P3/tree/main/data/cos_e_v1.11_generate_
explanation_given_text).

We evaluate our proposed MAPO method, along
with other SOTA baselines, on the following
datasets for validation: SST-2 (Socher et al., 2013),
Yelp Polarity (Zhang et al., 2015), MR (Pang and
Lee, 2005), CR (Hu and Liu, 2004), RTE (Da-
gan et al., 2005; Haim et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2009), QNLI (Dem-
szky et al., 2018), SNLI (Bowman et al., 2015),

MNLI (Williams et al., 2017), MRPC (Dolan and
Brockett, 2005). These datasets provide a compre-
hensive evaluation of MAPO’s performance com-
pared to other baselines across a range of tasks,
including sentiment analysis, text classification,
natural language inference, and paraphrase identifi-
cation, etc.

Specifically, for Table 3, the training data aligns
with that used by TEMPERA (Zhang et al., 2023),
that is all experiments, including our own, use
Roberta-large as the backbone for validating the
downstream tasks. Because the setup employs a
“few-shot” methodology that has elaborated before,
we name Table 3 as “few-shot”. For Table 5 and 6,
there is no training data involved; the LM performs
zero-shot inference. That means all reported results
occur without training on the datasets in Table 5
and 6. The purpose is to demonstrate the gener-
alization (domain transfer) ability of our MAPO
method. If one wishes to further enhance perfor-
mance on these datasets, additional training with
labeled data on Table 5 and 6 becomes necessary.

F Additional Experiments
The performance of the reward model. We
plot the performance of the reward model during
the training process of MAPO as shown in Fig. 4.
As the training progresses, the reward model ex-
hibits consistent growth and improvement. The
consistent increase indicates that the reward model
is gradually becoming more proficient in down-
stream tasks. It successfully adapts to its environ-
ment, leading to improved outcomes and higher
task completion rates. Therefore, it can serve as
a discriminator of the goodness of an optimized
prompt.

The original capabilities maintaining ability
of MAPO. We further analyze the original capa-
bilities maintaining ability of MAPO. We use a
language model trained with MAPO, which has
the ability to optimize prompts but without losing
its original capabilities, to modify prompts and ac-
complish downstream tasks. We believe that the
GLUE and SuperGLUE tasks are representative,
hence we use them as pre-training tasks. How-
ever, the improvements in Table 5 and 6 are not
significant, possibly due to the limited scope of
our pre-training tasks. Future work can explore
using a broader range of datasets for pre-training,
which may lead to more significant improvements
in various downstream tasks.
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Figure 4: The performance of the reward model in three LLMs during the training process of MAPO.
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Moreover, for Table 3, the training and validation
data for SFT, RM, and RL are different from the
data used for generalization, although they all come
from Table 3. This is because we consider GLUE
and SuperGLUE tasks to be representative, hence
we use them as pre-training tasks. Theoretically, a
more diverse NLP dataset should be selected for
this part, but we happened to choose this subset.
To mitigate the impact on the results, we also run
another test with two steps: using the optimized
prompts generated by MAPO and then using the
original Roberta-Large model to make inference.
As shown in Table 3 (the row “MAPO-w/o g”),
the results do not show a significant decline, with
a t-test greater than 0.05. The use of data from
Table 3 for generalization is merely to ensure that
the prompt-optimized model retains its original
capabilities for downstream tasks instead of data
leakage.

G Additional Cases
We list more cases whose prompts have been opti-
mized by our proposed MAPO as shown in Table
19. We make detailed analysis for the difference
among LLMs as follows:

• In SST-2, BLOOM and LLaMA both use
phrases like “terrific flair” and “remarkable
skill” to describe Khouri’s ability, emphasiz-
ing positive sentiment. GPT-J uses the phrase
“tremendous artistry,” highlighting the artistic
aspect, but does not explicitly convey the pos-
itive sentiment as strongly as BLOOM and
LLaMA.

• In Yelp, BLOOM and LLaMA use phrases
like “quality of the food is commendable” and
“service provided is inconsistent” to provide a
balanced assessment. GPT-J and the original
version have the same wording, emphasizing
the hit-or-miss nature of the service.

• In MR, BLOOM and LLaMA use phrases like
“admirable endeavor” and “praiseworthy pur-
suit” to highlight the positive qualities of the
venture. GPT-J and the original version use
neutral language without explicitly conveying
positive or negative sentiment.

• In CR, BLOOM, GPT-J, and LLaMA all ex-
press confusion or potential confusion regard-
ing the positioning of the space key on a
phone. The wording in BLOOM and LLaMA
suggests that using a different key for text in-
put is more common in phones, implying a
deviation from the norm.

• In RTE, BLOOM and LLaMA emphasize the
impact of the situation by using phrases like
“somber site” and “distressing sight” when de-
scribing the washed-up marine animals. GPT-
J and the original version provide more neutral
descriptions without explicitly conveying the
emotional aspect.

• In QNLI, BLOOM, GPT-J, and LLaMA all
rephrase the sentence 2, maintaining the same
overall meaning. The variations in wording
are mainly stylistic, with BLOOM, GPT-J,
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Figure 6: The separate effects of PPO and RRMF during the process of RL in constructing MAPO.

Tasks Dataset PPO RRMF MAPO
BLOOM GPT-J LLaMA BLOOM GPT-J LLaMA BLOOM GPT-J LLaMA

QA
AdverQA 18.8 9.6 24.3 19.2 9.9 24.8 19.5 11.0 25.1
OpenQA 26.9 20.7 16.0 27.0 20.9 15.8 27.2 21.0 16.1
CloseQA 8.3 8.8 14.4 9.0 9.8 14.6 9.4 10.2 14.8

Class
News 96.9 6.1 12.1 98.3 6.2 12.2 98.7 6.3 12.4
Movie 93.1 53.1 82.1 93.0 53.6 82.2 93.3 53.9 82.5
QASC 99.9 56.7 72.4 99.9 56.5 71.2 99.9 56.8 72.8

Gen
Topics 35.9 23.1 18.9 35.2 23.2 19.1 36.2 23.4 19.5
Summary 50.1 17.2 11.7 49.4 17.7 12 50.2 17.8 12.2
Explan 8.3 11.5 8.4 7.2 12.4 8.7 8.9 12.9 9.1

Table 10: The separate effect of PPO and RRMF, which demonstrate the important roles played by both PPO and RRMF in
enhancing the performance of MAPO.

and LLaMA using different synonyms to con-
vey the same information.

