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Abstract

The majority of existing work on sign lan-
guage recognition encodes signed videos with-
out explicitly acknowledging the phonological
attributes of signs. Given that handshape is a
vital parameter in sign languages, we explore
the potential of handshape-aware sign language
recognition. We augment the PHOENIX14T
dataset with gloss-level handshape labels, re-
sulting in the new PHOENIX14T-HS dataset.
Two unique methods are proposed for
handshape-inclusive sign language recogni-
tion: a single-encoder network and a dual-
encoder network, complemented by a train-
ing strategy that simultaneously optimizes
both the CTC loss and frame-level cross-
entropy loss. The proposed methodology
consistently outperforms the baseline perfor-
mance. The dataset and code can be accessed at
https://github.com/Este1le/slr_handshape.git.

1 Introduction

Sign languages are primarily the languages of Deaf
people. They are the center of the Deaf culture and
the daily lives of the Deaf community. 1 In the
U.S., estimates suggest that between 500,000 to
two million people communicate using American
Sign Language (ASL), making it the fifth most-
used minority language in the country after Span-
ish, Italian, German, and French (Lane et al., 1996).
Natural sign languages, which develop indepen-
dently and possess unique grammatical structures
distinct from surrounding spoken languages, are
just as crucial to include in the field of natural lan-
guage processing (NLP) as any other language, as
Yin et al. (2021) advocates.

One direction in sign language processing (SLP)
is sign language recognition (SLR), a task of recog-
nizing and translating signs into glosses, the writ-

1Deaf sociolinguist Barbara Kannapell: "It is our language
in every sense of the word. We create it, we keep it alive, and
it keeps us and our traditions alive." And further, "To reject
ASL is to reject the Deaf person."

WHITE LIKE
Figure 1: An example of a handshape minimal pair in
ASL.2Both signs start from an identical handshape but
end with a distinct one. In practical scenarios, when a
signer signs rapidly, the terminal handshape of LIKE
may closely resemble that of WHITE, leading to poten-
tial difficulties in differentiation.

ten representations of signs typically denoted by
spoken language words. Among the array of SLR
products, sign gloves, and wearable devices using
sensors to track hand movements, are widespread.
However, these devices have faced criticism from
the Deaf community, primarily due to the social
stigma associated with wearing them. This feed-
back has motivated us to explore video-based SLR,
an alternative approach that utilizes cameras to
record signs and feed them into the system as video
inputs. By doing so, we aspire to foster a more
inclusive society, preserving the valuable sign lan-
guages serving as the heart of the Deaf culture,
and thereby facilitating improved communications
between the Deaf and hearing communities.

Signs can be defined by five parameters: hand-
shape, orientation, location, movement, and non-
manual markers such as facial expressions. Signs
that differ in only one of these parameters can form
minimal pairs. An example of a handshape min-
imal pair in ASL is illustrated in Figure 1. As
reported by Fahey and Hilger (2022), among all
parameters, handshape minimal pairs are identified
with the lowest accuracy – only 20%, compared
to palm orientation (40%), location (47%), and
movement (87%). This indicates the complexity in-

2Images clipped from https://babysignlanguage.com/.
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Figure 2: We propose two handshape-inclusive SLR network variants. Model I employs a single video encoder,
while Model II implements both a gloss encoder and a handshape (HS) encoder, applying a joint head to the
concatenated representations produced by the two encoders.

volved in distinguishing handshapes, underscoring
their importance in correctly interpreting signs.

The majority of existing research on SLR does
not incorporate phonological features such as hand-
shapes into their system designs, with only a few ex-
ceptions (Koller et al., 2016; Cihan Camgoz et al.,
2017; Koller et al., 2019). Typically, signs are inter-
preted as a cohesive whole, meaning that an SLR
model is expected to correctly recognize all five
parameters simultaneously to accurately identify a
sign. This constitutes a major distinction between
spoken and sign languages – the former is linear,
while the latter incorporates both linearity and si-
multaneity (Hill et al., 2018). This uniqueness
introduces considerable challenges to SLR tasks.

