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Abstract

Metrics for Visual Grounding (VG) in Visual
Question Answering (VQA) systems primarily
aim to measure a system’s reliance on relevant
parts of the image when inferring an answer
to the given question. Lack of VG has been a
common problem among state-of-the-art VQA
systems and can manifest in over-reliance on ir-
relevant image parts or a disregard for the visual
modality entirely. Although inference capabili-
ties of VQA models are often illustrated by a
few qualitative illustrations, most systems are
not quantitatively assessed for their VG proper-
ties. We believe, an easily calculated criterion
for meaningfully measuring a system’s VG can
help remedy this shortcoming, as well as add
another valuable dimension to model evalua-
tions and analysis. To this end, we propose
a new VG metric that captures if a model a)
identifies question-relevant objects in the scene,
and b) actually relies on the information con-
tained in the relevant objects when producing
its answer, i.e., if its visual grounding is both
“faithful” and “plausible”. Our metric, called
Faithful & Plausible Visual Grounding (FPVG),
is straightforward to determine for most VQA
model designs.

We give a detailed description of FPVG and
evaluate several reference systems spanning
various VQA architectures. Code to support
the metric calculations on the GQA data set is
available on GitHub1.

1 Introduction

Visual Question Answering (VQA) is the task of
answering natural language questions about image
contents. Visual Grounding (VG) in VQA mea-
sures a VQA system’s inherent proclivity to base
its inference on image regions referenced in the
given question and relevant to the answer. A well-
grounded system infers an answer to a given ques-
tion by relying on image regions relevant to the

1https://github.com/dreichCSL/FPVG

Figure 1: Faithful & Plausible Visual Grounding: The
VQA model’s answer given all objects in the image
(Aall) should equal its answer when given only relevant
objects w.r.t. the question (Arel), and should differ when
given only irrelevant objects (Airrel). The figure shows
a model’s behavior for a question deemed faithfully and
plausibly grounded.

question and plausible to humans. Hence, visually
grounded inference in VQA can be broken down
into two aspects: (1) Image contents impact the
inference process, and (2) inference is based on
relevant image contents. Evidence of problematic
behavior that arises from a lack of (1) includes
an over-reliance on language priors (Goyal et al.,
2017; Agrawal et al., 2018, 2016), while a lack
of (2) can cause models to react to changes in ir-
relevant parts of the image (Gupta et al., 2022).
Both characteristics can hurt a model’s capacity to
provide consistent and reliable performances.

Metrics that quantify a model’s VG characteris-
tics aim to capture its internal reasoning process
based on methods of model explanation. These
explanations generally vary in properties of plausi-
bility and faithfulness. Plausible explanations of a
model’s behavior prioritize human interpretability,
e.g., by illustrating a clear inference path over rele-
vant objects that lead to the decision, but might not
accurately reflect a model’s actual decision-making
process. Faithful explanations, on the other hand,

3129



prioritize a more accurate reflection of a model’s
decision-making process, possibly at the expense of
human interpretability. Examples of plausible ex-
planation methods are attention mechanisms (Bah-
danau et al., 2014) over visual input objects, and
multi-task objectives that learn to produce infer-
ence paths without conclusive involvement in the
main model’s answer decision (Chen et al., 2021).
Faithful explanation methods may employ testing
schemes with modulated visual inputs followed
by comparisons of the model’s output behavior
across test runs (DeYoung et al., 2020; Gupta et al.,
2022). While the latter types of metrics are par-
ticularly suited for the use-case of object-based
visual input in VQA, they often a) require large
compute budgets to evaluate the required number
of input permutations (e.g. SwapMix (Gupta et al.,
2022), Leave-One-Out (Li et al., 2016)); b) might
evaluate in unnecessary depth, like in the case of
softmax-score-based evaluations (DeYoung et al.,
2020); and/or c) evaluate individual properties sep-
arately and without considering classification con-
texts, thereby missing the full picture (DeYoung
et al., 2020; Ying et al., 2022), see also §3.4).

In this work, we propose a VG metric that is both
faithful and plausible in its explanations. Faithful
& Plausible Visual Grounding (FPVG) quantifies a
model’s faithful reliance on plausibly relevant im-
age regions (Fig. 1). FPVG is based on a model’s
answering behavior for modulated sets of image
input regions, similar to other faithfulness met-
rics (in particular DeYoung et al. (2020)), while
avoiding their above-mentioned shortcomings (de-
tails in §3.4). To determine the state-of-the-art for
VG in VQA, we use FPVG to measure various
representative VQA methods ranging from one-
step and multi-hop attention-based methods, over
Transformer-based models with and without cross-
modality pre-training, to (neuro-)symbolic meth-
ods. We conclude this work with investigations into
the importance of VG for VQA generalization re-
search (represented by Out-of-Distribution (OOD)
testing), thereby further establishing the value of
FPVG as an analytical tool. The GQA data set
(Hudson and Manning, 2019) for compositional
VQA is particularly suited for our tasks, as it pro-
vides detailed inference and grounding information
for the majority of its questions.

Contributions. Summarized as follows:

• A new metric called “Faithful & Plausible
Visual Grounding” (FPVG) for quantification

of plausible & faithful VG in VQA.
• Evaluations and comparisons of VQA models

of various architectural designs with FPVG.
• New evidence for a connection between VG

and OOD performance, provided by an empir-
ical analysis using FPVG.

• Code to facilitate evaluations with FPVG.

2 Related Work

Various metrics have been proposed to measure
VG in VQA models. We roughly group these into
direct and indirect methods. 1) Direct methods:
The most widely used methods measuring the im-
portance of image regions to a given question are
based on a model’s attention mechanisms (Bah-
danau et al., 2014), or use gradient-based sensi-
tivities (in particular variants of GradCAM (Sel-
varaju et al., 2017)). VG is then estimated, e.g.,
by accumulating importance scores over matching
and relevant annotated image regions (Hudson and
Manning, 2019), or by some form of rank correla-
tion (Shrestha et al., 2020). Aside from being inap-
plicable to non-attention-based VQA models (e.g.,
symbolic methods like Yi et al. (2018); Mao et al.
(2019)), attention scores have the disadvantage of
becoming harder to interpret the more attention lay-
ers are employed for various tasks in a model. This
gets more problematic in complex Transformer-
based models that have a multitude of attention lay-
ers over the input image (OSCAR (Li et al., 2020;
Zhang et al., 2021), LXMERT (Tan and Bansal,
2019), MCAN (Yu et al., 2019b), MMN (Chen
et al., 2021)). Additionally, attention mechanisms
have been a topic of debate regarding the faithful-
ness of their explanation (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). Gradient-based sensi-
tivity scores can theoretically produce faithful ex-
planations, but require a careful choice of technique
and implementation for each model individually to
achieve meaningful measurements in practice (Ade-
bayo et al., 2018; Feng et al., 2018). Various works
introduce their own VG metric based on attention
measurements (e.g., GQA-grounding (Hudson and
Manning, 2019), VLR (Reich et al., 2022), MAC-
Caps (Urooj et al., 2021)) or GradCAM-based fea-
ture sensitivities (Shrestha et al., 2020; Wu and
Mooney, 2019; Selvaraju et al., 2019; Han et al.,
2021). 2) Indirect methods: These include methods
that measure VG based on a model’s predictions un-
der particular test (and train) conditions, e.g., with
perturbations of image features (Yuan et al., 2021;
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Gupta et al., 2022; Agarwal et al., 2020; DeYoung
et al., 2020; Alvarez-Melis and Jaakkola, 2017), or
specially designed Out-of-Distribution test sets that
can inform us about a model’s insufficient VG prop-
erties (Agrawal et al., 2018; Kervadec et al., 2021;
Ying et al., 2022). FPVG is related to DeYoung
et al. (2020) in particular and uses perturbations
of image features to approximate a direct measure-
ment of VG w.r.t. relevant objects in the input
image. Thus, we categorize FPVG as an “indirect”
VG evaluation method.

