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Abstract

Recently, Target-oriented Multimodal Senti-
ment Classification (TMSC) has gained sig-
nificant attention among scholars. However,
current multimodal models have reached a
performance bottleneck. To investigate the
causes of this problem, we perform extensive
empirical evaluation and in-depth analysis of
the datasets to answer the following questions:
Q1: Are the modalities equally important
for TMSC? Q2: Which multimodal fusion
modules are more effective? Q3: Do existing
datasets adequately support the research? Our
experiments and analyses reveal that the current
TMSC systems primarily rely on the textual
modality, as most of targets’ sentiments can
be determined solely by text. Consequently,
we point out several directions to work on
for the TMSC task in terms of model design
and dataset construction. The code and data
can be found in https://github.com/Junjie-Ye/
RethinkingTMSC.

1 Introduction

Target-oriented sentiment classification, also
known as aspect-based sentiment classification, is
a fundamental task of sentiment analysis (Pontiki
et al., 2014, 2015, 2016). It aims to judge the
sentimental polarity (positive, negative, or neutral)
of a specific target within text. To improve
the performance by considering multimodal
information, Target-oriented Multimodal
Sentiment Classification (TMSC) is proposed to
integrate both visual and textual information (Yu
and Jiang, 2019).

Recently, the performance of the TMSC systems
gradually reaches a plateau and the progress
in tackling this task has slowed down. Using
the F1-score metric on the popular datasets,
Twitter15 and Twitter17 (Yu and Jiang, 2019), we
observe that state-of-the-art baselines only achieve
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an F1-score of around 70. Therefore, in this
paper, we aim to analyze the causes behind it at
both model level and modality level. Roughly
speaking, the modules in the model structures
can be categorized into two types: 1) encoders to
model the representations of different modalities;
and 2) multimodal fusion modules to model the
interactions between modalities. Moreover, we
give a deep analysis of the characteristics of
two widely-used datasets, aiming to answer the
following three questions:

Q1: Are the modalities equally important for
TMSC? To explore this issue, we compare and
analyze the performance of unimodal models on
this task. For the textual modality, we use BERT
(Devlin et al., 2019) as the backbone, as it is a
widely-used pre-trained language model outper-
forming earlier models like LSTM (Hochreiter and
Schmidhuber, 1997), memory network (Weston
et al., 2015), etc. For the visual modality, ResNet
(He et al., 2016), ViT (Dosovitskiy et al., 2021),
and Faster R-CNN (Ren et al., 2015) are adopted
(see Figure 1).

Q2: Which multimodal fusion modules are
more effective? The current models use various
fusion strategies to model the interactions between
modalities, while obtaining little improvement.
To explore the effectiveness of different fusion
approaches, we summarize the fusion strategies
into six categories: Concatenation, Tensor Fusion
(Zadeh et al., 2017), Self Attention, Image2Text,
Text2Image and Bi-direction. Then we perform a
comparative study of them using a unified setup
to eliminate potential bias from model size and
structure (see Figure 2).

Q3: Do existing datasets adequately support the
research? We analyze the existing datasets (i.e.,
Twitter15 and Twitter17) in depth and obtain the
following findings: 1) The size of existing datasets
is limited; 2) The multimodal sentiment is much
more consistent with the textual sentiment than

270

https://github.com/Junjie-Ye/RethinkingTMSC
https://github.com/Junjie-Ye/RethinkingTMSC


Model Image Encoder Fusion Module
ResNet ViT Faster R-CNN Concat Tensor Fusion Self Attention Image2Text Text2Image

Res-BERT+BL ! % % ! % ! % %

Res-BERT+BL-TFN ! % % % ! ! % %

mBERT ! % % ! % ! % %

TomBERT ! % % ! % ! ! %

EF-CapTrBERT ! % % % % ! % %

SMP % ! % % % % ! !

VLP % % ! % % ! % %

Table 1: The model structures of various baselines. All text encoders in the above models except for VLP are
initialized with BERT.

ResNet

V1 V2 V3 V49···

Faster R-CNN

V1 V2 V3 V36···

···

ViT

Vcls V1 V2 V196···

Figure 1: Different image encoders.

the visual sentiment; 3) A large number of targets
do not exist in images; 4) There are only a small
number of samples where the sentiment is decided
by both text and image.

