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Abstract

Due to the remarkable language understand-
ing and generation abilities of large language
models (LLMs), their use in educational ap-
plications has been explored. However, little
work has been done on investigating the peda-
gogical ability of LLMs in helping students to
learn mathematics. In this position paper, we
discuss the challenges associated with employ-
ing LLMs to enhance students’ mathematical
problem-solving skills by providing adaptive
feedback. Apart from generating the wrong
reasoning processes, LLMs can misinterpret
the meaning of the question, and also exhibit
difficulty in understanding the given questions’
rationales when attempting to correct students’
answers. Three research questions are formu-
lated.

1 Introduction

After the pandemic, e-learning has become part
of mainstream education (Alqahtani and Rajkhan,
2020; Jafar et al., 2022). However, for students,
online learning is not without its problems (Ab-
dur Rehman et al., 2021). Apart from the difficulty
in maintaining focus in online classes, the lack of
real-time communication and timely feedback are
also serious problems. In particular, in online as-
sessments, students may fail to understand their
mistakes, even after reviewing the provided an-
swers; such failure to immediately clarify points
of confusion yields poor learning outcomes. Syn-
chronous communication between teachers and
students in an e-learning setting is necessary, but
teachers find that promptly responding to students’
questions is a significant challenge.

As large language models (LLMs) offer a wide
range of applications, several studies (Tack and
Piech, 2022; Kasneci et al., 2023; Zhang et al.,
2023) address the use of LLMs in education. In
this work, we seek to investigate the integration
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of LLMs into education. Since each subject has
its own issues that must be addressed, we explore
the scenario of LLM use in mathematics education
and the challenges thereof. Many studies address
math word problem solving (Shen et al., 2021; Yu
et al., 2021; Jie et al., 2022), but the human utility
of the mathematics reasoning processes and the
natural language explanations generated by mod-
els within educational settings is rarely discussed.
Given the extraordinary capability of LLMs to gen-
erate free-text rationalization, we investigate their
mathematical problem-solving competence and as-
sess whether the generated step-by-step explana-
tions constitute a useful educational resource. In
particular, we analyze the ability of LLMs to pro-
vide adaptive feedback by identifying and explain-
ing errors within a student’s math problem-solving
process.

We address these issues using the MathQA
dataset (Amini et al., 2019), which consists of
GRE-level questions that require advanced math-
ematical knowledge. The questions cover arith-
metic, algebra, geometry, and data analysis. In
Appendix A we explain in detail our reasoning be-
hind the dataset selection. For all experiments, we
use GPT-3.5 (Ouyang et al., 2022). We raise and
discuss a total of three research questions. In this
pilot study, we conduct both quantitative and quali-
tative evaluations to answer the research questions.
The contributions of this work are threefold.

1. We explore the application of LLMs for in-
structing students in solving math word prob-
lems.

2. Drawing on the results of LLMs to solve math
word problems, we comprehensively identify
the existing problems of current models.

3. We discuss the pedagogical suitability of the
generated equations and the corresponding
free-text explanations in the context of mathe-
matics education.

3055



TeacherStudent

48 * 100 / 3600 * 9 = 12 m

Question bank

This question tests the students'
understanding of unit and time
conversions. 
The student often makes mistakes
when doing these conversions.

The unit conversion is incorrect.
1000 meters equals 1 kilometer, 
so converting kilometers to meters
requires multiplication by 1000, 
not division.
48 * 1000 / 3600 * 9 = 120 m

Question: A train running at the speed of 48 km / hr crosses
a pole in 9 seconds. What is the length of the train ?

Student's examination record

Figure 1: An LLM helping a student to learn mathemat-
ics

2 Utility of LLMs in Mathematics
Learning

To explore the utility of LLMs in mathematics
learning, we raise the first research question (RQ1):
How can LLMs be utilized to assist students
in learning mathematical problem-solving skills?
Since exams are a common way for teachers to
evaluate student learning progress, in this study, we
focus on leveraging LLMs to equip students with
the knowledge skills needed to solve math word
problems.