The limited interest in integrating handshapes
into SLR systems can be attributed largely to the
absence of handshape annotations in existing Con-
tinuous SLR (CSLR3) datasets. In response to this,
we have extended one of the most widely used SLR
datasets, PHOENIX14T, with handshape annota-
tions, sourced from online dictionaries and man-
ual labeling, thus creating the PHOENIX14T-HS
dataset. Our hope is that this will facilitate more
research into handshape-aware SLR.

Moreover, we introduce two handshape-
inclusive4 SLR networks (Figure 2), designed with
either single or dual-encoder architectures. These
proposed models extend the basic SLR network,
which doesn’t include handshape information in
gloss prediction. Thus, any existing SLR can adopt

3CSLR refers to the recognition of sign language at the
sentence level, as opposed to Isolated SLR, which operates at
the word level. Our work focuses on CSLR due to its broader
practical application and a higher level of complexity.

4We use handshape-aware to denote SLR that incorpo-
rates handshape information during training, while handshape-
inclusive pertains to the deliberate inclusion of handshape
predictions within SLR.

our approach, underscoring the adaptability of our
methods.

We set a benchmark on the PHOENIX14T-HS
dataset with the proposed methods. Our models
outperform previous state-of-the-art (SOTA) single-
modality SLR networks, which utilize only RGB
videos as input and were trained on PHOENIX14T.

2 Related Work

2.1 SLR

In recent developments of CSLR, a predominant
methodology has emerged that employs a hybrid
model. The model is usually composed of three
essential components: a visual encoder, which ex-
tracts the spatial features from each frame of the
sign video; a sequence encoder, responsible for
learning the temporal information; and an align-
ment module which monotonically aligns frames
to glosses. The visual encoder component could
be built with various architectures, including 2D-
CNNs (Koller et al., 2019; Cheng et al., 2020;
Min et al., 2021), 3D-CNNs (Chen et al., 2022a,b),
or 2D-CNNs followed by 1D-CNNs (Papastratis
et al., 2020; Pu et al., 2020; Zhou et al., 2021a,b).
The sequence encoder can be implemented using
LSTMs (Cui et al., 2019; Pu et al., 2020; Zhou
et al., 2021b), Transformer encoders (Niu and Mak,
2020; Camgoz et al., 2020; Zuo and Mak, 2022;
Chen et al., 2022b), or 1D-CNNs (Cheng et al.,
2020). In terms of the alignment module, research
attention has been redirected from HMM (Koller
et al., 2017, 2019) to connectionist temporal classi-
fication (CTC) (Hao et al., 2021; Zhou et al., 2021b;
Zuo and Mak, 2022; Chen et al., 2022b).

Various approaches have been proposed to im-
prove SLR system performance.
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Multi-stream network The multi-stream net-
works use multiple parallel encoders to extract
features from distinct input streams. In addition
to the RGB stream, Cui et al. (2019) incorporate
an optical flow stream, while Zhou et al. (2021b);
Chen et al. (2022b) use key points. Koller et al.
(2019) and Papadimitriou and Potamianos (2020)
introduce two extract encoders for hand and mouth
encoding, directing the system’s focus towards crit-
ical image areas.

Cross-entropy loss Training objectives beyond
CTC loss can also be employed. Cheng et al.
(2020); Hao et al. (2021) train their models to also
minimize the frame-level cross-entropy loss, with
frame-level labels derived from the CTC decoder’s
most probable alignment.