Finally, we note that VG can be considered a
sub-problem of the VQA desiderata gathered under
the term “Right for Right Reasons” (RRR) (Ross
et al., 2017; Ying et al., 2022). RRR may addition-
ally include investigations of causal behavior in a
model that goes beyond (and may not be strictly
dependent on) VG and may involve probing the
model for its robustness and consistency in expla-
nations, e.g., via additional (follow-up) questions
(Patro et al., 2020; Selvaraju et al., 2020; Ray et al.,
2019; Park et al., 2018).

3 Faithful & Plausible Visual Grounding

3.1 Metric Formulation

We propose a new metric to determine the degree
of Faithful & Plausible Visual Grounding (FPVG)
in a VQA model MV QA w.r.t. a given VQA data
set S. Here, S consists of tuples sj of question,
image and answer (q, i, a)j . Each such tuple in
S is accompanied by annotations indicating rele-
vant regions in image i that are needed to answer
the question q. MV QA is characterized by its two
modality inputs (i and q) and a discrete answer
output (a). In this paper, we expect image i to be
given as an object-based representation (e.g., bag
of objects, scene graph) in line with the de-facto
standard for VQA models2.

FPVG requires evaluation of MV QA under three
test conditions. Each condition differs in the set of
objects representing image i in each sample sj of
the test. Three tests are run: 1) with all available ob-
jects (iall), 2) with only relevant objects (irel), and
3) with only irrelevant objects (iirrel). Formally,
we define one dataset variant for each of these three
conditions:

2In principle, FPVG can be easily adapted to work with any
model (VQA or otherwise) that follows a similar input/output
scheme as the standard region-based VQA models, i.e., an
input consisting of N entities where a subset can be identified
as “relevant” (“irrelevant”) for producing a discrete output.

sjall=(q,iall,a)j , sjall∈Sall (1)

sjrel=(q,irel,a)j , sjrel∈Srel (2)

sjirrel=(q,iirrel,a)j , sjirrel∈Sirrel (3)

The relevance of an object in i is determined
by its degree of overlap with any of the objects
referenced in relevance annotations for each indi-
vidual question (for details, see App. A). FPVG is
then calculated on a data point basis (i.e., for each
question) as

FPV Gj=Eq(âjall ,âjrel )∧¬Eq(âjall ,âjirrel ) , (4)

where âj is the model’s predicted answer for sam-
ple sj and Eq(x, y) is a function that returns True
for equal answers. FPVG takes a binary value for
each data point. A positive FPVG value for sample
sjall is only achieved if MV QA’s output answers
are equal between test runs with samples sjall and
sjrel , and unequal for samples sjall and sjirrel (re-
minder, that the three involved samples only differ
in their visual input). The percentage of “good”
(i.e., faithful & plausible) and “bad” FPVG is then
given as FPV G+ and FPV G−, respectively:

FPV G+= 1
n

∑n
j FPV Gj (5)

FPV G−=1−FPV G+ (6)

We further sub-categorize FPVG to quantify cor-
rectly (⊤) and incorrectly (⊥) predicted answers
âjall as FPV G⊤

{+,−} and FPV G⊥
{+,−}, respec-

tively. Hence, samples are assigned one of four
categories, following their evaluation behavior (see
Fig. 2 for illustration and App. B for the mathe-
matical formulation).

3.2 Intuition behind FPVG

The intuition behind the object selections in Srel

(relevant objects) and Sirrel (irrelevant objects) is
as follows:
Testing on relevant objects Srel. In the context
of FPVG, the output of a well-grounded system is
expected to remain steady for Srel, i.e., the model is
expected to retain its original prediction from Sall,
if it relies primarily on relevant visual evidence.
Hence, a change in output indicates that the model
has changed its focus to different visual evidence,
presumably away from irrelevant features (which
are dropped in Srel) onto relevant features — a sign
of “bad” grounding.
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Figure 2: Examples for the four FPVG sub-categories defined in §3.1. Each sub-category encapsulates specific
answering behavior for a given question in FPVG’s three test cases (Aall, Arel, Airrel). Categorization depends on
grounding status (“FPVG”) and answer correctness (“Acc”). E.g., questions that return a correct answer in Aall and
Arel and an incorrect answer in Airrel are categorized as (a). The model’s behavior in cases (a) and (b) satisfies the
criteria for the question to be categorized as faithfully & plausibly visually grounded.

Testing on irrelevant objects Sirrel. In the context
of FPVG, the output of a well-grounded system
is expected to waver for Sirrel, i.e., the model is
expected to change its original prediction in Sall, as
this prediction is primarily based on relevant visual
evidence which is unavailable in Sirrel.
Summarizing expectations for well-grounded
VQA. A VQA model that relies on question-
relevant objects to produce an answer (i.e., a
well-grounded model that values visual evidence)
should:

1. Retain its answer as long as the given visual
information contains all relevant objects.

2. Change its answer when the visual informa-
tion is deprived of all relevant objects and
consists of irrelevant objects only.

During (1), answer flips should not happen, if the
model relied only on relevant objects within the full
representation Sall. However, due to tendencies in
VQA models to ignore visual evidence, lack of
flipping in (1) could also indicate an over-reliance
on the language modality (implies indifference to
the visual modality). To help rule out those cases,
(2) can act as a fail-safe that confirms that a model
is not indifferent to visual input3.

The underlying mechanism can be described as
an indirect measurement of the model’s feature
valuation of relevant objects in the regular test run
Sall. The two additional experimental setups with
Srel and Sirrel help approximate the measurement
of relevant feature valuation for Sall.

3Investigations into an alternative formulation of FPVG
which ignores requirement (2) can be found in App. C.

FPVG and accuracy. FPVG classifies samples
sjall ∈ Sall as “good” (faithful & plausible) or
“bad” grounding by considering whether or not the
changed visual input impacts the model’s final de-
cision, independently of answer correctness. Many
VQA questions have multiple valid (non-annotated)
answer options (e.g., “man” vs. “boy” vs. “per-
son”), or might be answered incorrectly on account
of imperfect visual features. Thus, it is reason-
able to expect that questions can be well-grounded,
but still produce an incorrect answer, as shown in
Fig. 2, (b). Hence, FPVG categorizes samples
into two main grounding categories (FPV G+ and
FPV G−). For a more fine-grained analysis, an-
swer correctness is considered in two additional
sub-categories (FPV G⊤, FPV G⊥) within each
grounding category, as defined in Eq. 9–12.