• In SNLI, BLOOM, GPT-J, and LLaMA
rephrase the sentence 1 by adding additional
details related to the slip and slide activity
and the celebratory context. The variations
in wording are mainly stylistic, enhancing the
description of the baby’s experience and the
wetness.

• In MNLI, BLOOM, GPT-J, and LLaMA main-
tain the same wording as the original sen-
tence 1. The variations in wording occur in
sentence 2, with BLOOM and GPT-J empha-
sizing the need for interest rates to increase,
while LLaMA focuses on the importance of
boosting savings.

• In MRPC, BLOOM, GPT-J, and LLaMA all
maintain the same wording as the original sen-
tences. The variations in the rephrased sen-
tence 1 (BLOOM and LLaMA) emphasize
the 15 percent drop in revenue, while GPT-J
maintains a more neutral tone.

H Additional Exploratory Analy-
sis

We further analyze the distribution of the top 3
words from the original prompts in the optimized
prompts of different LLMs in both the QA and

classification tasks as shown in Fig. 8 and Fig.
9, respectively. In the QA task, we observe min-
imal variations when considering whether to re-
move the instruction. After prompt optimization,
BLOOM has a higher proportion of words like
“contemporary”, “french”, “Methodist”, “places”,
“education”, “power”, and “life” compared to the
other two models. GPT-J has a higher proportion
of words like “church”, “time”, “order”, “early”,
and “year”, indicating a focus on temporal and se-
quential aspects. And LLaMA has a higher propor-
tion of words like “earlier”, “similar”, “number”,
“song”, and “property” compared to the other two
models. In the classification task, we also observe
minimal variations when considering whether to re-
move the instruction. After optimization, BLOOM
has a higher proportion of the word “year”, “new”
compared to the other two models. GPT-J has a
higher proportion of words like “largest”, “music”,
“national”, “school” and “poland”. LLaMA has a
higher proportion of words like “increase”, “gov-
erment”, “executive”, “medical”, “warsaw”, and
“parliament” compared to the other two LLMs.

These findings strongly suggest that each LLM
exhibits unique preferences and patterns in prompt
optimization across different tasks. The observed
variations in word distribution clearly indicate the
specific areas of focus and the semantic nuances
that each LLM emphasizes during the optimization
process. Additional experiments will contribute to
a more comprehensive understanding of the prompt
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BLOOM GPT-J LLaMA
Tasks Dataset 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

QA AdverQA 17.8 18.6 18.9 19.2 19.5 9.2 9.3 9.9 11.0 11.0 22.2 23.2 25.1 25.4 26.0
OpenQA 25.4 26.1 26.3 26.5 27.2 19.0 19.1 19.5 21.0 21.1 14.3 15.1 16.1 16.3 16.6
CloseQA 8.0 8.6 8.8 9.1 9.4 8.4 8.6 9.4 10.2 10.3 13.0 13.8 14.8 15.2 15.4

Class News 96.8 97.4 97.6 98.0 98.7 4.6 4.8 5.3 6.3 6.4 10.2 11.5 12.4 12.5 12.7
Movie 89.8 90.9 91.3 92.5 93.3 51.8 52.2 52.8 53.9 53.9 79.8 80.2 82.5 82.7 83.1
QASC 98.0 98.6 98.7 98.8 99.9 53.8 54.4 55.2 56.8 56.9 70.5 71.4 72.8 73.3 73.4

Gen Topics 35.0 35.7 36 36.4 36.2 21.3 21.6 22.2 23.4 23.6 17.5 18.2 19.5 19.8 19.9
Summary 47.9 48.9 49.3 49.7 50.2 16.0 16.3 16.8 17.8 18.1 10.1 11.3 12.2 12.4 12.8
Explan 7.5 8.1 8.3 8.6 8.9 11.2 11.4 11.9 12.9 13.2 7.3 8.2 9.1 9.5 10.0

Average - 47.4 48.1 48.4 48.8 49.3 21.7 22.0 22.6 23.7 23.8 27.2 28.1 29.4 29.7 30.0
↓ - 1.9 1.2 0.9 0.5 - 2.1 1.9 1.3 0.1 - 2.8 1.9 0.6 0.3 -
↓(%) - 4.0 2.4 1.9 1.0 - 9.8 8.5 5.7 0.6 - 10.2 6.7 2.0 1 -

Dataset - 55822 111645 167468 223291 279113 55822 111645 167468 223291 279113 55822 111645 167468 223291 279113
D-↓ - 223291 167468 111645 55822 - 223291 167468 111645 55822 - 223291 167468 111645 55822 -
D-↓(%) - 400.0 150.0 66.7 25.0 - 400.0 150.0 66.7 25.0 - 400.0 150.0 66.7 25.0 -

Table 11: Performance of different proportion of warm-up dataset in various downstream tasks by three LLMs. Q:
QA, C: classification, G:generation. ↓means the number of performance decline. ↓(%) means the percentage of
performance decline. D-↓ means the number of data reduction. D-↓(%) means the percentage of data reduction.

SST-2 Yelp P. MR CR RTE QNLI SNLI MNLI MRPC Average

MAPO 96.1 93.5 90.2 88.9 75.3 63.1 60 55.7 79.3 78.0
MAPO-0 95.8 93.1 90.2 88.2 74.9 62.9 59.7 55.1 78.9 77.6
MAPO-0.2 95.9 93.3 90.3 88 75.2 63 59.8 54.8 78.3 77.6
MAPO-0.5 95.2 92.2 88.9 87.9 74.8 62.8 59.2 55 78.8 77.2
MAPO-0.8 95.3 92.3 88.7 87.9 74.5 62.7 59.2 54.9 78.7 77.1

Table 12: The few-shot performance of MAPO with SOTA prompt optimizing baselines in downstream tasks.
F: Finetuning, C: Continous prompt, D: Discrete prompt. MAPO means using MAPO with temperature [0,0.5].
MAPO-0 means using MAPO with temperature 0.

Task Natural Instructions

SST-2
In this task, you are given sentences from movie reviews. The task is to classify the sentiment of the sentence. Your answer must be
in the form of the letters “positive”, and “negative” respectively.

Yelp
In this task, you are given sentences from Yelp reviews. The task is to classify the sentiment of the sentence. Your answer must be
in the form of the letters “positive”, or “negative” respectively.