2.2 Handshape-inclusive Datasets

Currently, datasets frequently employed for the
continuous SLR task, such as RWTH-PHOENIX-
Weather 2014T (Camgoz et al., 2018) and CSL
Daily (Zhou et al., 2021a) generally lack hand-
shape annotations, except for RWTH-PHOENIX-
Weather 2014 (Koller et al., 2015), which is ex-
tended by Forster et al. (2014) with handshape
and orientation labels. The annotating process in-
volved initially labeling the orientations frame-by-
frame, followed by clustering within each orien-
tation, and then manually assigning a handshape
label to each cluster. Additionally, a subset of 2k
signs is annotated using the SignWriting (Sutton
and DAC, 2000) annotation system. To facilitate
handshape recognition, Koller et al. (2016) intro-
duced the 1-Million-Hands dataset, comprising 1
million cropped hand images from sign videos,
each labeled with a handshape. The dataset con-
sists of two vocabulary-level datasets in Danish
and New Zealand sign language, where handshapes
are provided in the lexicon, and a continuous SLR
dataset, PHOENIX14, annotated with SignWriting.
It also includes 3k manually labeled handshape test
images.

2.3 Handshape-aware SLR

Research on leveraging handshape labels to sup-
port SLR has been relatively scarce. Koller et al.
(2016) applied the statistical modelling from Koller
et al. (2015) and incorporated a stacked fusion with
features from the 1-Million-Hands model and full
frames. While Cihan Camgoz et al. (2017) and
Koller et al. (2019) utilized a multi-stream sys-

tem, where two separate streams are built to predict
handshapes and glosses, respectively. These two
streams are then merged and trained for gloss recog-
nition. The aforementioned studies are all carried
out on the PHOENIX14 dataset, made possible by
the efforts of Forster et al. (2014), which extended
the dataset with handshape labels. Our work in-
stead focuses on the PHOENIX14T dataset.

3 Datasets

We have enriched the SLR dataset PHOENIX14T
by incorporating handshape labels derived from the
SignWriting dictionary and manual labeling. In
the subsequent sections, we initially present the
original PHOENIX14T dataset (3.1) and the Sign-
Writing dictionary (3.2), followed by a detailed
description of the updated PHOENIX14T dataset
(PHOENIX14T-HS), now featuring handshape la-
bels (3.3).

3.1 PHOENIX14T

PHOENIX14T (Camgoz et al., 2018) is one of the
few predominantly utilized datasets for SLR tasks
nowadays. This dataset consists of German sign
language (DGS) aired by the German public TV
station PHOENIX in the context of weather fore-
casts. The corpus comprises DGS videos from 9
different signers, glosses annotated by deaf experts,
and translations into spoken German language. Key
statistics of the dataset are detailed in Table.1.

PHOENIX14T (Camgoz et al., 2018), an exten-
sion of PHOENIX14 (Koller et al., 2015), features
redefined sentence segmentations and a slightly
reduced vocabulary compared to its predecessor.
Despite Forster et al. (2014) having expanded
PHOENIX14 with handshape labels, their extended
dataset is not publicly accessible and only includes
labels for the right hand. In contrast, our anno-
tated data will be released publicly, encompassing
handshapes for both hands.

3.2 SignWriting

The SignWriting dictionary (Sutton and DAC,
2000; Koller et al., 2013) publicly accessible, user-
edited sign language dataset, encompassing more
than 80 distinct sign languages. Adhering to the
International SignWriting Alphabet, which pre-
scribes a standard set of icon bases, users represent
signs via abstract illustrations of handshapes, facial
expressions, orientations, and movements. These
depictions can be encoded into XML format and
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MORGEN TEMPERATUR ACHT BIS DREIZEHN MAXIMAL DREIZEHN

1 f 3 index 3 b_thumb 3

f 5 b_thumb

Gloss

Right Handshape

Left Handshape

Sign

(English) (TOMORROW) (TEMPERATURE) (EIGHT) (TO) (THIRTEEN) (MAXIMUM) (THIRTEEN)

Figure 3: One sample from the PHOENIX14T-HS, where handshape labels have been appended for both hands atop
the PHOENIX14T dataset. When loaded into a Python environment, this sample appears as a Python dictionary:
{name: train/01April_2010_Thursday_heute-6703, signer: Signer04, gloss: MORGEN TEMPERATUR ACHT BIS
DREIZEHN MAXIMAL DREIZEHN, handshape-right: [[1], [f], [3], [index], [3], [b_thumb], [3]], handshape-left:
[[], [f], [5], [], [], [b_thumb], []]}. 5

5         index   b_thumb s            b

1 index_flex f            v        ital_open

5         b_thumb s         index      b

f            ae      index_flex ital ital_nothumb

Figure 4: Top 10 most frequent handshapes for each
hand in PHOENIX14T-HS.

converted into textual descriptions. We utilized
the SignWriting parser6 provided by Koller et al.
(2013) to extract handshapes for both hands from
the original SignWriting dictionary.