3.3 Validating FPVG’s Faithfulness

FPVG achieves plausibility by definition. In this
section, we validate that FPVG’s sample catego-
rization is also driven by faithfulness by verifying
that questions categorized as FPV G+ are more
faithfully grounded than questions in FPV G−. To
measure the degree of faithful grounding for each
question, we first determine an importance ranking
among the question’s input objects. Then we esti-
mate how well this ranking matches with the given
relevance annotations. Three types of approaches
are used in VQA to measure object importance
by direct or indirect means: Measurements of a
model’s attention mechanism over input objects
(direct), gradient-measuring methods like Grad-
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relevant irrelevant
Method FPV G+ ↑ FPV G− ↓ FPV G+ ↓ FPV G− ↑
Attention 60.9 26.6 16.7 51.2
GradCAM 10.4 8.5 53.7 67.4
LOO 29.8 16.0 52.0 71.7

Table 1: Ranking match percentage between feature
importance rankings and relevant/irrelevant objects for
questions in FPV G+ and FPV G−. Model: UpDn.

CAM (direct), and methods involving input feature
manipulations followed by investigations into the
model’s output change (indirect).
VQA-model UpDn’s (Anderson et al., 2018) atten-
tion and the feature manipulation method Leave-
One-Out (LOO4) (Li et al., 2016) were found to
deliver the most faithful measurements of feature
importance in experiments with UpDn on GQA
in Ying et al. (2022). We use these two methods
and also include GradCAM used in Selvaraju et al.
(2019); Shrestha et al. (2020) for completeness.

We measure UpDn’s behavior on GQA’s bal-
anced validation set (see §4.1). Table 1 lists the
ranking match degree between object importance
rankings (based on Sall) and relevance annotations,
averaged over questions categorized as FPV G+

and FPV G−, respectively. The “relevant” (“ir-
relevant”) category produces a high score if all
relevant (irrelevant) objects are top-ranked by the
used method (see App. D.2 for details). Hence,
faithfully grounded questions are expected to score
highly in the “relevant” category, as relevant ob-
jects would be more influential to the model’s deci-
sion.

Results show that object importance rankings
over the same set of questions and model vary
greatly across methods. Nonetheless, we find that
data points in both FPV G+ and FPV G− achieve
on avg favorable scores across all three metrics
with mostly considerable gaps between opposing
categories (i.e., + and −). This is in line with
expectations and confirms that FPVG’s data point
categorization is driven by faithfulness.

3.4 Comparison with “sufficiency” and
“comprehensiveness”

Two metrics to measure faithfulness in a model,
“sufficiency” and “comprehensiveness”, were pro-
posed in DeYoung et al. (2020) and used in the con-
text of VQA in similar form in Ying et al. (2022).

4LOO evaluates a model N times (N=number of input
objects), each time “leaving-out-one object” of the input and
observing the original answer’s score changes. A large score
drop signifies high importance of the omitted object.

“Sufficiency” and “comprehensiveness” are sim-
ilar to FPVG and therefore deserve a more detailed
comparison. They are calculated as follows.

Definition. Let a model Mθ’s answer output layer
be represented as softmax-normalized logits. A
probability distribution over all possible answers
is then given as p(a|q, iall) = mθ(q, iall). The
max element in this distribution is Mθ’s predicted
answer, i.e., â = argmax

a
p(a|q, iall), where the

probability for the predicted answer is given by
pâall = Mθ(q, iall)â.

Sufficiency is defined as the change of output
probability of the predicted class given all objects
vs. the probability of that same class given only
relevant objects:

suff=pâall−pârel (7)

Comprehensiveness is defined as the change of
output probability of the predicted class given all
objects vs. the probability of that same class given
only irrelevant objects:

comp=pâall−pâirrel (8)

A faithfully grounded model is expected to
achieve low values in suff and high values in
comp.

Object relevance and plausibility. The defini-
tion of what constitutes relevant or irrelevant ob-
jects is crucial to the underlying meaning of these
two metrics. FPVG uses annotation-driven object
relevance discovery and subsequently determines
a model’s faithfulness w.r.t. these objects. Mean-
while, Ying et al. (2022) estimates both metrics
using model-based object relevance rankings (e.g.,
using LOO), hence, measuring the degree of faith-
fulness a model has towards model-based valuation
of objects as determined by an object importance
metric. A separate step is then needed to examine
these explanations for “plausibility”. In contrast,
FPVG already incorporates this step in its formula-
tion, which determines if the model’s inference is
similar to that of a human by measuring the degree
of faithful reliance on plausibly relevant objects (as
defined in annotations).

Advantages of FPVG. FPVG overcomes the fol-
lowing shortcomings of suff and comp:

1. Suff and comp are calculated as an average
over the data set independently of each other
and therefore do not evaluate the model for
presence of both properties in each data point.
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Figure 3: Left: Percentage of samples with best (worst)
suff & comp scores (medium scores not pictured).
Many samples with the suff property lack comp and
vice-versa (gray). Right: LOO-based ranking match per-
centages for samples in suff , comp and FPVG (higher
is better). Model: UpDn.

2. Suff and comp only consider prediction
probabilities of the maximum class in isola-
tion, which means that even a change in model
output as significant as a flip to another class
may be declared insignificant by these metrics
(e.g., for suff , if the output distribution’s
max probability pâall is similar to pârel).

Shortcoming 1. Fig. 3, left, illustrates why iso-
lating the two properties can cause inaccurate read-
ings (1). The analyzed model assigns “good” suff
scores (defined in Ying et al. (2022) as < 1%
abs. prob. reduction from pâall to pârel) to a large
number of questions (left two quadrants in Fig. 3,
left). However, many of these questions also show
“bad” comp (< 20% abs. drop from pâall to pâirrel)
(lower left quadrant in Fig. 3, left), which reflects
model behavior that one might observe when visual
input is ignored entirely. Thus, the full picture is
only revealed when considering both properties in
conjunction, which FPVG does. Further evidence
of the drawback stemming from (1) is pictured in
Fig. 3, right, which shows avg LOO-based ranking
match percentages (cf. §3.3) for data points cate-
gorized as “best” suff or comp and FPVG. Data
points in FPVG’s categories score more favorably
than those in suff and comp, illustrating a more
accurate categorization.

Shortcoming 2. Fig. 4, left, illustrates problem
(2). A large percentage of questions with best
(=low) scores in suff flip their answer class (i.e.,
fail to reach 0% flipped percentage), even when
experiencing only minimal class prob drops (< 1%
abs.). Similarly, some percentage of questions
with best (=high) comp scores fail to flip their an-
swer (i.e., fail to reach 100% flipped percentage),
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Figure 4: Sample distribution and answer class flip per-
centages depending on metric categorization. X-axis:
VG quality categories based on suff & comp (left) and
FPVG (right). Y-axis: percentage of flipped answers in
each category. Note that in this figure, FPVG’s formu-
lation is interpreted in terms of suff (Eq. 4, right side,
left term) and comp (right term). Model: UpDn.

even though the class prob dropped significantly
(>= 40% abs. drop). Both described cases show
that failure to consider class probs in the context
of the full answer class distribution negatively im-
pacts the metric’s quantification of a model’s VG
capabilities w.r.t. actual effects on its answer out-
put behavior. FPVG’s categorization avoids this
issue by being defined over actual answer changes
(Fig. 4, right: flipped prediction percentages per
VG category are always at the expected extremes,
i.e., 0% or 100%).