In terms of question types, in addition to
true/false and multiple-choice questions, short-
answer questions are also included in math ex-
ams. Students answer the questions using problem-
solving processes. Automated assessment (Moore
et al., 2022) of the student’s problem-solving pro-
cess remains to be investigated. In education, feed-
back is also crucial (Shute, 2008). Simply scoring
the student answer is often insufficient, as scores
do not reflect the reasons for incorrect answers. To
learn from their mistakes, students need the cor-
responding explanation. Figure 1 illustrates the
scenario of an LLM applied in mathematics edu-
cation. After a student responds to a question, the
model determines whether the student’s answer is
correct or not. If the answer is correct, the system
informs the student of the test objective for that
question, enhancing their understanding of the ex-
amined skills. If the answer is incorrect, the system
provides adaptive feedback (Bernius et al., 2022;
Sailer et al., 2023) by indicating the location of
the error and offering an explanation, assisting the
student to clarify any misunderstanding.

Given that there are multiple methods for solv-
ing a math word problem, a model must be able to
understand and correct a student’s thought process.
If the overall strategy is sound apart from minor
concept errors or obstacles, the model should guide
students to the next step following their chosen ap-

Category Questions Zero-shot Few-shot CoT
All 1,605 66.54% 65.67% 66.11%
General 663 64.71% 63.20% 64.86%
Gain 345 71.88% 72.17% 70.14%
Physics 410 68.54% 65.37% 67.32%
Geometry 100 63.00% 65.00% 60.00%
Probability 12 58.33% 83.33% 75.00%
Other 75 53.33% 57.33% 58.67%

Table 1: MathQA results

proach. Thus the ability of LLMs to solve math
word problems and to understand and explain equa-
tions is critical. The following sections address
these two key points.

3 LLM Ability to Solve Math Problems

Many textbook math exercises provide the calcu-
lation process but lack a natural language explana-
tion. Accompanying each step with an explanation
would greatly enhance the student’s understanding
of each equation. This leads to the second research
question (RQ2): What is the problem-solving ca-
pability of LLMs in mathematical problems and
their ability to explain the computational process?
Automatic Evaluation: The dataset used in this
work is a modified version of MathQA in which
unsolvable questions were removed by Jie et al.
(2022). We utilized OpenAI’s API, in particu-
lar the “gpt-3.5-turbo-0301” model. The temper-
ature was set to 0. Table 1 shows the accuracy of
three commonly used prompting methods: zero-
shot prompting (Zero-shot), few-shot prompting
(Few-shot), and chain-of-thought (CoT) prompt-
ing. Three prompting templates are shown in Ap-
pendix B. “Questions” denotes the number of ques-
tions of each type in the test set. We also show the
results for six MathQA question types. In this ex-
periment, we compared only the model-generated
answers with the provided answers, without ver-
ifying the correctness of the reasoning process.
As shown in Table 1, the CoT performance was
poorer than expected, possibly due to the higher
mathematical skill demands of MathQA compared
to previously-used datasets. Zero-shot prompting
does not significantly outperform CoT (p < 0.8).
Exploring suitable prompting methods is left as fu-
ture work. Based on the results, we observe that the
calculation abilities of the GPT-3.5 model remain
far from satisfactory. It frequently fails at simple
arithmetic operations or counting.
Human Evaluation of LLM Results: It is known
that LLMs might produce the correct answer even
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Error type Percentage
Misconception in problem-solving 36.54%
Incorrect provided answer* 17.31%
Unclear question definition* 11.54%
Calculation error in equation 9.61%
Misinterpretation of question 7.69%
Arithmetic error 5.77%
Absence of necessary diagrams* 3.85%
Counting error 3.85%
Undefined symbols in question* 1.92%
Incomplete problem-solving 1.92%

Table 2: Error types annotated by an expert. * indicates
that the error is not from the model’s response but from
an error in the question.