6https://github.com/huerlima/signwriting-parser
6Note that one-handed signs do not have handshape labels

for the left hand, which is the non-dominant hand for this
signer.

3.3 Handshape-extended PHOENIX14T
(PHOENIX14T-HS)

There are 17,947 entries for DGS in the SignWrit-
ing dictionary. However, 314 signs/glosses in the
PHOENIX14T dataset are either not included or
lack handshape annotations in the dictionary (Ta-
ble.1). This implies that 4,366 of the 7,096 samples
in the train set contain signs devoid of handshape
labels. We thus manually labeled these 314 signs.

This results in the following annotation steps:

1. Look up the SignWriting dictionary.
2. Manually label handshapes for signs not

present in SignWriting.

The author, who has a competent understand-
ing of ASL and Sign Language Linguistics, yet
lacks formal training in DGS, annotated by simul-
taneously watching the corresponding sign video
to ensure alignment. The task proves particularly
demanding when consecutive gaps–signs missing
handshapes–emerge. To delineate the boundaries
of these signs, the author resorted to online DGS
dictionaries (not SignWriting). The entire manual
annotation process took around 30 hours.

Our method contrasts with that of Koller et al.
(2016), which applied frame-level handshape anno-
tations. We have instead adopted gloss-level hand-
shape annotations. While the frame-level approach
is more detailed, Koller et al. (2016) reported a sig-
nificant number of blurred frames, making the task
of frame-by-frame labeling both challenging and
time-intensive. Moreover, given that sign language
recognition is essentially a gloss-level recognition
task, our aim is to maintain consistency in granu-
larity when integrating handshape recognition as
an additional task within the framework.
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PHOENIX14T Train Dev Test
#samples 7,096 519 642

vocab. 1,066 393 411
avg. gloss len. 7.80 7.23 6.65

vocab. not in SW 299 70 71
vocab. missing HS in SW 15 9 7
#samples w/ missing HS 4,366 304 362

Table 1: Statistics of PHOENIX14T. In the train set,
299 signs are absent from the SignWriting (SW), and
15 signs lack handshape (HS) annotations in SW, which
indicates that 4,366 samples include signs without hand-
shape annotations. We thus manually annotated the
combined total of 314 (299+15) signs.

We adopt the Danish taxonomy for handshape
labels as in (Koller et al., 2016), which includes 60
unique handshapes. The application results in the
PHOENIX14T-HS dataset, from where an example
is shown in Figure 3. Given that all 9 signers in
PHOENIX14T are right-hand dominant, it is ap-
propriate to employ the default annotations from
SignWriting without necessitating side-switching.

Figure 4 presents the frequency distribution of
the top 10 most prevalent handshapes for each hand
in the PHOENIX14T dataset. It is important to
note that a single sign may comprise multiple hand-
shapes. In fact, 13.5% of the signs in the dataset
incorporate more than one handshape for the right
hand, whereas the left hand employs more than one
handshape in 5% of the signs.

Limitations We would like to note certain limi-
tations in the proposed PHOENIX14T-HS dataset.
While approximately one-third of the signs were
manually labeled with handshapes, the remaining
two-thirds were labeled using the user-generated
SignWriting dictionary. As a result, these hand-
shape labels may contain noise and should not be
seen as curated. When dealing with sign variants,
i.e. multiple entries for a single sign, our selection
process was random and thus may not necessarily
correspond with the sign video.