Summary. FPVG avoids shortcoming (1) by tak-
ing both suff and comp into account in its joint
formulation at the data point level, and (2) by look-
ing at actual answer output changes (Fig. 4, right)
and thus implicitly considering class probs over all
classes and employing meaningful decision bound-
aries for categorization. Additionally, relying on
answer flips instead of an abstract softmax score
makes FPVG more intuitively interpretable.

3.5 Discussion on other existing metrics

FPVG relies on the method of feature deletions to
determine “faithful” reliance on a “plausible” set
of inputs. Other VG metrics exist that instead rely
on GradCAM (Shrestha et al., 2020) or a model’s
Attention mechanism (Hudson and Manning, 2019)
to provide a “faithful” measurement of input fea-
ture importance (see also App. D.1). The two
mentioned metrics leverage these measurements to
determine if a model relies on “plausibly” relevant
objects. For instance, Shrestha et al. (2020) calcu-
lates a ranking correlation between the measured
GradCAM scores and the rankings based on (plau-
sible) object relevance annotations. The metric in
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Hudson and Manning (2019) sums all of a model’s
Attention values assigned to visual input objects
that have been determined to represent plausible
objects.

While “plausibility” is straightforwardly
achieved by appropriate selection of plausibly
relevant reference objects (which would be the
same across these metrics), the property of
“faithfulness” is more difficult to obtain and heavily
dependent on the employed feature importance
technique. Investigations in Ying et al. (2022)
cast doubt on the faithfulness of GradCAM
measurements, with feature deletion techniques
and Attention mechanism scoring most favorably
in faithfulness in the explored setting. However,
as discussed in §2, the faithfulness of Attention
measurements has not been without scrutiny, and is
not straightforward to extract correctly in models
that make heavy use of Attention mechanisms
(such as Transformers). Based on this evidence,
we find the method of feature deletions to be
the most sensible and versatile choice to achieve
faithfulness of measurements in FPVG across a
wide range of model architectures in VQA.

4 Experiments

4.1 Preliminaries

The GQA data set Hudson and Manning (2019) pro-
vides detailed grounding information in available
train & validation sets. Contrary to HAT (Das et al.,
2016), which consists of human attention data for a
small percentage of questions in the VQA data set
(Goyal et al., 2017), GQA contains automatically
generated relevance annotations for most questions
in the dataset. Our experiments focus on GQA,
but FPVG can theoretically be measured with any
VQA data set containing the necessary annotations,
like HAT. In this work, we rely on GQA’s “bal-
anced” split (943k samples), but use the full train
split (14m samples) for some models if required
in their official training instructions. Testing is
performed on the balanced val set (132k samples).

Details regarding object relevance determination
and model training can be found in App. A and E.

4.2 Models

To provide a broad range of reference evaluations
with FPVG, we evaluate a wide variety of model
designs from recent years: UpDn (Anderson et al.,
2018) is an attention-based model that popularized
the contemporary standard of object-based image

representation. MAC (Hudson and Manning, 2018)
is a multi-hop attention model for multi-step in-
ference, well-suited for visual reasoning scenarios
like GQA. MCAN (Yu et al., 2019b), MMN (Chen
et al., 2021) and OSCAR+ (Zhang et al., 2021) are
all Transformer-based (Vaswani et al., 2017) mod-
els. MMN employs a modular design that disentan-
gles inference over the image information from the
question-based prediction of inference steps as a
functional program in a separate process, thereby
improving interpretability compared to monolithic
systems like MCAN. MMN also makes an effort
to learn correct grounding using an auxiliary loss.
OSCAR+ uses large-scale pre-training on multi-
ple V+L data sets and is subsequently fine-tuned
on GQA’s balanced train set. We use the official
release of the pre-trained OSCAR+ base model
(which uses proprietary visual features) and fine-
tune it. DFOL (Amizadeh et al., 2020) is a neuro-
symbolic method that disentangles vision from lan-
guage processing via a separate question parser
similar to MMN and VLR (Reich et al., 2022). The
latter is a modular, symbolic method that prioritizes
strong VG over accuracy by following a retrieval-
based design paradigm instead of the commonly
employed classification-based design in VQA.

In addition to these main models, we include
two methods that focus on grounding improve-
ments and are both applied to UpDn model training:
HINT (Selvaraju et al., 2019) aligns GradCAM-
based (Selvaraju et al., 2017) feature sensitivities
with annotated object relevance scores. VisFIS
(Ying et al., 2022) adds an ensemble of various
RRR/VG-related objective functions (including
some data augmentation) to the training process.

All models, except for OSCAR+, were trained
using the same 1024-dim visual features generated
by a Faster R-CNN object detector trained on im-
ages in GQA using Detectron2 (Wu et al., 2019).

4.3 Evaluations

Results are listed in Table 2, sorted by FPV G+

(last column). Our first observation is that FPVG
and accuracy are not indicative of one another, con-
firming that our metric for grounding is comple-
mentary to accuracy and adds a valuable dimension
to VQA model analysis. Secondly, we see that
(neuro-)symbolic methods like DFOL, and VLR
in particular, stand out among (non-VG-boosted)
VQA models in terms of FPVG, even while trail-
ing in accuracy considerably. Thirdly, we find that
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Model Obj. Det. Acc Accall Accrel↑ Accirrel↓ FPV G⊤
+↑ FPV G⊥

+ FPV G⊤
−↓ FPV G⊥

− FPV G+↑
MAC (Hudson and Manning, 2018) Det2 60.23 59.20 58.12 44.33 15.40 7.19 43.81 33.60 22.59
UpDn (Anderson et al., 2018) Det2 55.53 57.99 58.51 44.32 15.76 9.68 42.23 32.33 25.44
UpDn+HINT (Selvaraju et al., 2019) Det2 55.56 57.95 57.88 42.98 16.31 9.72 41.64 32.33 26.03
MCAN (Yu et al., 2019b) Det2 66.18 65.78 67.3 44.62 20.18 6.20 45.60 28.02 26.37
OSCAR+ (Zhang et al., 2021) VinVL 70.52 69.96 71.79 50.24 20.37 6.00 49.58 24.05 26.37
MMN (Chen et al., 2021) Det2 68.49 68.23 64.37 43.93 21.93 5.86 46.29 25.92 28.22
DFOL (Amizadeh et al., 2020) Det2 55.79 57.45 57.36 36.70 20.19 10.03 37.25 32.53 30.22
UpDn+VisFIS (Ying et al., 2022) Det2 57.09 60.01 63.71 43.25 20.38 12.20 39.63 27.79 32.58
VLR (Reich et al., 2022) Det2 57.25 57.39 61.29 35.99 24.55 11.68 32.83 30.93 36.23

UpDn* (Anderson et al., 2018) VinVL 65.22 64.81 68.28 43.00 23.90 9.29 40.92 25.89 33.19

Table 2: FPVG results for various models, sorted by FPV G+. Accuracy (Acc) is calculated on GQA balanced val
set, while all others are calculated on a subset (see App. Table 5 for size). Blue arrows show desirable behavior
for well-grounded VQA in each category5(best results in bold). Last line: Results for UpDn* trained with VinVL
features are included to allow an easier assessment of OSCAR+ (w/ VinVL) results.