MR
In this task, you are given sentences from movie reviews. The task is to classify the sentiment of the sentence. Your answer must be
in the form of the letters “positive”, or “negative” respectively.

CR
In this task, you are given sentences from customer reviews. The task is to classify the sentiment of the sentence. Your answer must be
in the form of the letters “positive”, or “negative” respectively.’

RTE
In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your job is to choose whether the two sentences clearly agree
(entailment)/disagree (not entailment) with each other. Your answer must be in the form of the letters Yes, and No respectively.

QNLI
You are given two sentences(Sentence1 and Sentence2). The task is to determine whether Sentence2 contains the answer to Sentence1.
Your answer must be in the form of the letters Yes, and No respectively.

SNLI
In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your job is to choose whether the two sentences clearly agree
(entailment)/disagree (contradiction) with each other, or if this cannot be determined (neutral). Your answer must be in the form of the
letters “Yes”, “No”, and “Maybe” respectively.

MNLI
In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your job is to choose whether the two sentences clearly agree
(entailment)/disagree (contradiction) with each other, or if this cannot be determined (neutral). Your answer must be in the form of the
letters Yes, No, and Maybe respectively.

MRPC
In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your job is to choose whether the two sentences clearly agree
(entailment)/disagree (not entailment) with each other. Your answer must be in the form of the letters Yes, and No respectively.

Table 13: Natural Instructions of various downstream tasks.

optimization dynamics exhibited by each LLM.
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Task Dataset M
BLOOM (↑) (↑(%)) GPT-J (↑) (↑ (%)) LLaMA (↑) (↑ (%)) ↑ ↑ (%)

QA AdverQA 19.5 6 44.4 11 8 266.7 25.1 21.9 684.4 12 331.8
OpenQA 27.2 1.3 5 21 4 23.5 16.1 2.8 21.1 2.7 16.5
CloseQA 9.4 3 46.9 10.2 3.3 47.8 14.8 4 37 3.4 43.9

CLS News 98.7 5.9 6.4 6.3 6.3 - 12.4 11.3 1027.3 7.8 516.9
Movie 93.3 2.4 2.6 53.9 2.8 5.5 82.5 3.8 4.8 3 4.3
QASC 99.9 0.5 0.5 56.8 2.8 5.2 72.8 11.2 18.2 4.8 8

GEN Topics 36.2 6.7 22.7 23.4 5.9 33.7 19.5 5.2 36.4 5.9 30.9
Summary 50.2 4.1 8.9 17.8 4.7 35.9 12.2 5.6 84.8 4.8 43.2
Explan 8.9 3.2 56.1 12.9 4.4 51.8 9.1 2.2 31.9 3.3 46.6

Task Dataset M-0
BLOOM (↑) (↑(%)) GPT-J (↑) (↑ (%)) LLaMA (↑) (↑ (%)) ↑ ↑ (%)

QA AdverQA 19.3 5.8 43 10.5 7.5 250 24.8 21.6 675 11.6 322.7
OpenQA 26.8 0.9 3.5 20.9 3.9 22.9 15.2 1.9 14.3 2.2 13.6
CloseQA 8.9 2.5 39.1 9.8 2.9 42 14 3.2 29.6 2.9 36.9

CLS News 96.5 3.7 4 5.9 5.9 - 11.9 10.8 981.8 6.8 492.9
Movie 92.8 1.9 2.1 53.6 2.5 4.9 82 3.3 4.2 2.6 3.7
QASC 99.9 0.5 0.5 56.6 2.6 4.8 72.2 10.6 17.2 4.6 7.5

GEN Topics 35.9 6.4 21.7 23 5.5 31.4 19 4.7 32.9 5.5 28.7
Summary 49.7 3.6 7.8 17 3.9 29.8 11.9 5.3 80.3 4.3 39.3
Explan 7.8 2.1 36.8 12.3 3.8 44.7 8.8 1.9 27.5 2.6 36.3

Task Dataset M-0.2
BLOOM (↑) (↑(%)) GPT-J (↑) (↑ (%)) LLaMA (↑) (↑ (%)) ↑ ↑ (%)

QA AdverQA 19 5.5 40.7 10.7 7.7 256.7 24.4 21.2 662.5 11.5 320
OpenQA 26.9 1 3.9 20.1 3.1 18.2 15.6 2.3 17.3 2.1 13.1
CloseQA 8.4 2 31.3 10 3.1 44.9 14.2 3.4 31.5 2.8 35.9

CLS News 96.7 3.9 4.2 6.1 6.1 - 12.1 11 1000 7 502.1
Movie 92.9 2 2.2 53.2 2.1 4.1 81.5 2.8 3.6 2.3 3.3
QASC 99.9 0.5 0.5 56.6 2.6 4.8 72.3 10.7 17.4 4.6 7.6

GEN Topics 36 6.5 22 23.3 5.8 33.1 19.3 5 35 5.8 30
Summary 50.2 4.1 8.9 16.6 3.5 26.7 12 5.4 81.8 4.3 39.1
Explan 8.2 2.5 43.9 12.5 4 47.1 9 2.1 30.4 2.9 40.5

Task Dataset M-0.5
BLOOM (↑) (↑(%)) GPT-J (↑) (↑ (%)) LLaMA (↑) (↑ (%)) ↑ ↑ (%)

QA AdverQA 18.8 5.3 39.3 10 7 233.3 23.6 20.4 637.5 10.9 303.4
OpenQA 27.1 1.2 4.6 20.4 3.4 20 15.8 2.5 18.8 2.4 14.5
CloseQA 8.3 1.9 29.7 8.5 1.6 23.2 14.2 3.4 31.5 2.3 28.1

CLS News 96.2 3.4 3.7 5.7 5.7 - 10.3 9.2 836.4 6.1 420.1
Movie 93.2 2.3 2.5 53 1.9 3.7 81.6 2.9 3.7 2.4 3.3
QASC 99.9 0.5 0.5 56.5 2.5 4.6 70.6 9 14.6 4 6.6

GEN Topics 35.5 6 20.3 21.9 4.4 25.1 18.9 4.6 32.2 5 25.9
Summary 49.2 3.1 6.7 17 3.9 29.8 11.1 4.5 68.2 3.8 34.9
Explan 7.1 1.4 24.6 11.1 2.6 30.6 8.5 1.6 23.2 1.9 26.1