The main contributions of this work are as
follows: 1) We investigate the effectiveness of
different model structures for TMSC, including
various unimodal encoders and multimodal fusion
modules; 2) We give an in-depth analysis of
limitations of existing widely-used datasets; 3)
We derive several valuable observations and point
out promising directions for the future research of
TMSC model design and dataset creation.

2 Empirical Study

We summarize the model structures and perfor-
mance of the baselines for the TMSC task in
Table 1. Their structural differences are mainly
reflected in the different unimodal encoders and
multimodal fusion modules used. Therefore, we
carry out several experiments to analyze the impact
of these two aspects on performance.

2.1 Unimodal Encoder

As previously mentioned in Section 1, we primarily
focus on exploring the different image encoders,
ResNet, ViT, and Faster R-CNN (see Figure 1),
while using BERT as the text encoder.

ResNet. Following most of the baselines (e.g.,
mBERT (Yu and Jiang, 2019), TomBERT (Yu and
Jiang, 2019) and EF-CapTrBERT (Khan and Fu,
2021)), we adopt ResNet-152 as one of the image

encoders. Each image is resized into 224 by 224,
and then passed through the model to obtain 49
regions, which are used as the image representation
I “ rv1, v2, ..., v49s, where vi P R2048.

ViT. Following SMP (Ye et al., 2022), we adopt
ViT to model the image by dividing it into 16 by
16 patches. A CLS token is added at the beginning
and fed into the Transformer (Vaswani et al., 2017)
encoder to obtain the image representation I “
rvcls, v1, v2, ..., v196s, where vi P R768.

Faster R-CNN. Similar to VLP (Ling et al.,
2022), we adopt Faster R-CNN that is retrained
on the Visual Genome dataset (Krishna et al.,
2017). We select the top 36 object proposals as the
image representation I “ rv1, v2, ..., v36s, where
vi P R2048 is obtained from the ROI pooling layer
of the Region Proposal Network (Ren et al., 2015).

2.2 Multimodal Fusion
We categorize the current multimodal fusion
modules into six groups as follows (see Figure 2).

Concatenate is the simplest form of fusion,
where the pooled text representation HT

p P R768

is directly combined with the pooled image repre-
sentation HI

p P R768 1 to obtain the multimodal
representation H “ HI

p

À
HT

p , where
À

is a
concatenation operation and H P R768`768.

Tensor Fusion is proposed for modeling inter-
actions between modalities while preserving the
characteristics of individual modalities. We obtain
H “ HI

p

Â
HT

p , where
Â

is an outer product
operation and H P R768ˆ768.

Self Attention concatenates the image represen-
tation HI P RlIˆ768 and the text representation
HT P RlT ˆ768, where lI and lT are the lengths
of image and text, respectively. Then it is passed
through three self-attention layers and a pooling
layer to obtain H P R768.

1A linear mapping layer is added after the image encoder
to map the image representation to 768 dimensions to ensure
uniformity when using different image encoders.
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Figure 2: Various multimodal fusion modules.

Modality Model Twitter15 Twitter17
ACC F1 ACC F1

Text BERT 76.72±1.16 71.19±2.19 68.04±0.40 65.66±0.35

Image
ResNet 57.65±1.00 32.52±2.66 57.79±0.99 51.98±1.23
ViT 59.65±1.13 31.25±2.71 59.53±0.95 54.08±0.78
Faster R-CNN 55.97±1.10 35.72±5.43 56.18±0.85 49.88±1.70

Multimodal

ResNet

Concatenate 75.29±0.45 68.71±1.34 67.92±0.56 65.32±0.53
Tensor Fusion 74.19±0.94 68.93±0.57 66.66±1.21 63.99±1.61
Self Attention 76.03±0.96 70.57±2.39 68.01±0.96 65.41±1.60
Image2Text 77.13±1.33 71.48±1.90 69.37±0.36 66.85±0.79
Text2Image 75.18±1.66 67.77±4.81 68.07±0.58 65.18±1.48
Bi-direction 77.32±0.63 72.06±0.81 68.41±1.01 66.39±1.39

ViT

Concatenate 76.22±0.90 70.37±1.45 67.94±0.70 66.17±0.78
Tensor Fusion 73.44±0.78 67.46±1.45 65.46±1.67 62.02±1.40
Self Attention 75.08±0.41 68.94±0.83 67.52±0.58 65.56±0.35
Image2Text 77.11±0.44 71.91±0.42 69.14±0.52 66.96±0.68
Text2Image 75.12±1.01 69.40±1.38 67.52±1.06 64.49±1.46
Bi-direction 76.70±0.75 71.67±1.45 69.16±0.17 67.25±0.56