Accuracy FPV G+

Model ID OOD ID OOD

UpDn 51.4±.58 30.83±1.96 17.5±.87 19.33±.73
HINT 51.28±.39 31.34±.55 18.06±1.23 19.59±.68
VisFIS 53.28±.44 33.42±1.03 25.1±.78 25.18±.94
MAC 52.1±.46 31.31±.5 15.4±.51 16.72±.22
MMN 52.28±.43 36.48±.56 18.74±.32 17.88±.6
VLR 55.64 56.38 37.56 38.51

Table 3: Accuracy (i.e., Accall) and FPV G+ for
models evaluated with GQA-101k over five differently
seeded training runs.

methods that boost grounding characteristics, like
VisFIS, show promise for closing the gap to sym-
bolic methods - if not exceeding them. Lastly, we
observe that FPV G+ is generally low in all eval-
uated models, indicating that there is still ample
room for VG improvements in VQA.

4.4 Connection to Out-of-Distribution (OOD)

We use FPVG to gain insights into the challenge
of OOD settings by analyzing VQA models with
GQA-101k (Ying et al., 2022), a dataset proposed
for OOD testing. GQA-101k consists of a reparti-
tioned train/test set based on balanced GQA and
was created following a similar methodology as the
OOD split called VQA-CP (Agrawal et al., 2018).

Results in Table 3 show median values and
maximum deviation thereof over five differently
seeded training runs per model type (note that VLR
uses deterministic inference, so no additional runs
were performed for it). Table 4 lists correct-to-
incorrect (c2i) answer ratios for six model types
trained and evaluated on GQA-101k. The c2i ra-
tios are determined for each test set (ID/OOD) and
FPV G{+,−}. They are calculated as number of
correct answers divided by number of incorrect

5FPVG sub-categories FPV G⊥
+ and FPV G⊤

− have no
intuitively sensible ranking directive under the FPVG motiva-
tion.

answers, hence, a c2i ratio of > 1 reflects that cor-
rect answers dominate the considered subset of test
questions. In the following analysis, we leverage
the listed c2i ratios to investigate and illustrate the
connection between VG and (OOD) accuracy.

4.4.1 Understanding the connection between
FPVG and accuracy.

In Table 2 and 3 we observe a somewhat unpre-
dictable relationship between FPV G+ and ac-
curacy. We analyze the c2i ratios in Table 4 to
gain a better understanding of this behavior. Ta-
ble 4 shows that FPVG-curated c2i ratios can vary
substantially across model types (e.g., UpDn vs.
MMN). These ratios can be interpreted as indica-
tors of how effectively a model can handle and ben-
efit from correct grounding. Large differences be-
tween models’ c2i profiles explain why the impact
of VG on accuracy can vary significantly across
models. E.g., MMN has a much stronger c2i pro-
file than UpDn, which explains its higher OOD
accuracy even with lower FPV G+.

4.4.2 Understanding the connection between
FPVG and OOD performance.

The inter-dependency of VG and OOD perfor-
mance plays an important role in VQA general-
ization. FPVG can help us gain a deeper under-
standing.

More OOD errors when VG is bad. Fig. 5,
left, depicts relative c2i ratio degradation when
comparing ID to OOD settings. All models suffer a
much higher c2i drop for questions categorized as
FPV G− than FPV G+. In other words, models
make more mistakes in an OOD setting in general,
but they tend to do so in particular when questions
are not correctly grounded. Note, that VLR is
affected to a much lower degree due to its quasi-
insensitivity to Q/A priors.
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FPV G+ FPV G−

Model ID OOD ID OOD

UpDn 1.35±.09 .77±.05 1.11±.03 .43±.04
HINT 1.36±.07 .85±.05 1.11±.02 .43±.01
VisFIS 1.4±.06 .84±.06 1.23±.02 .47±.02
MAC 1.44±.06 .77±.05 1.16±.02 .45±.01
MMN 1.91±.05 1.21±.12 1.11±.02 .57±.02
VLR 1.91 2.12 1.09 1.05

Table 4: Correct to incorrect (c2i) an-
swer ratios for questions categorized as
FPV G{+,−}. Data set: GQA-101k.
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Figure 5: Performance drops when comparing ID to OOD (questions
in FPV G{+,−}, left), and when comparing FPV G+ to FPV G−
(questions in ID/OOD, right). Data set: GQA-101k.

VG is more important to OOD than ID. Fig.
5, right, shows accuracy sensitivity towards
changes in grounding quality, i.e., when compar-
ing FPV G+ to FPV G−. We draw two conclu-
sions: 1) All models suffer from c2i degradation,
hence, they all tend to make more mistakes for ques-
tions categorized as FPV G− than FPV G+. 2)
This tendency is (considerably) more pronounced
in OOD which provides evidence that OOD perfor-
mance is particularly sensitive to grounding.

Summary. Our analysis shows that VQA models
have a clear tendency to make mistakes in OOD
for questions that are not faithfully grounded. This
tendency is consistently observed across various
model types and model instances. Our findings
support the idea that weak visual grounding is detri-
mental to accuracy in OOD scenarios in particular,
where the model is unable to fall back on learned
Q/A priors to find the correct answer (as it can do
in ID testing). Furthermore, we note that VisFIS,
which boasts considerable improvements in FPVG
and strong improvements in accuracy over basic
UpDn, is unable to overcome these problematic ten-
dencies. This suggests that VG-boosting methods
alone might not be enough to overcome a model’s
fixation on language-based priors, which is exacer-
bating the performance gap between ID/OOD.

5 Conclusion

We introduced Faithful & Plausible Visual Ground-
ing (FPVG), a metric that facilitates and stream-
lines the analysis of VG in VQA systems. Using
FPVG, we investigated VQA systems of various
architectural designs and found that many models
struggle to reach the level of faithful & plausible
VG that systems based on symbolic inference can
provide. Finally, we have shown that FPVG can
be a valuable tool in analyzing VQA system be-
havior, as exemplified by investigations of the VG-
OOD relationship. Here, we found that VG plays

an important role in OOD scenarios, where, com-
pared to ID scenarios, bad VG leads to considerably
more errors than good VG, thus providing us with a
compelling argument for pursuing better-grounded
models.

6 Limitations

Plausibility of explanations in FPVG is assumed
to be provided by accurate, unambiguous and com-
plete annotations of relevant objects per evaluated
question. Although the GQA data set provides an-
notations in the shape of relevant object pointers
during the inference process for a question, these
annotations may be ambiguous or incomplete. For
instance, a question about the color of a soccer
player’s jersey might list pointers to a single player
in an image where multiple players are present.
Excluding only this one player from the image
input based on the annotated pointer would still
include other players (with the same jersey) for the
Sirrel test case. In such cases, FPVG’s assumptions
would be violated and its result rendered inaccurate.
In this context, we also note that FPVG’s behav-
ior has not been explicitly explored for cases with
ambiguous relevance annotations.

Secondly, FPVG creates its visual input modula-
tions by matching annotated objects with objects
detected by an object detector. Different object
detectors can produce bounding boxes of varying
accuracy and quantity depending on their settings.
When using a new object detector as a source for
visual features, it might be necessary to re-adjust
parameters used for identifying relevant/irrelevant
objects (see App. A for settings used in this work).
When doing so, the integrity of FPVG can only
be retained when making sure that there are no
overlapping objects among relevant & irrelevant
sets.