with incorrect reasoning, or give an incorrect an-
swer despite correct reasoning (Laskar et al., 2023;
Lightman et al., 2023). However, detailed analy-
ses and statistical evaluations of model errors have
been less extensively studied. To further analyze
whether LLMs are able to reason through complex
mathematical problems, we invited an expert who
majored in Mathematics to evaluate the answers
generated by the GPT-3.5 model. A total of 120
questions—20 from each of the six question types—
were selected by the expert. Each selected question
involved a process of reasoning and calculation of
more than four steps. The error types are shown
in Table 2. The most common error made by the
model was “misconception in problem-solving”:
the model understood the question but used incor-
rect formulas or methods to solve it. “Misinterpre-
tation of the question”, in turn, is a different error:
the model does not understand the question and
generates an unrelated result. We also find that the
GPT-3.5 model is good at providing comprehensive
explanations for each equation without omitting
parts of the problem-solving process. However,
it exhibits inconsistent calculations, often making
simple arithmetic errors. Furthermore, its grasp
of set theory and three-dimensional spatial reason-
ing is limited. Examples of some error types are
provided in Appendix C.
Research Issues of Augmented Language Mod-
els: Using external tools for calculation may be
one way to address LLM drawbacks. Mialon et al.
(2023) refer to language models that utilize exter-
nal tools (Gao et al., 2022; Liu et al., 2022), retrieve
relevant information (Izacard et al., 2022), or use
specific reasoning strategies (Wei et al., 2022) as
augmented language models (ALMs). We argue
that for a model to solve more complex tasks, it
should comprehend the tasks and know when, how,

and why to request augmentation. Otherwise, the
improvements yielded by the augmented informa-
tion would remain limited in various real-world
applications. For instance, for mathematical cal-
culations, Schick et al. (2023) propose having the
LLM use a calculator API to solve arithmetic tasks.
However, the propensity of LLMs to misinterpret
question meanings and substitute incorrect num-
bers remains a prominent challenge in advanced
mathematical reasoning. From our observation, the
GPT-3.5 model behaves much like a student fo-
cused on formula memorization in that it struggles
to adapt to variations in the question, particularly in
probability questions. Hence, enhancing the mathe-
matical reasoning capabilities of LLMs is a critical
research direction.

4 Pedagogical Ability of LLMs to Rectify
Students’ Answers

The most important thing when helping students
to learn mathematical problem-solving is provid-
ing immediate adaptive feedback. In this section,
we measure the pedagogical ability of LLMs in
mathematics. Pedagogical ability refers to the abil-
ity to understand and help the student (Tack and
Piech, 2022). This leads to the third research ques-
tion (RQ3): Are LLMs able to identify errors in
students’ answers and provide corresponding ex-
planations?
Teacher–Student Framework for Quantitative
Evaluation: Due to the difficulty in obtaining
real-world student answers, we simulate a scenario
in which students answer questions and teachers
correct the students’ responses. Based on the ex-
perimental results from Table 1, we use the re-
sponses from zero-shot prompting as the student
answers. These answers are then input into the
GPT-3.5 model, which acts as a teacher, correct-
ing the student’s answers according to the ques-
tion. The GPT-3.5 model is tasked with identifying
whether the student’s answer is correct and explain-
ing why. Specifically, given an input question q,
prompt Ps, and model M, we obtain the initial
problem-solving result ys = M(q;Ps). Next, we
input ys to M, and ask M to act as a teacher with
prompt Pt to correct ys based on q. Finally, we
obtain the feedback yt = M(q, ys, r;Pt), where
r is the rationale of q provided in MathQA. If M
struggles to understand its responses (with detailed
processes and natural language explanations), then
its potential to assist teachers in corrections be-
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Type W/o rationale W/ rationale
All 53.96% 73.71%
General 54.75% 73.30%
Gain 54.78% 73.33%
Physics 50.00% 72.20%
Geometry 60.00% 83.00%
Probability 25.00% 83.33%
Other 61.33% 73.33%

Table 3: Results of teacher–student framework

Result of ys ys is correct ys is incorrect
Pt w/o r w/ r w/o r w/ r
Identify ys is correct 63.24% 10.29% 53.85% 0.00%
Say in other words 17.65% 67.65% 17.31% 17.31%
Correct the process 11.76% 16.18% 11.53% 50.00%
Correct the calculation 7.35% 5.88% 17.31% 32.69%

Table 4: Error types in teacher–student framework

comes questionable. The Pt template is shown
in Appendix B. We refer to this framework as the
“teacher–student framework”.