Faster R-CNN

Concatenate 75.45±0.73 69.77±1.23 67.60±1.15 64.74±1.69
Tensor Fusion 72.09±0.66 66.77±1.04 66.34±1.45 62.96±2.09
Self Attention 76.09±0.89 70.08±1.37 68.09±1.10 66.12±1.23
Image2Text 77.36±0.37 71.69±0.37 68.43±0.65 66.44±1.10
Text2Image 70.82±2.99 57.94±5.81 60.31±6.43 54.50±7.06
Bi-direction 76.57±0.46 70.88±0.89 69.51±0.62 67.50±0.37

Table 2: Results on Twitter15 and Twitter17. The
overall best results and those within each corresponding
block are marked with bold and underline, respectively.

Image2Text is one type of cross-attention
mechanism, using HI as the query and HT as
the key and value, through three attention layers
to get H P R768. Text2Image uses HT as
the query and HI as the key and value instead.
Furthermore, we concatenate these two as Bi-
direction representation H P R768`768.

2.3 Results Analysis

We perform experiments of different unimodal
encoders and fusion modules over Twitter15 and
Twitter17. In Table 2, we show the results and we
have the following observations 2:

First, the text-only model (i.e., BERT) performs
well, while the visual-only models (i.e., ResNet,
ViT, and Faster R-CNN) perform relatively poorly,

2The experimental setup is illustrated in Appendix B.

revealing that the reliance on text is much greater
than that on images for the TMSC task on these
two datasets. In comparison, this phenomenon is
more pronounced in Twitter15.

Second, the performance of the model is affected
by the use of different fusion methods. Specifically,
fusion modules that primarily focus on acquiring
the textual information (e.g., Image2Text) perform
better than those focused on acquiring the visual
information (e.g., Text2Image). This again reveals
the inconsistent importance of text and images.

Third, compared with the text-only model, the
various fusion modules do not have significant
gains in performance and some are even worse.
This is due to the fact that some images do not
provide related information, but rather distracting
information instead 3.

Fourth, the impact of various image encoders
is not clear, as evidenced by low performance and
high standard deviation on the two datasets (see the
“Image” part of Table 2). Moreover, differences
in performance among various image encoders are
small in the multimodal fusion settings (see the
“Multimodal” part of Table 2). This is due to the
characteristics of visual data in existing datasets,
which is analyzed in depth in the following section.

Based on the comprehensive experimental anal-
yses conducted above, we identify several key
points to be considered when designing models
for the TMSC task in the future: 1) leveraging
text information to exploit the advantages of
textual data fully; 2) devising more effective image
encoding methods to extract semantic information
from images better; and 3) enhancing the noise
immunity of the fusion module to enable more
flexible selection and utilization of informative
features from both textual and visual modalities.

3We give a detailed analysis of the performance
comparison for the multimodal model versus the text-only
model in Appendix C.
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Dataset Twitter15 Twitter17
#Negative #Neutral #Positive #Total #Avg Targets #Negative #Neutral #Positive #Total #Avg Targets

Train 368 1883 928 3179 1.348 416 1638 1508 3562 1.410
Dev 149 670 303 1122 1.336 144 517 515 1176 1.439
Test 113 607 317 1037 1.354 168 573 493 1234 1.450

Table 3: Statistics of the datasets. #Avg Targets means the average number of targets for each sample.
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Figure 3: Annotation analysis. Textual/Visual
Sentiment Consistency: the consistency of the
target’s sentiment in text/image with the sentiment in
multimodal information. No Target: the percentage
of images that are missing the target for sentiment
analysis. Co-determination: the percentage of targets
that sentiment is jointly determined by text and image.

3 Data Analysis

To gain a deeper understanding of the performance
issues mentioned above, we conduct detailed
analyses of the two datasets, taking into account
quantity, diversity, and annotation. Following the
annotation procedure employed by Yu and Jiang
(2019), we enlist the participation of three domain
experts to annotate 400 randomly sampled test
data (200 from Twitter15 and 200 from Twitter17)
across four aspects, with the majority vote being
considered as the final annotation result (Figure 3)
4. We have the following observations:

First, as shown in Table 3, the sample size
is relatively small, with an average of less than
1.5 targets per sample. Additionally, the distribu-
tions of the sentimental labels are unbalanced in
both datasets, with neutral sentiment accounting
for approximately 50% and negative sentiment
accounting for less than 15%. The reason
behind this is that Twitter15 and Twitter17 were
originally constructed by Zhang et al. (2018) and
Lu et al. (2018) respectively for the named entity
recognition task, rather than specifically for TMSC.