Thirdly, comparing VQA models with FPVG
across visual features produced by different object
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detectors might be problematic/inaccurate in itself,
as 1) different numbers of objects are selected for
relevant & irrelevant sets, and 2) different Q/A sam-
ples might be evaluated (e.g., due to missing de-
tections of any relevant objects). If possible, when
using a new object detector, we recommend includ-
ing FPVG evaluations for some reference model(s)
(e.g., UpDn) as an additional baseline to enable
an improved assessment of a model’s FPVG mea-
surements that are trained with a different object
detector’s visual features.

References
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian

Goodfellow, Moritz Hardt, and Been Kim. 2018. San-
ity checks for saliency maps. In Proceedings of the
32nd International Conference on Neural Informa-
tion Processing Systems, NIPS’18, page 9525–9536,
Red Hook, NY, USA. Curran Associates Inc.

Vedika Agarwal, Rakshith Shetty, and Mario Fritz. 2020.
Towards causal vqa: Revealing and reducing spurious
correlations by invariant and covariant semantic edit-
ing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.
2016. Analyzing the behavior of visual question
answering models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1955–1960, Austin, Texas. Associ-
ation for Computational Linguistics.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume; look
and answer: Overcoming priors for visual question
answering. In CVPR, pages 4971–4980. IEEE Com-
puter Society.

David Alvarez-Melis and Tommi Jaakkola. 2017. A
causal framework for explaining the predictions of
black-box sequence-to-sequence models. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 412–421,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Saeed Amizadeh, Hamid Palangi, Oleksandr Polozov,
Yichen Huang, and Kazuhito Koishida. 2020. Neuro-
symbolic visual reasoning: Disentangling “visual”
from “reasoning”. In Proceedings of the 37th Inter-
national Conference on Machine Learning (ICML-
2020), pages 10696–10707.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In CVPR,
pages 6077–6086. IEEE Computer Society.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Wenhu Chen, Zhe Gan, Linjie Li, Yu Cheng, William
Wang, and Jingjing Liu. 2021. Meta module network
for compositional visual reasoning. In Proceedings
of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 655–664.

Abhishek Das, Harsh Agrawal, C. Lawrence Zitnick,
Devi Parikh, and Dhruv Batra. 2016. Human atten-
tion in visual question answering: Do humans and
deep networks look at the same regions? In EMNLP
2016.

J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-
Fei. 2009. Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458, Online.
Association for Computational Linguistics.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3719–3728, Brussels, Belgium. Association
for Computational Linguistics.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904–6913.

Vipul Gupta, Zhuowan Li, Adam Kortylewski, Chenyu
Zhang, Yingwei Li, and Alan Loddon Yuille. 2022.
Swapmix: Diagnosing and regularizing the over-
reliance on visual context in visual question answer-
ing. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5068–
5078.

Xinzhe Han, Shuhui Wang, Chi Su, Qingming Huang,
and Qi Tian. 2021. Greedy gradient ensemble for ro-
bust visual question answering. 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 1564–1573.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

3138

https://doi.org/10.18653/v1/D16-1203
https://doi.org/10.18653/v1/D16-1203
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.18653/v1/D18-1407


D. A. Hudson and C. D. Manning. 2019. GQA: A New
Dataset for Real-World Visual Reasoning and Com-
positional Question Answering. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 6693–6702.

Drew A. Hudson and Christopher D. Manning. 2018.
Compositional attention networks for machine rea-
soning. Cite arxiv:1803.03067Comment: Published
as a conference paper at ICLR 2018.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Corentin Kervadec, Grigory Antipov, Moez Baccouche,
and Christian Wolf. 2021. Roses are red, violets
are blue... but should vqa expect them to? In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2776–2785.

Guohao Li, Xin Wang, and Wenwu Zhu. 2019. Percep-
tual visual reasoning with knowledge propagation.
In ACM Multimedia, pages 530–538. ACM.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu,
Pengchuan Zhang, Lei Zhang, Lijuan Wang,
Houdong Hu, Li Dong, Furu Wei, Yejin Choi,
and Jianfeng Gao. 2020. Oscar: Object-semantics
aligned pre-training for vision-language tasks. In
European Conference on Computer Vision.

Tsung-Yi Lin, P. Dollár, Ross B. Girshick, Kaiming
He, Bharath Hariharan, and Serge J. Belongie. 2017.
Feature pyramid networks for object detection. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 936–944.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. The neuro-
symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata,
Anna Rohrbach, Bernt Schiele, Trevor Darrell, and
Marcus Rohrbach. 2018. Multimodal explanations:
Justifying decisions and pointing to the evidence.
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8779–8788.

Badri N. Patro, Shivansh Pate, and Vinay P. Namboodiri.
2020. Robust explanations for visual question an-
swering. 2020 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 1566–1575.

Arijit Ray, Karan Sikka, Ajay Divakaran, Stefan Lee,
and Giedrius Burachas. 2019. Sunny and dark out-
side?! improving answer consistency in vqa through
entailed question generation. ArXiv, abs/1909.04696.

Daniel Reich, Felix Putze, and Tanja Schultz. 2022. Vi-
sually grounded vqa by lattice-based retrieval. arXiv
preprint arXiv:2211.08086.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and
J. Sun. 2015. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39:1137–1149.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons: Train-
ing differentiable models by constraining their expla-
nations. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAI’17,
page 2662–2670. AAAI Press.

Ramprasaath R. Selvaraju, Michael Cogswell, Ab-
hishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based local-
ization. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 618–626.

Ramprasaath R. Selvaraju, Stefan Lee, Yilin Shen,
Hongxia Jin, Dhruv Batra, and Devi Parikh. 2019.
Taking a hint: Leveraging explanations to make vi-
sion and language models more grounded. 2019
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 2591–2600.

Ramprasaath R. Selvaraju, Purva Tendulkar, Devi
Parikh, Eric Horvitz, Marco Tulio Ribeiro, Besmira
Nushi, and Ece Kamar. 2020. Squinting at vqa mod-
els: Introspecting vqa models with sub-questions.
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10000–10008.

Robik Shrestha, Kushal Kafle, and Christopher Kanan.
2020. A negative case analysis of visual grounding
methods for VQA. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8172–8181, Online. Association
for Computational Linguistics.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. In EMNLP/IJCNLP (1), pages 5099–5110.
Association for Computational Linguistics.

Aisha Urooj, Hilde Kuehne, Kevin Duarte, Chuang Gan,
Niels Lobo, and Mubarak Shah. 2021. Found a rea-
son for me? weakly-supervised grounded visual ques-
tion answering using capsules. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 8465–8474.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

3139

http://arxiv.org/abs/1803.03067
http://arxiv.org/abs/1803.03067
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.18653/v1/2020.acl-main.727
https://doi.org/10.18653/v1/2020.acl-main.727
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, Hong Kong, China. Association for
Computational Linguistics.

Jialin Wu and Raymond J. Mooney. 2019. Self-critical
reasoning for robust visual question answering. In
NeurIPS.