Task Dataset M-0.8
BLOOM (↑) (↑(%)) GPT-J (↑) (↑ (%)) LLaMA (↑) (↑ (%)) ↑ ↑ (%)

QA AdverQA 18.3 4.8 35.6 9.8 6.8 226.7 23.3 20.1 628.1 10.6 296.8
OpenQA 26.7 0.8 3.1 20.6 3.6 21.2 15.6 2.3 17.3 2.2 13.9
CloseQA 7.9 1.5 23.4 8.6 1.7 24.6 14.1 3.3 30.6 2.2 26.2

CLS News 95.9 3.1 3.3 5.8 5.8 - 10.2 9.1 827.3 6 415.3
Movie 92.8 1.9 2.1 52.9 1.8 3.5 81.5 2.8 3.6 2.2 3.1
QASC 99.9 0.5 0.5 56.6 2.6 4.8 70.4 8.8 14.3 4 6.5

GEN Topics 35.1 5.6 19 21.9 4.4 25.1 18.7 4.4 30.8 4.8 25
Summary 50.1 4 8.7 16.8 3.7 28.2 10.9 4.3 65.2 4 34
Explan 7.1 1.4 24.6 10.9 2.4 28.2 8.2 1.3 18.8 1.7 23.9

Table 14: (↑) denotes the absolute performance increase achieved using MAPO-optimized prompts versus a frozen LLM,
while (↑(%)) highlights the relative performance boost. Symbols ↑ and ↑(%) represent the average absolute and relative
enhancements across all three LLMs, respectively. These enhancements pertain to specific downstream tasks, with “CLS”
signifying classification and “GEN” indicating generation tasks. M, M-0.2, M-0.5, and M-0.8 correspond to using MAPO with
temperature settings of [0,0.5], 0, 0.2, 0.5, and 0.8, respectively.
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Figure 7: The distribution of three most frequent words, which extracted from the original prompt, in the optimized prompt
among different LLMs in the generation task. (a) retaining frequent words in the instruction, (b) removing frequent words in the
instruction.
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Figure 8: The distribution of three most frequent words, which extracted from the original prompt, in the optimized prompt
among different LLMs in the QA task. (a) retaining frequent words in the instruction, (b) removing frequent words in the
instruction.
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Figure 9: The distribution of three most frequent words, which extracted from the original prompt, in the optimized prompt
among different LLMs in the classification task. (a) retaining frequent words in the instruction, (b) removing frequent words in
the instruction.
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Task Dataset BLOOM M ↑ ↑ ↑(%) ↑(%) GPT-J M (↑) ↑ (↑(%)) ↑(%)

Coref. xwinograd 60.1 60.6 0.5 0.5 0.9 0.9 - - - - - -

NLU

BoolQ 67.9 68.2 0.3

0.6

0.4

0.9

67.2 67.9 0.7 0.3 1 0.5
CB 77.6 78.1 0.5 0.6 83.9 84.2 0.3 0.4
COPA 74.0 75.0 1.0 1.4 84 84.2 0.2 0.2
MultiRC 59.7 60.4 0.7 1.2 63.8 64.1 0.3 0.5
ReCoRD 69.8 70.2 0.4 0.6 74.4 74.7 0.3 0.4
WiC 61.4 62.0 0.6 1.0 61 61.3 0.3 0.5
WSC 64.4 65.1 0.7 1.1 77.9 78.1 0.2 0.3

NLI

ANLI R1 31.5 32.1 0.6

0.5

1.9

1.3

37.8 38.2 0.4 0.3 1.1 0.7
ANLI R2 35.1 35.4 0.3 0.9 37.9 38.3 0.4 1.1
ANLI R3 37.1 37.8 0.7 1.9 40.9 41.1 0.2 0.5
StoryCloze 79.0 79.5 0.5 0.6 87.8 87.9 0.1 0.1

CLS
Amazon 65.2 67.7 2.5

2.3
3.8

3.3
68.2 69.4 1.2 1.2 1.8 1.6

DBPedia 70.5 72.5 2.0 2.8 83.9 85.1 1.2 1.4

QA

DROP 67.9 69.9 2.0

1.8

2.9

5.6

51.6 52.8 1.2 1 2.3 3.2
NQ 15.1 16.1 1.0 6.6 19.6 20.8 1.2 6.1
RealTimeQA 29.0 31.5 2.5 8.6 36 37.2 1.2 3.3
WebQs 34.8 36.3 1.5 4.3 44.1 44.6 0.5 1.1

Task Dataset BLOOM M-0 ↑ ↑ ↑(%) ↑(%) GPT-J M-0 (↑) ↑ (↑(%)) ↑(%)

Coref. xwinograd 60.1 60.5 0.4 0.4 0.7 0.7 - - - - - -

NLU

BoolQ 67.9 68.0 0.1

0.5

0.1

0.7

67.2 67.8 0.6 0.3 0.9 0.4
CB 77.6 78.0 0.4 0.5 83.9 84.1 0.2 0.2
COPA 74.0 74.8 0.8 1.1 84 84.2 0.2 0.2
MultiRC 59.7 60.4 0.7 1.2 63.8 64.1 0.3 0.5
ReCoRD 69.8 70.2 0.4 0.6 74.4 74.7 0.3 0.4
WiC 61.4 61.8 0.4 0.7 61 61.3 0.3 0.5
WSC 64.4 65.0 0.6 0.9 77.9 78.1 0.2 0.3

NLI

ANLI R1 31.5 32.0 0.5

0.5

1.6

1.2

37.8 38.2 0.4 0.2 1.1 0.6
ANLI R2 35.1 35.4 0.3 0.9 37.9 38.1 0.2 0.5
ANLI R3 37.1 37.8 0.7 1.9 40.9 41.1 0.2 0.5
StoryCloze 79.0 79.4 0.4 0.5 87.8 87.9 0.1 0.1

CLS
Amazon 65.2 67.3 2.1

1.8
3.2

2.7
68.2 69 0.8 1 1.2 1.3

DBPedia 70.5 72.0 1.5 2.1 83.9 85.1 1.2 1.4

QA

DROP 67.9 69.5 1.6

1.5

2.4

4.6

51.6 52.3 0.7 0.7 1.4 2.3
NQ 15.1 15.8 0.7 4.6 19.6 20.4 0.8 4.1
RealTimeQA 29.0 31.2 2.2 7.6 36 37 1 2.8
WebQs 34.8 36.1 1.3 3.7 44.1 44.5 0.4 0.9