Second, the multimodal sentiment has high
consistency with the textual sentiment but low
consistency with the visual sentiment. In Twitter15,

4Illustrative examples with annotations are in Appendix D.

93% of the targets have the same textual sentiment
as the multimodal sentiment, while only 47.5%
have a visual sentiment that matches. This indicates
the biased distribution existing in the dataset,
i.e., the textual information is more useful for
determining the multimodal sentiment. Although
this phenomenon is mitigated in Twitter17, the
textual information is still more consistent with the
multimodal sentiment than the visual information.

Third, a large number of targets do not exist in
images, which is also not suitable for the target-
oriented multimodal sentiment classification task.
This phenomenon may stem from the construction
of the two datasets, where the targets are selected
directly from the text, without taking into account
the corresponding images (Yu and Jiang, 2019).

Fourth, due to the facts of irrelevant images and
non-existence of targets in images, there is only a
small portion of the data where the sentiment is
determined by both text and images. Specifically,
only 22% of Twitter15 and 55% of Twitter17 data
require both text and images for the sentiment
classification. As for the multimodal task, these
two datasets may not be the best-suited in this
aspect.

Based on our analyses of existing datasets,
we propose that high-quality TMSC datasets
should possess the following characteristics: 1)
accurately reflecting the real-world data distribu-
tion, including factors such as unbalanced label
distribution, while also providing sufficient data
samples for different cases; 2) large data diversity,
i.e., various data types and domains, to facilitate
valid testing for models’ generalization capability
and robustness; and 3) multi-dimensional annota-
tion information, including both multimodal and
unimodal sentiment, to enable thorough analysis of
the model’s ability to handle different data sources.

4 Conclusion and Future Work

In this paper, we conduct a series of in-depth
experiments for TMSC and data analysis of
existing datasets. Our findings reveal that current
multimodal models do not exhibit significant
performance gains compared to text-only models
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on the TMSC task. This is largely attributed
to the over-reliance on textual modality in ex-
isting datasets, while visual modality playing a
comparatively less significant role. Based on
our experimental analyses, we propose future
directions for designing models for the TMSC
task and for constructing more suitable datasets
which better capture the multimodal nature of
social media sentiments.

Limitations

Although we have conducted a series of experi-
ments and data analysis for the TMSC task to the
best of our ability, there are at least the following
limitations to our work. First, our data analysis
was performed mainly for the currently publicly
available English datasets Twitter15 and Twitter17,
neglecting the Chinese dataset Multi-ZOL, which
has not been widely studied. Second, although
our analysis indicated some problems in using the
currently dataset to measure the TMSC task, we
did not construct a new and better dataset for use
in academic studies. We have included this task as
one of our future works to be investigated. Third, in
our experiments, we did not specifically compare
the impact of different text encoding methods on
the model performance. While we acknowledge
that different text encoding methods may indeed
have an impact, it is worth noting that BERT, being
a well-established text encoding method, already
performs adequately. And most existing models
use BERT as the text encoder. Therefore, we
focused our study on investigating image encoding
methods and fusion modules, as we believe there
is more room for improvement in these parts.
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A Related Work

As one of the tasks of sentiment analysis, TMSC
has gained great attention from scholars in recent
years (Yu and Jiang, 2019). Xu et al. (2019)
constructed a Chinese dataset named Multi-ZOL
and proposed a multi-hop memory network for
handling modal interactions. Subsequently, Yu
and Jiang (2019) constructed two English datasets,
Twitter15 and Twitter17, and applied BERT to this
task. The following research on the TMSC task
can be divided into two directions. On the one
hand, there is the continuous exploration of how to
enhance the interactions between modalities (Khan
and Fu, 2021), and on the other hand, there is the
application of pre-trained models to this task (Ye
et al., 2022; Ling et al., 2022). Despite these efforts,
the current models have not yet achieved significant
performance gains relative to the text-only models.
We have conducted a series of experiments and
data analysis, hoping to provide some insights for
the future research of TMSC.