Yuxin Wu, Alexander Kirillov, Francisco Massa,
Wan-Yen Lo, and Ross Girshick. 2019. Detec-
tron2. https://github.com/facebookresearch/
detectron2.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba,
Pushmeet Kohli, and Josh Tenenbaum. 2018. Neural-
symbolic vqa: Disentangling reasoning from vision
and language understanding. In NeurIPS, pages
1039–1050.

Zhuofan Ying, Peter Hase, and Mohit Bansal. 2022.
Visfis: Visual feature importance supervision with
right-for-the-right-reason objectives. In NeurIPS.

Zhou Yu, Yuhao Cui, Zhenwei Shao, Pengbing Gao,
and Jun Yu. 2019a. Openvqa. https://github.
com/MILVLG/openvqa.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian.
2019b. Deep modular co-attention networks for vi-
sual question answering. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6274–6283.

Yuanyuan Yuan, Shuai Wang, Mingyue Jiang, and
Tsong Yueh Chen. 2021. Perception matters: De-
tecting perception failures of vqa models using meta-
morphic testing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 16908–16917.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual representa-
tions in vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5579–5588.

3140

https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/MILVLG/openvqa
https://github.com/MILVLG/openvqa
https://doi.org/10.1109/CVPR.2019.00644
https://doi.org/10.1109/CVPR.2019.00644


A Determining relevant objects.

FPVG can only be meaningfully evaluated with
questions for which the used object detector found
both relevant and irrelevant objects. If e.g. no
question-relevant objects were detected, the ques-
tion is excluded. Hence, different subsets of the
test (=balanced val set) are evaluated depending on
the used object detector. Table 5 lists some statis-
tics related to this for each of the object detectors
used in our evaluations. The set of relevant objects
is determined by IoU > 0.5 between detected &
annotated bbox. The set of irrelevant objects ex-
cludes all detected bboxes that cover > 25% of any
annotated relevant object to avoid any significant
inclusion of relevant image content.

#obj #obj avg
Obj. Detector #Q/A max all | rel | irrel

Detectron2 (Wu et al., 2019) 114k 100 91 | 5 | 62
VinVL (Zhang et al., 2021) 110k 100 45 | 2 | 31

Table 5: Object detector bbox statistics for FPVG evalu-
ation.

B Metric formulation - addendum

Mathematical formulation of each of FPVG’s four
subcategories is as follows (for a description of the
variables used in the formulae, see §3.1):

FPV G⊤
+= 1

n

∑n
j (FPV Gj∗Eq(âjall ,aj)) (9)

FPV G⊥
+= 1

n

∑n
j (FPV Gj∗(1−Eq(âjall ,aj))) (10)

FPV G⊤
−= 1

n

∑n
j ((1−FPV Gj)∗Eq(âjall ,aj)) (11)

FPV G⊥
−= 1

n

∑n
j ((1−FPV Gj)∗(1−Eq(âjall ,aj))) (12)

Eq. 9–12 sum to 1. See Fig. 2 for illustration,
where image-to-equation correspondence is given
by (a)-Eq. 9, (b)-Eq. 10, (c)-Eq. 11, (d)-Eq. 12.

C Metric investigations - modified FPVG

During the paper review of this work, investiga-
tions were requested to show the value of FPVG’s
third test case (which involves irrelevant objects
and is run to acquire Airrel) by exploring FPVG’s
behavior when Airrel is omitted. We include our
findings here. Note, that this section assumes that
the reader has read the main paper.

Theoretical considerations. One motivation for
considering an answer change when testing with
irrelevant parts is given in §3.2, namely that it un-
covers cases where the model is simply indifferent
to visual input entirely. This indifference to visual
input is a major (language) bias problem in VQA.
Hence, it is important to have a mechanism that
can identify these cases.

Empirical investigation. We investigate results
produced by the modified FPVG version. We mod-
ify FPVG to only consider answer changes when
testing with relevant objects (i.e., ignoring the third
test involving irrelevant objects and therefore re-
moving the condition for Airrel from FPVG’s for-
mulation). Results of this modified FPVG metric
(mod_FPV G) for ID/OOD tests over five runs
(same tests that were discussed in §4.4) are shown
in Table 6.

Discussion. Results of mod_FPV G appear to
be less reasonable than the original FPVG. E.g.,
VLR, which achieved by far the best FPV G+ (and
OOD accuracy) with the original FPVG, is now
ranked behind VisFIS and close to UpDn. MMN,
which had the best OOD performance among
classification-based models (and was ranked third
in FPV G+) is now ranked last by a large mar-
gin. Based on the known architectural properties
of these models (e.g., using VG-focused mecha-
nisms in MMN and VLR), such rankings would be
surprising.

We also investigate the c2i ratios for
mod_FPV G in the same scenario (see Ta-
ble 7 and Fig. 6). Here, we observe opposite trends
to the ones shown in the main paper for original
FPVG. In particular, these new results suggest that
well-grounded questions (as per mod_FPV G) are
much more prone to producing wrong answers in
OOD vs. ID than badly-grounded questions (as il-
lustrated by larger degradations for mod_FPV G+

than mod_FPV G− in Fig. 6, left). This does
not align with any reasonable expectation for a
model’s OOD behavior and we think it again
points to problems with the modified metric.

Conclusion. These empirical results on top of the
mentioned theoretical considerations emphasize
the value of including tests with irrelevant objects
in FPVG.
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Accuracy FPV G+ mod_FPV G+

Model ID OOD ID OOD ID OOD

UpDn 51.4±.58 30.83±1.96 17.5±.87 19.33±.73 77.56±1.43 76.33±1.23
HINT 51.28±.39 31.34±.55 18.06±1.23 19.59±.68 74.81±1.62 75.37±2.80
VisFIS 53.28±.44 33.42±1.03 25.1±.78 25.18±.94 82.25±0.40 80.15±0.91
MAC 52.1±.46 31.31±.5 15.4±.51 16.72±.22 73.93±2.08 73.27±2.56
MMN 52.28±.43 36.48±.56 18.74±.32 17.88±.6 61.99±0.62 58.66±1.15
VLR 55.64 56.38 37.56 38.51 79.48 79.03

Table 6: Accuracy (i.e., Accall) and mod_FPV G+ for models evaluated with GQA-101k over five differently
seeded training runs.

mod_FPV G+ mod_FPV G−

Model ID OOD ID OOD

UpDn 1.62±.06 .59±.08 .35±.03 .22±.01
HINT 1.68±.05 .61±.03 .38±.03 .24±.03
VisFIS 1.75±.05 .70±.03 .24±.01 .15±.02
MAC 1.74±.07 .61±.03 .42±.04 .29±.02
MMN 2.29±.06 .98±.06 .46±.01 .33±.02
VLR 2.01 2.10 .25 .24

Table 7: Correct to incorrect (c2i) an-
swer ratios for questions categorized as
mod_FPV G{+,−}. Data set: GQA-
101k.
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Figure 6: Performance drops when comparing ID to OOD (questions
in mod_FPV G{+,−}, left), and when comparing mod_FPV G+ to
mod_FPV G− (questions in ID/OOD, right). Data set: GQA-101k.

D Feature importance

D.1 Methods for measuring feature
importance

In 3.3, we consider three methods to measure fea-
ture importance, one representative from each of
the three categories commonly used in VQA, de-
scribed in more detail in the following:

1. Measuring attention (direct): Attention over
input objects gives a sense of importance the
model assigns to each object (used, e.g., in Li
et al. (2019); Urooj et al. (2021); Hudson and
Manning (2019)).