Task Dataset BLOOM M-0.2 ↑ ↑ ↑(%) ↑(%) GPT-J M-0.2 (↑) ↑ (↑(%)) ↑(%)

Coref. xwinograd 60.1 60.6 0.5 0.5 0.8 0.8 - - - - - -

NLU

BoolQ 67.9 68.1 0.2

0.5

0.3

0.7

67.2 67.9 0.7 0.3 1 0.4
CB 77.6 78.1 0.5 0.6 83.9 84.2 0.3 0.4
COPA 74.0 74.6 0.6 0.8 84 84.2 0.2 0.2
MultiRC 59.7 60.3 0.6 1.0 63.8 64 0.2 0.3
ReCoRD 69.8 70.2 0.4 0.6 74.4 74.6 0.2 0.3
WiC 61.4 61.7 0.3 0.5 61 61.3 0.3 0.5
WSC 64.4 65.1 0.7 1.1 77.9 78.1 0.2 0.3

NLI

ANLI R1 31.5 32.2 0.7

0.5

2.2

1.3

37.8 38.2 0.4 0.3 1.1 0.7
ANLI R2 35.1 35.5 0.4 1.1 37.9 38.3 0.4 1.1
ANLI R3 37.1 37.6 0.5 1.3 40.9 41.1 0.2 0.5
StoryCloze 79.0 79.5 0.5 0.6 87.8 87.9 0.1 0.1

CLS
Amazon 65.2 67.1 1.9

1.6
2.9

2.4
68.2 69.1 0.9 1 1.3 1.3

DBPedia 70.5 71.8 1.3 1.8 83.9 85 1.1 1.3

QA

DROP 67.9 69.3 1.4

1.2

2.1

3.8

51.6 52.6 1 0.7 1.9 2.1
NQ 15.1 15.6 0.5 3.3 19.6 20.3 0.7 3.6
RealTimeQA 29.0 31.0 2.0 6.9 36 36.7 0.7 1.9
WebQs 34.8 35.8 1.0 2.9 44.1 44.5 0.4 0.9

Task Dataset BLOOM M-0.5 ↑ ↑ ↑(%) ↑(%) GPT-J M-0.5 (↑) ↑ (↑(%)) ↑(%)

Coref. xwinograd 60.1 60.4 0.3 0.3 0.5 0.5 - - - - - -

NLU

BoolQ 67.9 68.0 0.1

0.3

0.1

0.5

67.2 67.6 0.4 0.2 0.6 0.2
CB 77.6 77.8 0.2 0.3 83.9 84.1 0.2 0.2
COPA 74.0 74.4 0.4 0.5 84 84.2 0.2 0.2
MultiRC 59.7 60.3 0.6 1.0 63.8 63.9 0.1 0.2
ReCoRD 69.8 70.1 0.3 0.4 74.4 74.5 0.1 0.1
WiC 61.4 61.6 0.2 0.3 61 61.2 0.2 0.3
WSC 64.4 64.8 0.4 0.6 77.9 78 0.1 0.1

NLI

ANLI R1 31.5 32.0 0.5

0.3

1.6

0.9

37.8 38.2 0.4 0.2 1.1 0.5
ANLI R2 35.1 35.3 0.2 0.6 37.9 38.1 0.2 0.5
ANLI R3 37.1 37.5 0.4 1.1 40.9 41 0.1 0.2
StoryCloze 79.0 79.3 0.3 0.4 87.8 87.9 0.1 0.1

CLS
Amazon 65.2 66.7 1.5

1.2
2.3

1.8
68.2 68.9 0.7 0.5 1 0.8

DBPedia 70.5 71.4 0.9 1.3 83.9 84.3 0.4 0.5

QA

DROP 67.9 68.5 0.6

0.8

0.9

2.7

51.6 52.2 0.6 0.5 1.2 1.7
NQ 15.1 15.5 0.4 2.6 19.6 20.2 0.6 3.1
RealTimeQA 29.0 30.6 1.6 5.5 36 36.6 0.6 1.7
WebQs 34.8 35.4 0.6 1.7 44.1 44.4 0.3 0.7

Task Dataset BLOOM M-0.8 ↑ ↑ ↑(%) ↑(%) GPT-J M-0.8 (↑) ↑ (↑(%)) ↑(%)

Coref. xwinograd 60.1 60.2 0.1 0.1 0.2 0.2 - - - - - -

NLU

BoolQ 67.9 68.0 0.1

0.3

0.1

0.4

67.2 67.5 0.3 0.2 0.4 0.2
CB 77.6 77.8 0.2 0.3 83.9 84.1 0.2 0.2
COPA 74.0 74.3 0.3 0.4 84 84.2 0.2 0.2
MultiRC 59.7 60.3 0.6 1.0 63.8 63.9 0.1 0.2
ReCoRD 69.8 70.1 0.3 0.4 74.4 74.5 0.1 0.1
WiC 61.4 61.6 0.2 0.3 61 61.2 0.2 0.3
WSC 64.4 64.7 0.3 0.5 77.9 78 0.1 0.1

NLI

ANLI R1 31.5 31.8 0.3

0.3

1.0

0.8

37.8 38.1 0.3 0.2 0.8 0.4
ANLI R2 35.1 35.3 0.2 0.6 37.9 38 0.1 0.3
ANLI R3 37.1 37.5 0.4 1.1 40.9 41 0.1 0.2
StoryCloze 79.0 79.3 0.3 0.4 87.8 87.9 0.1 0.1

CLS
Amazon 65.2 66.5 1.3

1.1
2.0

1.6
68.2 68.8 0.6 0.4 0.9 0.7

DBPedia 70.5 71.3 0.8 1.1 83.9 84.2 0.3 0.4

QA

DROP 67.9 68.3 0.4

0.7

0.6

2.5

51.6 52.1 0.5 0.4 1 1.5
NQ 15.1 15.5 0.4 2.6 19.6 20.1 0.5 2.6
RealTimeQA 29.0 30.5 1.5 5.2 36 36.6 0.6 1.7
WebQs 34.8 35.3 0.5 1.4 44.1 44.3 0.2 0.5

Table 15: Zero-shot domain transfer performance based
on BLOOM and GPT-J with original and MAPO-
Optimized prompts. CLS: Classification, M: MAPO.
The (↑ ) and ↑represent the absolute improvement scores
of MAPO-optimized prompts compared with original
prompts in each dataset and task, respectively. The
(↑(%) ) and ↑(%) represent the relative improvement
percentages of MAPO-optimized prompts compared
with original prompts in each dataset and task, respec-
tively.