Table 3 presents the results of the teacher–
student framework. Accuracy is adopted as the
evaluation metric: accuracy measures whether M
correctly identifies the correctness of ys. As yt
could be a lengthy paragraph, we simply use key-
words such as “is correct”, “is incorrect”, “not cor-
rect”, “almost correct” or “not correct” to identify
M. We compare the results with and without the
question rationales. Interestingly, if the correspond-
ing rationales are not given as input, the accuracy
of the GPT-3.5 model acting as a teacher to correct
students’ answers (53.96%) is lower than that when
directly answering questions (66.54%). However,
if the corresponding rationales are given as input,
accuracy is only 73.71%. Thus the GPT-3.5 model
has difficulty understanding the equations given in
the rationales.
Human Evaluation of Correcting Model-
Generated Answers: To understand why the GPT-
3.5 model exhibits these characteristics when cor-
recting answers, our expert also analyzed the re-
sults of the teacher–student framework based on
the selected 120 questions. Examples are given in
Appendix D. Table 4 presents the correction results
yt for ys by human evaluation. “w/o r” and “w/ r”
denote Pt without and with rationales, respectively.
Comparing the results of “w/o r” and “w/ r”, we
find that providing rationales seriously confuses
M, such that it determines ys is wrong in most
cases. Furthermore, M simply rephrases the con-
tent of ys (67.65%). Note that the results in Table 3

show that Pt with r is better than that without r.
However, the results in Table 4 are different, be-
cause the questions selected by the expert are more
challenging. If ys is incorrect, M has a 53.85%
chance of erroneously claiming that ys is correct
when r is not provided. When r is given, M cor-
rectly identifies that ys is incorrect. Nonetheless,
M has only a 10.29% chance to accurately identify
ys as correct with r. In addition, according to our
statistic, M has only a 3.85% and 1.92% chance
to accurately correct the calculation results and the
problem-solving processes, respectively. This is
primarily because it has difficulty exploiting r and
because it usually misunderstands the ys equations,
even to the point of inaccurately correcting those
that are already correct. Furthermore, it often for-
gets the equations and calculations in ys. To verify
whether LLMs can understand and correct human
problem-solving processes, we also invited five col-
lege students to answer three questions. The results
are presented in Appendix E.
Utility of LLMs in Complex Reasoning Tasks
for Education: The failures of the GPT-3.5 model
are comprehensively analyzed by Borji (2023). In
this work, we find that LLMs tend to be confused
by human answers, especially when tasks demand
advanced knowledge or reasoning skills, even if rel-
evant and correct information is provided. Hence,
an alternative framework is needed under which to
leverage LLMs’ language understanding ability in
complex reasoning tasks. Other crucial research
issues are how to make the models aware of what
they do not know and how to produce truthful and
interpretable results (Phillips et al., 2020). Besides,
this work primarily focuses on the capabilities and
challenges of directly using LLMs for correcting
students’ answers. Developing a cognitive model
for reasoning processes and their potential roles in
rectifying student mistakes is crucial.

5 Conclusion

In this work we propose a research agenda for
leveraging LLMs in mathematics learning. First,
we explore the use of LLMs to assist students in
learning math word problem-solving skills. Then,
we analyze the mathematical reasoning ability of
LLMs. Finally, we investigate the pedagogical abil-
ity of LLMs in terms of rectifying model-generated
or human answers and offering adaptive feedback.
We conduct experiments with the GPT-3.5 model,
and conclude that there remains room for improve-
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ment in the LLM’s performance in solving com-
plex mathematical problems. In addition, although
it generates comprehensive explanations, the LLM
is limited in accurately identifying model’s and
human’s errors due to its poor ability to interpret
mathematical equations. In the future, we plan to
develop an advanced method by which to improve
the utility of LLMs in mathematics education.

Limitations

Considering that LLMs are widely accessible to the
general public and many educational institutions
are examining the challenges and benefits of their
use by teachers and students, this paper primarily
focuses on the application of LLMs in educational
settings. However, our experiments employed only
the GPT-3.5 model and did not explore other LLMs
such as GPT-4 (OpenAI, 2023) and LLaMA (Tou-
vron et al., 2023). Furthermore, while our current
work investigates the utility of LLMs in enhanc-
ing students’ mathematical problem-solving skills,
there are many other applications in education. For
instance, LLMs could be utilized to help teachers
to generate teaching content or questions. Addi-
tionally, the potential issues of violating teaching
ethics involved in introducing LLMs into educa-
tional applications are significant topics that have
not been included in this study currently. We also
conducted a human evaluation on 120 questions,
which may be insufficient. Although we invited the
expert to select questions that cover as many types
of questions as possible, there may remain worth-
while examples that were not selected for analysis.
Moreover, the mistakes made by humans and those
made by LLMs may differ. However, at the cur-
rent stage, we invited only five college students to
answer three questions: a larger-scale experiment
would be more helpful.