2. Measuring gradients (direct): Gradient-based
methods like GradCAM are close to the
model’s inner workings as they involve es-
timating a direct link between the importance
of the input features and a model’s output de-
cision (used, e.g., in Selvaraju et al. (2019);
Wu and Mooney (2019)).

3. Feature manipulation (indirect): Usually by
omission of input entities (i.e., vectors rep-
resenting objects). The manipulated image
representation can be zero-padded to main-
tain the model’s size expectations, as is com-
monly done for variable length inputs in se-
quence modeling. Other variants used in VQA

include replacing omitted objects with cer-
tain other values (e.g., constants (Ying et al.,
2022), objects from other images (Yuan et al.,
2021; Gupta et al., 2022)).

D.2 Feature importance ranking scores
Scores in Table 1 were calculated as follows:

A question’s “relevant” score measures how
many of N annotated relevant objects in set relN
are among the topN relevant objects (as deter-
mined and ranked by the used metric). It is cal-
culated as topN∩relN

relN , where a higher value is desir-
able for FPV G+). A question’s “irrelevant” score
measures how many of M annotation-determined
irrelevant objects in set irrelM are among the
topM metric-determined relevant objects. It is cal-
culated as topM∩irrelM

irrelM , with a lower value being
desirable for FPV G+.

E Model Training

In this section we include details for training pro-
cedures of models used in this work’s evaluations.
Generally, we use GQA’s balanced train set to train
all models and the balanced val set for evaluations.
A small dev set (either a small, randomly excluded
partition of the train set (20k questions), or sepa-
rately provided in case of experiments on GQA-
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101k (Ying et al., 2022)) is used for model selec-
tion.

E.0.1 Visual Features
The object detector used in this work is a Faster
R-CNN (Ren et al., 2015) model with ResNet101
(He et al., 2016) backbone and an FPN (Lin et al.,
2017) for region proposals. We trained this model
using Facebook’s Detectron2 framework (Wu et al.,
2019). The ResNet101 backbone model was pre-
trained on ImageNet (Deng et al., 2009).

The object detector was trained for GQA’s 1702
object classes using 75k training images (images
in GQA’s train partition). Training lasted for 1m
iterations with mini-batch of 4 images, using a
multi-step learning rate starting at 0.005, reducing
it by a factor of 10 at 700k and again at 900k iter-
ations. No other parameters were changed in the
official Detectron2 training recipe for this model
architecture. Training took about 7 days on an RTX
2080 Ti.

We extract 1024-dim object-based visual fea-
tures from a layer in the object classification head
of this model which acts as input to the final fully-
connected softmax-activated output layer. Up to
100 objects per image are selected as follows:
per-class NMS is applied at 0.7 IoU for objects
that have any softmax object class probability of
> 0.05.

Note that with exception of GQA-101k’s reparti-
tioned test sets (which mix questions from balanced
train and val sets), no images used in testing were
used in training.

Most models are trained with Detectron2-based
visual features (1024-dim object-based visual fea-
tures for 100 objects/image max) as input. For OS-
CAR+, we use the officially released pre-trained
base model which uses VinVL visual features
(Zhang et al., 2021).

E.0.2 MMN
MMN (Chen et al., 2021) consists of two main
modules that are trained separately: A program
parser and the actual inference model, which takes
the predicted program from the parser as input. We
mostly follow the settings in the official code-base
but detail some aspects of our customization here.

For the inference model, we run up to 5 epochs
of bootstrapping (using GQA’s “all” train set (14m
questions)) with Oracle programs and another up
to 12 epochs of fine-tuning with parser-generated
programs (from the official release), using GQA’s

balanced train set (1m questions). We use early
stopping of 1 epoch and select the model by best
accuracy on the dev set (using Oracle programs
in bootstrapping mode and predicted programs in
fine-tuning mode). The program parser was not
retrained.

E.0.3 DFOL
DFOL (Amizadeh et al., 2020) uses a vanilla
seq2seq program parser, but neither code nor gener-
ated output for this is provided in the official code
base. Thus, evaluations are run with ground-truth
programs from GQA. DFOL is trained on a loss
based on answer performance to learn weights in
its visual encoding layers that produce an image
representation similar to the one used by VLR (Re-
ich et al., 2022), given high-dimensional visual
features as input.

Training is done based on the official instructions
for a complex 5-step curriculum training procedure.
We train the first 4 curriculum steps with the entire
14 million questions in GQA’s “all” training data
partition, as specified in the instructions. As this
is extremely resource intensive, we train for one
epoch in each step. Finally, we run the 5th step
with the “balanced” train data only ( 1m questions)
until training finishes by early stopping of 1 epoch.

E.0.4 MAC
MAC (Hudson and Manning, 2018) is a monolithic
VQA model based on a recurrent NN architecture
which allows specification of the number of infer-
ence steps to take over the knowledge base. We
follow the official training procedure guidelines
given in the released code base and use 4-step in-
ference. We train the model on GQA’s balanced
train set and use early stopping of 1 epoch based
on accuracy on a dev set to select the best model.

E.0.5 UpDn, HINT, VisFIS
UpDn (Anderson et al., 2018) is a classic, straight-
forward attention-based model with a single at-
tention step before merging vision and language
modalities. We use the implementation shared by
(Ying et al., 2022). Following the scripts there, we
train UpDn for 50 epochs and select the best model
based on accuracy on a dev set.

HINT (Selvaraju et al., 2019) and VisFIS (Ying
et al., 2022) are two VG-improvement methods.
VisFIS is trained according to the released scripts.
HINT is trained according to Shrestha et al. (2020)
(using the VisFIS codebase), i.e. we continue train-

3143



ing the baseline UpDn model with HINT (using
GQA annotations to determine importance scores)
for 12 more epochs and select the best resulting
model (accuracy on dev set).

E.0.6 VLR
VLR (Reich et al., 2022) is a modular, symbolic
method that requires a full scene graph as visual
representation. Similar to DFOL and MMN, it
makes use of a (trained) program parser. The ac-
tual inference module does not require training.
Training of the program parser and generation of
the scene graph was done according to the descrip-
tion in Reich et al. (2022). The scene graph was
generated using the same Detectron2 model that
produced the visual features for the other models
in this work.

E.0.7 MCAN
MCAN (Yu et al., 2019b) is a Transformer-based
model that uses co-attention layers and a form of
multi-hop reasoning to hone in on attended vision
and language information. We use the model imple-
mentation by Yu et al. (2019a) to train the “small”
model (6 layers).

E.0.8 OSCAR+
OSCAR (Li et al., 2020) is a SOTA Transformer-
based model that leverages pre-training on various
V+L tasks and data sets. The subsequent release of
new and elaborately trained visual features, known
as VinVL (Zhang et al., 2021), further elevated
its performance. We use this stronger version of
OSCAR, called OSCAR+, in our evaluations. For
training, we leverage the officially released pre-
trained model and the VinVL features. Fine-tuning
is done on GQA’s balanced val set according to
instructions accompanying the official release.

Note that we included results of UpDn (named
“UpDn*”, last line in Table 2) trained with these
stronger VinVL features, in accordance with our
recommendation in the Limitation section (§6) for
new visual features.
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