Task Dataset LLaMA M (↑) ↑ (↑(%)) ↑(%)

RS BoolQ 76.5 76.7 0.2 0.3 0.3 0.5
PIQA 79.8 80 0.2 0.3
SIQA 48.9 49 0.1 0.2
HellaSwag 76.1 76.5 0.4 0.5
WinoGrande 70.1 70.5 0.4 0.6
ARC-e 72.8 73.2 0.4 0.5
ARC-c 47.6 47.8 0.2 0.4
OBQA 57.2 57.9 0.7 1.2

QA NQ 16.8 18.1 1.3 1.1 7.7 4.7
RACE 50 50.8 0.8 1.6

Task Dataset LLaMA M-0 (↑) ↑ (↑(%)) ↑(%)

RS BoolQ 76.5 76.7 0.2 0.3 0.3 0.4
PIQA 79.8 80 0.2 0.3
SIQA 48.9 49 0.1 0.2
HellaSwag 76.1 76.4 0.3 0.4
WinoGrande 70.1 70.4 0.3 0.4
ARC-e 72.8 73.2 0.4 0.5
ARC-c 47.6 47.8 0.2 0.4
OBQA 57.2 57.8 0.6 1

QA NQ 16.8 17.8 1 0.8 6 3.6
RACE 50 50.6 0.6 1.2

Task Dataset LLaMA M-0.2 (↑) ↑ (↑(%)) ↑(%)

RS BoolQ 76.5 76.7 0.2 0.3 0.3 0.4
PIQA 79.8 80 0.2 0.3
SIQA 48.9 49 0.1 0.2
HellaSwag 76.1 76.4 0.3 0.4
WinoGrande 70.1 70.4 0.3 0.4
ARC-e 72.8 73.1 0.3 0.4
ARC-c 47.6 47.8 0.2 0.4
OBQA 57.2 57.7 0.5 0.9

QA NQ 16.8 18 1.2 1 7.1 4.3
RACE 50 50.7 0.7 1.4

Task Dataset LLaMA M-0.5 (↑) ↑ (↑(%)) ↑(%)

RS BoolQ 76.5 76.7 0.2 0.2 0.3 0.3
PIQA 79.8 79.9 0.1 0.1
SIQA 48.9 49 0.1 0.2
HellaSwag 76.1 76.4 0.3 0.4
WinoGrande 70.1 70.4 0.3 0.4
ARC-e 72.8 73 0.2 0.3
ARC-c 47.6 47.7 0.1 0.2
OBQA 57.2 57.6 0.4 0.7

QA NQ 16.8 17.7 0.9 0.7 5.4 3.2
RACE 50 50.5 0.5 1

Task Dataset LLaMA M-0.8 (↑) ↑ (↑(%)) ↑(%)

RS BoolQ 76.5 76.6 0.1 0.2 0.1 0.2
PIQA 79.8 79.9 0.1 0.1
SIQA 48.9 49 0.1 0.2
HellaSwag 76.1 76.3 0.2 0.3
WinoGrande 70.1 70.4 0.3 0.4
ARC-e 72.8 73 0.2 0.3
ARC-c 47.6 47.6 0 0
OBQA 57.2 57.5 0.3 0.5

QA NQ 16.8 17.6 0.8 0.5 4.8 2.7
RACE 50 50.3 0.3 0.6

Table 16: Domain transfer performance with a frozen
LLM for inference based on LLaMA with original and
MAPO-Optimized prompts. CLS: Classification, M:
MAPO. The (↑ ) and ↑represent the absolute improve-
ment scores of MAPO-optimized prompts compared
with original prompts in each dataset and task, respec-
tively. The (↑(%) ) and ↑(%) represent the relative im-
provement percentages of MAPO-optimized prompts
compared with original prompts in each dataset and task,
respectively.
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Tasks Dataset 20% 40% 60% 80% 100%

(BLOOM) +SFT +MAPO +SFT +MAPO +SFT +MAPO +SFT +MAPO +SFT +MAPO
QA AdverQA 14.6 17.8 16.9 18.6 17.5 18.9 17.7 19.2 18.3 19.5

OpenQA 22.1 25.4 24.3 26.1 24.9 26.3 25.1 26.5 26.7 27.2
CloseQA 6.6 8.0 7.7 8.6 7.3 8.8 7.8 9.1 7.8 9.4

Class News 93.6 96.8 95.8 97.4 95.5 97.6 96.2 98.0 95.5 98.7
Movie 87.1 89.8 88.3 90.9 88.9 91.3 90.7 92.5 92.6 93.3
QASC 96.0 98.0 97.6 98.6 97.1 98.7 97.4 98.8 99.9 99.9

Gen Topics 32.7 35.0 33.6 35.7 34.6 36.0 34.7 36.4 34.8 36.2
Summary 45.8 47.9 47.1 48.9 47.3 49.3 48.5 49.7 48.8 50.2
Explan 6.2 7.5 7.3 8.1 7.1 8.3 6.3 8.6 6.8 8.9

Average - 45.0 47.4 46.5 48.1 46.7 48.4 47.2 48.8 47.9 49.3
↑ - - 2.4 - 1.6 - 1.7 - 1.6 - 1.4
↑(%) - - 5.3 - 3.4 - 3.6 - 3.4 - 2.9

Tasks Dataset 20% 40% 60% 80% 100%

(GPT-J) +SFT +MAPO +SFT +MAPO +SFT +MAPO +SFT +MAPO +SFT +MAPO
QA AdverQA 6.8 9.2 7.7 9.3 7.9 9.9 9.4 11.0 9.9 11.0

OpenQA 17.3 19.0 17.3 19.1 18.2 19.5 20.3 21.0 19.8 21.1
CloseQA 7.1 8.4 7.3 8.6 8.2 9.4 8.4 10.2 9.6 10.3

Class News 2.4 4.6 2.8 4.8 3.9 5.3 5.5 6.3 5.5 6.4
Movie 49.2 51.8 50.7 52.2 51.7 52.8 52.7 53.9 51.8 53.9
QASC 50.3 53.8 52.8 54.4 53.6 55.2 56.3 56.8 55.2 56.9