Ethics Statement

In the context of educational applications, we uti-
lize students’ personal data and answer records
for our experiments, which raises privacy concerns.
For this study, we invited college students to answer
mathematical questions to investigate issues that
might be found in real-world applications. These
participants fully understood how their data would
be used, and we ensured that their personal infor-
mation would not be leaked.
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A Dataset Selection

Datasets commonly used to evaluate a model’s
ability to solve math word problems include
MathQA (Amini et al., 2019), SVAMP (Patel
et al., 2021), Math23K (Wang et al., 2017), and
GSM8K (Cobbe et al., 2021). GSM8K consists of
grade-school math word problems, and SVAMP pri-
marily covers up to grade 4. Math23K is designed
for Chinese elementary school students, and fo-
cuses on evaluating the ability of students to solve
one-unknown-variable linear math word problems.
By contrast, MathQA is composed of GRE-level
math problems, which serve as a benchmark for uni-
versity research institute admissions in the United
States. Therefore, we use MathQA in our exper-
iments to examine the utility of LLMs in higher
education applications.

Input: You are a student who is good at mathematics. Apply
the appropriate mathematical operations to solve the math
problem. Please choose an answer from the options.
Q: a student gets 55 % in one subject , 65 % in the other . to
get an overall of 55 % how much should get in third subject .
Options: a ) 75 % , b ) 25 % , c ) 45 % , d ) 55 % , e ) 65 %
Output: Let’s assume that the third subject carries the same
weight as the other two subjects.
To get an overall of 55%, the average of the three subjects
should be 55%.
Let x be the percentage the student needs to get in the third
subject.
Then, we can set up the equation:
(55% + 65% + x)/3 = 55%
Simplifying this equation, we get:
120% + x = 165%
x = 45%
Therefore, the student needs to get 45% in the third subject
to get an overall of 55%.
The answer is c) 45%.

Table 5: Zero-shot prompting

B Input Formats

LLMs are known for their success in zero-shot
or few-shot learning (Brown et al., 2020). We
can solve various tasks (Liu et al., 2023) through
prompt engineering by providing a few examples
or instructions about the task descriptions. For
solving math word problem, Wei et al. (2022) pro-
pose chain-of-thought prompting (CoT) by pro-
viding step-by-step reasoning examples to cause
the model to decompose the given question and
generate reasoning steps. They demonstrate that
CoT achieves promising results in solving math
word problems. Moreover, Wu et al. (2023) demon-
strate the CoT’s effectiveness by incorporating it
into the medical diagnostic framework. Hence,
we use zero-shot, few-shot, and CoT prompting in
our experiments. Tables 5, 6, and 7 contain tem-
plates of zero-shot, few-shot, and CoT prompting,
respectively. The template of the proposed teacher–
student framework is shown in Table 8.

C Examples Error Types when Solving
Math Word Problems

Among the 120 selected questions, the model cor-
rectly answers 68 questions and incorrectly an-
swers 52 questions. Eighteen of the incorrect re-
sponses are due to unclear question definitions,
24 stem from errors in the model’s problem-solving
process, and 10 are caused by calculation errors.
In this section, we will present errors made by the
GPT-3.5 model to show its limitations in mathemat-
ics reasoning.
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Input: You are a student who is good at mathematics. Apply
the appropriate mathematical operations to solve the math
problem. Please choose an answer from the options.
Q: the banker ’ s gain of a certain sum due 3 years hence at 10
% per annum is rs . 36 . what is the present worth ? Options:
a ) 38 , b ) 27.675 , c ) 30 , d ) data inadequate , e ) none of
these
A: The answer is a.
Q: sophia finished 2 / 3 of a book . she calculated that she
finished 90 more pages than she has yet to read . how long is
her book ? Options: a ) 229 , b ) 270 , c ) 877 , d ) 266 , e )
281
A: The answer is b.
Q: a student gets 55 % in one subject , 65 % in the other . to
get an overall of 55 % how much should get in third subject .
Options: a ) 75 % , b ) 25 % , c ) 45 % , d ) 55 % , e ) 65 %
Output: Let’s assume that all three subjects carry equal
marks.
To get an overall percentage of 55%, the sum of the percent-
ages obtained in all three subjects should be 3 x 55% = 165%.
The student has already obtained 55% and 65% in the first
two subjects.
Therefore, the percentage required in the third subject to get
an overall percentage of 55% is:
Percentage required in the third subject = 165% - (55% +
65%) = 45%
Hence, the answer is option c) 45%.