Moreover, individual signers possess unique
signing preferences, leading them to opt for differ-
ent sign variants. Furthermore, the signers might
deviate from the dictionary-form signs, resulting
in discrepancies between the real-world usage and
the standardization form. In terms of our labeling
process, we omitted handshape labels during the
initial and final moments of each video, when the
signers’ hands are in a resting position. Finally,
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Figure 5: Architecture of the vanilla SLR network. The
head network is composed of orange and green blocks.
T is the number of frames in the sign video. G is the size
of the gloss vocabulary. L is the length of the predicted
gloss sequence. RGB frames are resized to 224x224
during preprocessing.

we did not account for co-articulation, the transi-
tion phase between two consecutive signs, in our
handshape labeling.

4 Methods

The task of SLR can be defined as follows. Given
an input sign video V = (v1, ..., vT ) with T frames,
the goal is to learn a network to predict a sequence
of glosses G = (g1, ..., gL) with L words, mono-
tonically aligned to T frames, where T ≥ L.

In this section, we start by describing the vanilla
SLR network, where handshapes are not provided
or learned during training in Section 4.1. We then
introduce the two handshape-inclusive network ar-
chitectures employed in this study in Section 4.2.
Specifically, these networks are designed to predict
sign glosses and handshapes concurrently. Finally,
we elaborate on our chosen training and pretraining
strategy in Section 4.3 and 4.4.

4.1 Vanilla SLR networks

The architecture of the vanilla SLR network is il-
lustrated in Figure 5. Similar to Chen et al. (2022a)
and Chen et al. (2022b), we use an S3D (Xie et al.,
2018) as the video encoder, followed by a head
network, where only the first four blocks of S3D
are included to extract dense temporal representa-
tions. Then, a gloss classification layer and a CTC
decoder are attached to generate sequences of gloss
predictions.

4.2 Handshape-inclusive SLR networks

Figure 2 depicts our proposal of two handshape-
inclusive SLR network variants, which are expan-
sions upon the vanilla network. Both variants ex-
plicitly utilize handshape information by training
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the model to predict glosses and handshapes con-
currently. The key distinction between the two
variants lies in the employment of either a single
encoder or dual encoders.

Model I. In comparison to the vanilla network,
this model forwards the S3D feature to two addi-
tional heads, each tasked with predicting the hand-
shapes for the left and right hand respectively. The
loss for this model is computed as follows:

LModelI = LG
CTC + λLLL

CTC + λRLR
CTC , (1)

where LG
CTC represents the CTC loss of the gloss

predictor. LL
CTC and LG

CTC denote the CTC
losses for the left and right handshape predictors,
weighted by λL and λR.

Model II. This model employs dual encoders,
each dedicated to encoding the representations for
glosses and handshapes independently. While both
encoders receive the same input (sign videos) and
share the same architecture, they are trained with
different target labels (gloss vs. handshape). We
also incorporate a joint head, which combines the
visual representation learned by both encoders to
generate gloss predictions. The architecture of this
joint head mirrors that of the gloss head and the
handshape head. Therefore, the loss for this model
is computed as follows:

LModelII = LG
CTC+LJ

CTC+λLLL
CTC+λRLR

CTC ,
(2)

where LJ
CTC denotes the CTC loss of the joint

gloss predictor.
For this model, we also adopt a late ensemble

strategy. This involves averaging the gloss prob-
abilities predicted by both the gloss head and the
joint head. The averaged probabilities are then fed
into a CTC decoder, producing the gloss sequence.

4.3 Training strategy
The CTC loss is computed by taking the negative
logarithm of the probability of the correct path,
which corresponds to the true transcription. It is a
relatively coarse-grained metric because it operates
at the gloss level, not requiring temporal boundaries
of glosses. Given that handshape prediction could
potentially operate on a frame level, it stands to
reason for us to compute the loss at this level as
well. However, as the PHOENIX14T-HS dataset
does not provide temporal segmentations, we opt to
estimate these with gloss probabilities7 generated

7For Model II, they are the averaged probabilities.

by our models. First, we extract the best path for
glosses from a CTC decoder and fill in the blanks
with neighboring glosses. After this, if a particular
gloss has only one associated handshape, we assign
that handshape to all frames within the extent of
that gloss. If there is more than one handshape,
we gather the handshape probabilities produced
by the handshape classifiers within that segment
and feed them into a CTC decoder to determine
the optimal handshape labels for the frames within
that gloss’s range8. Finally, we calculate the cross-
entropy loss between the pseudo-labels and the
handshape probabilities. This enables more fine-
grained frame-level supervision.