Gen Topics 19.5 21.3 20.0 21.6 20.8 22.2 21.6 23.4 21.8 23.6
Summary 13.8 16.0 14.7 16.3 15.7 16.8 16.7 17.8 17.1 18.1
Explan 8.5 11.2 9.9 11.4 10.1 11.9 10.7 12.9 11.8 13.2

Average - 19.4 21.7 20.4 22.0 21.1 22.6 22.4 23.7 22.5 23.8
↑ - - 2.3 - 1.6 - 1.5 - 1.3 - 1.3
↑(%) - - 11.9 - 7.8 - 7.1 - 5.8 - 5.8

Tasks Dataset 20% 40% 60% 80% 100%

(LLaMA) +SFT +MAPO +SFT +MAPO +SFT +MAPO +SFT +MAPO +SFT +MAPO
QA AdverQA 19.6 22.2 22.0 23.2 23.2 25.1 24.5 25.4 24.4 26.0

OpenQA 12.8 14.3 13.5 15.1 15.4 16.1 14.9 16.3 15.9 16.6
CloseQA 11.5 13.0 12.2 13.8 13.9 14.8 14.5 15.2 14.8 15.4

Class News 8.8 10.2 9.8 11.5 10.1 12.4 11.0 12.5 10.8 12.7
Movie 77.5 79.8 79.0 80.2 81.3 82.5 80.6 82.7 81.5 83.1
QASC 67.3 70.5 68.3 71.4 70.2 72.8 71.2 73.3 71.6 73.4

Gen Topics 16.1 17.5 17.2 18.2 18.6 19.5 18.3 19.8 18.0 19.9
Summary 8.2 10.1 9.4 11.3 10.7 12.2 10.5 12.4 11.6 12.8
Explan 5.6 7.3 7.6 8.2 8.2 9.1 8.8 9.5 8.8 10.0

Average - 25.3 27.2 26.6 28.1 28.0 29.4 28.3 29.7 28.6 30.0
↑ - - 1.9 - 1.5 - 1.4 - 1.4 - 1.4
↑(%) - - 7.5 - 5.6 - 5.0 - 4.9 - 4.9

Table 17: Performance of different proportion of warm-up dataset in various downstream tasks by three LLMs. Q:
QA, C: classification, G:generation. SFT means using SFT-optimized prompts without RL.
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Task Dataset Best Performance Best Epoch Epoch
- - - - 1 5 10 15 20 50

QA AdverQA 18.3 18 14.8 14.3 15.4 18.2 18.3 18.2
OpenQA 26.7 14 26.0 26.0 26.1 26.7 26.7 26.6
CloseQA 7.8 19 6.8 7.0 7.0 7.5 7.8 7.8

CLS News 95.5 20 93.2 93.7 94.3 95.3 95.5 95.7
Movie 92.6 15 91.4 91.7 91.3 92.6 92.4 92.5
QASC 99.9 7 99.6 99.8 99.9 99.9 99.9 99.9

GEN Topics 34.8 19 30.3 31.5 33.8 34.2 34.8 34.8
Summary 48.8 18 46.1 46.4 47.5 48.4 48.8 48.9
Explan 6.8 15 5.9 6.3 6.4 6.8 6.5 6.7

Task Dataset Best Performance Best Epoch Epoch
- - - - 1 5 10 15 20 50

QA AdverQA 9.4 20 4.4 5.3 6.7 8.8 9.4 9.6
OpenQA 20.3 15 17.5 18.1 18.8 20.3 20.2 20.0
CloseQA 8.4 20 7.0 7.3 7.8 8.2 8.4 8.6

CLS News 5.5 20 1.4 2.6 3.1 4.8 5.5 5.9
Movie 52.7 15 51.1 51.6 52.6 52.7 52.4 52.7
QASC 56.3 19 54.3 54.6 54.5 55.4 56.3 56.3

GEN Topics 21.6 18 17.9 20.2 20.7 21.3 21.6 21.6
Summary 16.7 20 13.2 14.5 15.2 16.3 16.7 17.1
Explan 10.7 19 8.8 9.2 9.9 9.6 10.7 11.0

Task Dataset Best Performance Best Epoch Epoch
- - - - 1 5 10 15 20 50

QA AdverQA 23.2 20 5.8 9.3 13.3 18.7 23.2 29.5
OpenQA 15.4 15 13.6 14.1 14.6 15.4 15.3 16.8
CloseQA 13.9 20 10.8 11.3 12.9 13.5 13.9 14.5

CLS News 10.1 13 3.4 5.7 9.3 10.1 10.1 10.1
Movie 81.3 19 79.2 79.6 80.5 81.1 81.3 81.2
QASC 70.2 20 62.8 63.7 65.9 69.2 70.2 71.9

GEN Topics 18.6 20 15.5 16.1 17.7 18.4 18.6 19.3
Summary 10.7 20 6.6 7.1 8.6 9.4 10.7 11.5
Explan 8.2 14 7.3 7.5 7.5 8.2 8.2 8.3

Table 18: Performance of different number of epochs when training SFT. Best Performance means the best
performance within 20 epochs. Best Epoch means the epoch corresponding to the best performance. We list
the performance in the 1,5,10,15,20,50 epochs. We bold the performance metrics where a longer training epoch
(epoch=50) results in a decline in performance.
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Task Prompts

SST-2

Original: The sentence is “khouri manages , with terrific flair, to keep the extremes of screwball farce and blood-curdling family intensity on
one continuum. ”.
BLOOM: The sentence is “khouri manages , with terrific flair, to keep the extremes of screwball farce and blood-curdling family intensity on
one continuum. ”.
GPT-J: The sentence is “With tremendous artistry, Khouri expertly maintains a fluid continuum between the uproarious comedy of screwball
farce and the blood-curdling intensity of family dynamics.”.
LLaMA: The sentence is “With remarkable skill, Khouri successfully maintains a seamless connection between the wild hilarity of screwball
farce and the spine-chilling intensity of family dynamics.”.