B Experimental Setup

For each set of experiments, we conduct tests using
five different random seeds (i.e., 0, 42, 199, 2022,
and 11122). We initialize the parameters of the
BERT text encoder with bert-base-uncased. The
image encoder parameters are frozen, and we use
resnet-152, vit-base, and faster-rcnn retrained on
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Text Image Target
Sentiment

Multimodal Textual Visual

Congratulations to our
second draw winner -
Bulaire Leber of ADSS
Global , Haiti . Thanks
for participating , Bulaire

Bulaire Leber Positive Positive! Positive!

RT @ BeschlossDC
: Coretta Scott King
with Robert amp Ethel
Kennedy after husband
’ s assassination , which
occurred tonight 1968

Ethel Kennedy Negative Negative! Neutral%

Pres Obama takes the
stage at @ RutgersU
Commencement in
school football stadium
in Piscataway , NJ .

Obama Positive Neutral% Positive!

RT @ Refugees : Today
, 18 - year - old Yehya
became the 1 millionth
Syrian to register as a
refugee in Lebanon

Lebanon Neutral Neutral! No Target%

Table 4: The annotation examples.

the Visual Genome dataset as image encoders,
respectively. For both the self-attention and
cross-attention modules, we use the last three
initialization parameters of bert-base-uncased. We
utilize the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 2e-5 and run each experiment
on a 3090 GPU for 8 epochs. We select the best
epoch’s parameters on the validation set for testing
and calculate the mean and standard deviation as
the final result.

To ensure a fair comparison, we set the models
in Table 2 uniformly and without continuing
pre-training, which may make it challenging
to compare them with existing papers due to
differences in overall structure and training details
compared to Table 1, even if they may use the same
unimodal encoder and multimodal fusion modules.

C Model Performance Visualization

We select Image2Text (Faster R-CNN) as the
representative of the multimodal models and

(a) Twitter15 (b) Twitter17

Figure 4: Venn diagram for model performance
visualization.

compare its performance with that of BERT with a
random seed of 11122 to obtain Figure 4. The
intersection of every two circles in the figure
represents the part where the prediction results
are consistent. Based on this comparison, we
have the following observations: First, in terms of
prediction accuracy, the multimodal model does not
achieve a significant gain over the text-only model.
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Second, a portion of the data is predicted correctly
by the multimodal model but incorrectly by the
text-only model, and vice versa. The proportions
of these two parts are similar. This suggests that
when images do contribute valuable information
to the multimodal model, they also introduce
noise. In order to improve the performance,
further investigation is required for how to properly
incorporate the visual information. Third, over
16% of the data has sentiments that neither the
text-only model nor the multimodal model predicts
correctly. This indicates the weakness of the
current models and we need further explorations.

D Annotation Examples

To clearly and visually illustrate the various
scenarios that arise during the dataset annotation
process, four samples are presented in Table 4.

The first example demonstrates a scenario where
the textual sentiment and the visual sentiment
matches, resulting in a multimodal sentiment
determined by both modalities. In the example, the
sentiment in the text is determined to be positive
through the use of words such as “Congratulations”
and “winner”. Similarly, the sentiment in the image
can be inferred as positive by identifying the target
(i.e., the first person on the right) and noticing his
smiling face.

The second example shows a scenario where
the textual sentiment aligns with the multimodal
sentiment but not with the visual sentiment, leading
to a multimodal sentiment determined by the
textual modality only. Specifically, the sentiment
conveyed by the text is negative due to the phrase
“after husband’s assassination” and the sentiment
conveyed by the image is neutral as it does not show
an obvious facial expression on the person referred
to in the text (i.e., the first person on the left).
Therefore, the multimodal sentiment conveyed by
both modalities is negative.

Corresponding to the second example, the third
example illustrates a scenario where the visual
sentiment aligns with the multimodal sentiment
but not with the textual sentiment. In particular, the
text simply states a fact with a neutral sentiment,
while the image shows the target (i.e., the person
waving his hand in front of the podium) with a
positive facial expression and posture, resulting in
a positive multimodal sentiment overall.

The fourth example presents a scenario where
there is no target in the image, resulting in a

multimodal sentiment determined solely by the
textual modality. Here, the target is “Lebanon”,
but since there is only one person in the image
and no information about “Lebanon”, we can only
conclude that the multimodal sentiment is neutral
based on the text. It is worth mentioning that such
a sample is not ideal for the TMSC task as the
image does not convey any sentimental information
towards the target.
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