The loss function then becomes:

LSLR = LModelI|II +λL
CELL

CE+λR
CELR

CE , (3)

where LL
CE and LR

CE are cross-entropy loss for left
and right hand weighted by λL

CE and λR
CE respec-

tively.

4.4 Pretraining

Given that our target dataset is relatively sparse, it’s
crucial to pretrain the model to ensure a solid ini-
tialization. We first pretrain the S3D encoder on the
action recognition dataset, Kinetics-400 (Kay et al.,
2017), consisting of 3 million video clips. Follow-
ing this, we further pretrain on a word-level ASL
dataset, WLASL (Li et al., 2020), which includes
21 thousand videos.

5 Experiments

In this section, we present the performance of our
top-performing model (Section 5.1) and further
conduct ablation study (Section 5.2) to analyze the
crucial components of our implementations.

5.1 Best model

Our highest-performing system utilizes the dual-
encoder architecture of Model II. After initial pre-
training on Kinetics-400 and WLASL datasets, we
freeze the parameters of the first three blocks of
the S3D. For the hyperparameters, we set λL and
λR to 1, while λL

CE and λR
CE are set to 0.05. The

initial learning rate is 0.001. Adam is used as the
optimizer.

A comparison of our premier system (HS-SLR)
with leading SLR methods on the PHOENIX14T

8For the left hand, when the sign does not have correspond-
ing handshape, we label it with the special token <pad>.
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Method Dev Test
CNN-LSTM (Koller et al., 2019)* 22.1 24.1
SFL (Niu and Mak, 2020) 25.1 26.1
FCN (Cheng et al., 2020) 23.3 25.1
Joint-SLRT (Camgoz et al., 2020) 24.6 24.5
CMA (Papastratis et al., 2020)* 23.9 24.0
SignBT (Zhou et al., 2021a) 22.7 23.9
MMTLB (Chen et al., 2022a) 21.9 22.5
SMKD (Hao et al., 2021) 20.8 22.4
HS-SLR(ours) 20.3 21.8
STMC-R (Zhou et al., 2021b)* 19.6 21.0
C2SLR (Zuo and Mak, 2022)* 20.5 20.4
TwoStream (Chen et al., 2022b)* 17.7 19.3

Table 2: Comparison with previous work on SLR on
PHOENIX14T evaluated by WER. The previous best
results are underlined. Methods marked with * denote
approaches that utilize multiple modalities besides RGB
videos, such as human body key points and optical flow.
Notably, our best model (Model II) achieves the lowest
WER among single-modality models.

dataset is shown in Table 2. While we do not sur-
pass the existing records, our system ranks as the
top performer among all single-modality models. It
is worth noting that the extension of multi-modality
models into handshape-inclusive models, such as
introducing handshape heads or an additional hand-
shape encoder to the original networks, could po-
tentially enhance the SOTA performance further.9

5.2 Ablation study

5.2.1 Model variants

In our analysis, we contrast our suggested model
variants, Model I and Model II (discussed in Sec-
tion 4.2), with the Vanilla SLR network (described
in Section 4.1). Additionally, we compare models
that feature solely a right handshape head against
those equipped with two heads, one for each hand.
An extended variant, Model II+, which adds two
handshape heads to the gloss encoder, is also con-
sidered in our experimentation.

As demonstrated in Table 3, Model II outper-
forms Model I and Model II+. The performance
differs marginally between models with handshape
heads for both heads versus those with a single
right-hand head.

9Due to computational resource constraints, we are cur-
rently unable to fit such models into our GPU devices. Future
work may explore the expansion of multi-modality models to
include handshape-inclusive models.