Yelp

Original: The sentence is “The food is good. Unfortunately the service is very hit or miss. The main issue seems to be with the kitchen, the
waiters and waitresses are often very apologetic for the long waits and it’s pretty obvious that some of them avoid the tables after taking the initial
order to avoid hearing complaints.”.
BLOOM: The sentence is “The quality of the food is commendable. However, the service provided is inconsistent. The primary concern appears
to be with the kitchen, as the waitstaff frequently apologize for lengthy waits, and it’s apparent that some of them intentionally avoid tables after
taking initial orders to prevent complaints.”.
GPT-J: The sentence is “The food is good. Unfortunately the service is very hit or miss. The main issue seems to be with the kitchen, the waiters
and waitresses are often very apologetic for the long waits and it’s pretty obvious that some of them avoid the tables after taking the initial order to
avoid hearing complaints.”.
LLaMA: The sentence is “The quality of the food is commendable. However, the service provided is inconsistent. The primary concern appears
to be with the kitchen, as the waitstaff frequently apologize for lengthy waits, and it’s apparent that some of them intentionally avoid tables after
taking initial orders to prevent complaints.”.

MR

Original: The sentence is “a respectable venture on its own terms , lacking the broader vision that has seen certain trek films . . . cross over to
a more mainstream audience .”.
BLOOM: The sentence is “An admirable endeavor in its own right, although it lacks the wider perspective that propelled certain Star Trek films
to cross over into a more mainstream audience.”.
GPT-J: The sentence is “a respectable venture on its own terms , lacking the broader vision that has seen certain trek films . . . cross over to a
more mainstream audience .”.
LLaMA: The sentence is “A praiseworthy pursuit on its own grounds, though it falls short of the broader vision that allowed certain Star Trek
films to captivate a more mainstream audience.”.

CR

Original: The sentence is “the fact that the 0 key is the space key for text input is a bit confusing , as many phones use the key instead”.
BLOOM: The sentence is “It can be a little confusing that the space key for text input is the 0 key, considering that many phones utilize a different
key for that purpose.”.
GPT-J: The sentence is “the fact that the 0 key is the space key for text input is a bit confusing , as many phones use the key instead”.
LLaMA: The sentence is “It might cause confusion that the space key for text input is assigned to the 0 key, whereas many phones utilize a different
key for the same purpose.”.

RTE

Original: The sentence 1 is “More than 150 dolphins, marine turtles and beaked whales have been washed up dead on beaches in Africa.”. The
sentence 2 is “Dead dolphins, turtles and whales have been found on African beaches.”.
BLOOM: The sentence 1 is “African beaches have become a somber site with the washing up of over 150 deceased dolphins, marine turtles, and
beaked whales.”. The sentence 2 is “African beaches have become a distressing sight as dead dolphins, turtles, and whales have been uncovered.”.
GPT-J: The sentence 1 is “The number of deceased dolphins, marine turtles, and beaked whales found on African beaches exceeds 150.”. The
sentence 2 is “There have been reports of deceased dolphins, turtles, and whales on African beaches.”.
LLaMA: The sentence 1 is “More than 150 dolphins, marine turtles and beaked whales have been washed up dead on beaches in Africa.”. The
sentence 2 is “Dead dolphins, turtles and whales have been found on African beaches.”.

QNLI

Original: The sentence 1 is “What came into force after the new constitution was herald?”. The sentence 2 is “As of that day, the new constitution
heralding the Second Republic came into force.”.
BLOOM: The sentence 1 is “What started being in effect as a result of the heralding of the new constitution?”. The sentence 2 is “The new
constitution heralding the Second Republic started being in effect as of that day.”.
GPT-J: The sentence 1 is “What commenced after the new constitution was heralded?”. The sentence 2 is “The new constitution heralding the
Second Republic came into force as of that day.”.
LLaMA: The sentence 1 is “What became valid subsequent to the heralding of the new constitution?”. The sentence 2 is “ The new constitution
heralding the Second Republic started being in force on that day.”.

SNLI

Original: The sentence 1 is “A baby at the end of a slip and slide at a party”. The sentence 2 is “The baby is wet”.
BLOOM: The sentence 1 is “At a party, a baby reaches the conclusion of their slip and slide adventure.”. The sentence 2 is “The little one is
dripping wet.”.
GPT-J: The sentence 1 is “A baby sliding to the end of a slip and slide at a celebration.”. The sentence 2 is “The baby’s clothes are moistened.”.
LLaMA: The sentence 1 is “At the end of a festive occasion, a baby arrives at the final stretch of a slip and slide.”. The sentence 2 is “The baby
is entirely drenched.”.

MNLI

Original: The sentence 1 is “Conversely, an increase in government saving adds to the supply of resources available for investment and may
put downward pressure on interest rates.”. The sentence 2 is “Interest rates should increase to increase saving.”.
BLOOM: The sentence 1 is “Conversely, an increase in government saving adds to the supply of resources available for investment and may
put downward pressure on interest rates.”. The sentence 2 is “Interest rates should increase to increase saving.”.
GPT-J: The sentence 1 is “Conversely, when the government saves more, it adds to the pool of resources for investment and may exert downward
pressure on interest rates.”. The sentence 2 is “The augmentation of interest rates is crucial for increasing saving.”.
LLaMA: The sentence 1 is “On the flip side, an increase in government saving enhances the resources accessible for investment and may
exert downward pressure on interest rates.”. The sentence 2 is “The escalation of interest rates is essential for boosting savings.”.

MRPC

Original: The sentence 1 is “Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.”. The sentence 2 is
“With the scandal hanging over Stewart’s company, revenue the first quarter of the year dropped 15 percent from the same period a year earlier.”.
BLOOM: The sentence 1 is “The first quarter of the year saw a 15 percent drop in revenue compared to the corresponding period a year earlier.”.
The sentence 2 is “The scandal’s impact on Stewart’s company led to a 15 percent drop in revenue during the first quarter, as compared to the same
period in the prior year.”
GPT-J: The sentence 1 is “There was a 15 percent decline in revenue during the first quarter of the year compared to the same period a year ago.”.
The sentence 2 is “Due to the scandal looming over Stewart’s company, revenue in the first quarter of the year witnessed a 15 percent decline
compared to the same period last year.”.
LLaMA: The sentence 1 is “There was a 15 percent reduction in revenue during the first quarter of the year compared to the same period in the
prior year.”. The sentence 2 is “With the scandal overshadowing Stewart’s company, revenue for the first quarter of the year dipped by 15 percent
compared to the corresponding period in the previous year.”.

Table 19: Original prompts and MAPO-optimized prompts for different LLMs in more downstream tasks. Each prompt is start
with the corresponding instruction as shown in Table 13. We omit instructions in the following Table due to space limits.
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