Table 6: Few-shot prompting

As shown in Table 2, the most common mistake
is misconception in problem-solving. Moreover, as
mentioned in Section 3, one weakness of the GPT-
3.5 model is in reasoning about three-dimensional
spatial problems, as illustrated in Figure 3. The
model directly divides the length, width, and height
by three to calculate how many cubes can be placed
in a box, without considering the fact that cubes
cannot be accommodated if the height is not evenly
divisible. The question in the red box should be
3× 3× 2, not 4× 3× 2.

Misinterpretation of the question is another crit-
ical error. Figure 4 is an example of the GPT-3.5
model misinterpreting the meaning of the question.
Based on the result responded by the model, once
we obtain the value of “x”, the greater number is
“2x”. However, the model incorrectly interprets the
question as asking which number is greater after
adding five.

D Example Results from
Teacher–Student Framework

According to our observations, when acting as a
teacher, the GPT-3.5 model achieves high accuracy
in correcting simple equations when the rationale
contains a single equation. However, for more com-
plex problems involving two or more equations, the
quality of the rationale significantly impacts the

Input: You are a student who is good at mathematics. Apply
the appropriate mathematical operations to solve the math
problem. Please choose an answer from the options.
Q: a student gets 55 % in one subject , 65 % in the other . to
get an overall of 55 % how much should get in third subject .
Options: a ) 75 % , b ) 25 % , c ) 45 % , d ) 55 % , e ) 65 %
A: Let’s think step by step.
Output: To get an overall of 55%, the average of the three
subjects should be 55%.
Let’s assume the third subject has a weightage of 100%.
So, the total weightage of the three subjects is 100% + 100%
+ 100% = 300%.
Now, we know that the student got 55% in the first subject
and 65% in the second subject.
So, the total marks obtained in the first two subjects are: 55%
+ 65% = 120%
To get an overall of 55%, the total marks obtained in all three
subjects should be:
55% x 3 = 165%
Now, we can find out how much the student should get in the
third subject:
Total marks in all three subjects = Marks obtained in the first
two subjects + Marks obtained in the third subject
165% = 120% + Marks obtained in the third subject
Marks obtained in the third subject = 165% - 120% = 45%
Therefore, the answer is option c) 45%.

Table 7: CoT prompting

model’s identification results. Figure 2 shows the
confusion matrix of answer correction. We define
the difficulty of the questions based on the number
of equations in the given rationales. We categorize
the question difficulty into three groups: those with
fewer than five equations, those with 5 to 10 equa-
tions, and those with more than 11 equations. “Cor-
rect” and “wrong” in the true labels indicate that
ys is correct and incorrect, respectively. “Correct”
and “wrong” in the predicted labels label indicate
that the identification of yt is correct and incor-
rect, respectively. Thus “correct” in the predicted
labels indicates that the model identifies ys to be
correct when ys is indeed correct. As shown in Fig-
ure 2, the model’s accuracy in correcting answers
decreases as the problem becomes more difficult,
especially when no rationale is provided to the
model. Clear and explicit rationales aligned with
the problem-solving process in ys cause the teacher
model to understand correctly and thus accurately
identify whether the ys is correct.

Additionally, when ys is correct, the GPT-3.5
model frequently identifies ys as incorrect but its
explanation is merely a paraphrase of ys. The rea-
son may be that the GPT-3.5 model does not merely
determine correctness based on the answer’s value.
Although it has stringent requirements for this pro-
cess, its comprehension of equations is less than
ideal, resulting in misinterpretations.
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Input: You are a math teacher. According to [Question] and
[Rationale], please indicate whether the [Student’s Answer]
is correct or not, and apply appropriate mathematical opera-
tions to correct the [Student’s Answer].
[Question]: a student gets 55 % in one subject , 65 % in the
other . to get an overall of 55 % how much should get in third
subject . Options: a ) 75 % , b ) 25 % , c ) 45 % , d ) 55 % , e
) 65 %
[Rationale]: explanation : t = 3 years r = 10 % td = ( bg ×
100 ) / tr = ( 36 × 100 ) / ( 3 × 10 ) = 12 × 10 = rs . 120 td = (
pw × tr ) / 100 => 120 = ( pw × 3 × 10 ) / 100 => 1200 = pw
× 3 pw = 1200 / 3 = rs . 400 answer : option a
[Student’s Answer]: Let’s assume that the third subject
carries the same weight as the other two subjects.
To get an overall of 55%, the average of the three subjects
should be 55%.
Let x be the percentage the student needs to get in the third
subject.
Then, we can set up the equation:
(55% + 65% + x)/3 = 55%
Simplifying this equation, we get:
120% + x = 165%
x = 45%
Therefore, the student needs to get 45% in the third subject
to get an overall of 55%.
The answer is c) 45%.
Output: The answer is correct.
Explanation:
To find out how much the student should get in the third
subject to have an overall of 55%, we can use the formula:
(55% + 65% + x)/3 = 55%
We can simplify this equation by multiplying both sides by 3:
55% + 65% + x = 165%
Now we can solve for x by subtracting 55% and 65% from
both sides:
x = 165% - 55% - 65%
x = 45%
Therefore, the student needs to get 45% in the third subject
to have an overall of 55%.

Table 8: Prompting under the teacher–student frame-
work

To measure the ability of LLMs to correct stu-
dents’ answers, we utilize the problem-solving re-
sults returned by the GPT-3.5 model as the students’
answers and then ask the model to correct the input
answers. Figure 5 presents an example in which
the reasoning in the answer is not finished: it stops
at calculating the total volume of the drinks. The
model, which acts as a teacher, accurately points
out the error and provides the complete solution.
However, the GPT-3.5 model may also mistakenly
rectify correct answers as incorrect. Taking Fig-
ure 6 as an example, the result in the given answer
correctly solves for the number of sheep, yet the
model identifies it as incorrect, further producing
an erroneous reasoning process.

 
Without Rationale 

   
With Rationale 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Confusion matrix of answer correction based
on question difficulty

E Human Evaluation on Correcting
Human’s Answers

Since the problem-solving approaches of LLMs
may differ from those of humans, to verify whether
LLMs can understand and correct human problem-
solving processes, we also invited five college stu-
dents from different departments (Mathematics,
Statistics, and Japanese) to answer three questions
selected by the expert. Their answers were in-
put into the GPT-3.5 model for correction. Subse-
quently, the expert analyzed the correction results.
Based on the collected answers, we find that LLM
is more likely to be misled by human answers and
even ignore reasoning processes written by humans.
Whether the answer is correct or not, LLM tends
to identify the answer as incorrect. As shown in
Figure 7, the model misidentifies the answer of the
human as “$8000”. This may be because humans
sometimes omit mathematical conversions in their
answers, or because the problem-solving strategy
may differ from that of the LLM. This can con-
fuse the LLM. For instance, in Figure 8, the model
fails to comprehend the equations without natu-
ral language explanations, erroneously identifies
the human’s problem-solving approach as incor-
rect, and proceeds to solve it using its own method.
Even when provided with a rationale, the model
usually fails to make an accurate identification, of-
ten leading to erroneous outcomes.

F Type of Generalization

Table 9 shows the type of generalization we are
investigating, based on the taxonomy defined by
Hupkes et al. (2022).
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Figure 3: Misconception in a three-dimensional question

Figure 4: The GPT-3.5 model misinterpreting a mathematical question
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Figure 5: Completing the problem-solving process in the teacher–student framework
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Figure 6: Providing the wrong reasoning process in the teacher–student framework
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Figure 7: Misidentification of the human’s answer
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Figure 8: Misinterpretation of the human’s answer
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Motivation
Practical Cognitive Intrinsic Fairness

O

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

O O

Shift type
Covariate Label Full Assumed

O

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

O

Table 9: GenBench evaluation card
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