Model Hands Dev Test
Vanilla - 23.54 23.69
Model I* right 23.22 22.94
Model I right + left 22.52 23.43
Model II* right 21.06 22.56
Model II right + left 21.03 22.07
Model II+* right 21.51 22.12
Model II+ right + left 21.86 22.40

Table 3: Performance comparison of model variants.
Models marked with * are variants that employ only the
right handshape head. Please note that the experimental
setup differs from the HS-SLR model presented in Table
2. Here, we unfreeze all parameters in S3D and exclude
the optimization of the cross-entropy loss.

5.2.2 Pretraining for gloss encoder
We delve into optimal pretraining strategies for the
S3D encoder that’s coupled with a gloss head. We
conduct experiments using Model I, as shown in
Table 4. We contrast the efficacy of four distinct
pretraining methodologies: (1) pretraining solely
on Kinetics-400; (2) sequential pretraining, first
on Kinetics-400, followed by WLASL; (3) triple-
tiered pretraining on Kinetics-400, then WLASL,
and finally on handshape prediction by attaching
two handshape heads while deactivating the gloss
head; and (4) a similar three-stage process, but
focusing on gloss prediction in the final step.

Pretrained tasks Dev Test
Kinetics 23.65 24.77
Kinetics + WLASL 22.52 23.43
Kinetics + WLASL + HS 22.42 23.71
Kinetics + WLASL + Gloss 22.31 23.71

Table 4: Performance of Model I with different pertain-
ing strategies. HS pretrains the model on predicting the
handshapes only (the gloss head is deactivated). Gloss
pretrains the model on predicting the glosses only (the
handshape heads are deactivated).

5.2.3 Pretraining for handshape encoder
Table 5 outlines various pretraining strategies
adopted for the handshape encoder in Model II.
The results pertain to right handshape predictions
on the PHOENIX14T-HS dataset. Both Kinetics
and WLASL are employed for gloss predictions,
as they lack handshape annotations. We also test
the 1-Million-Hands dataset (Koller et al., 2016)
for pretraining purposes. This dataset comprises
a million images cropped from sign videos, each
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Pretrained tasks Input Dev Test
None full 52.81 50.75
None hand 73.38 72.01
Kinetics full 26.92 27.81
Kinetics hand 40.56 40.18
Kinetics+WLASL full 25.76 25.74
Kinetics+WLASL hand 43.45 40.05
1-Million-Hands full 47.59 46.82
1-Million-Hands hand 59.04 57.68

Table 5: Performance of right handshape predictions on
PHOENIX14T-HS with various pretraining strategies
for the S3D encoder.

labeled with handshapes. To adapt these images
for S3D, we duplicate each image 16 times, creat-
ing a ‘static’ video. Furthermore, we experiment
with two input formats: the full frame and the right-
hand clip. As indicated in Table 5, both pretraining
and full-frame input significantly outperform their
counterparts.

5.2.4 Frozen parameters
We evaluate the impact of freezing varying num-
bers of blocks within the pretrained S3D encoders
in Model II. The results are presented in Table 6.

Frozen blocks Dev Test
1 20.55 22.26
1, 2 20.55 22.26
1, 2, 3 20.34 22.21
1, 2, 3, 4 20.66 21.74

Table 6: Performance of Model II with various frozen
blocks in both S3D encoders.

5.2.5 Cross-entropy loss
In Table 7, we investigate the computation of
cross-entropy loss on handshape predictions uti-
lizing pseudo-labels obtained via two methods: En-
semble and HS. The former pertains to pseudo-
labels gathered as outlined in Section 4.3, while
the latter relies on CTC decoder-applied handshape
probabilities from the handshape head to produce
pseudo-labels. We also examine a hybrid approach
(Ensemble, HS), which sums the losses from both
methods. In addition, we tune the weights λL

CE and
λR
CE in Equation 3, setting them to the same value.

6 Conclusions

In this work, we introduce the concept of
handshape-aware SLR, enriching this area of re-

Pseudo-labels weight Dev Test
Ensemble 0.01 20.50 21.95
Ensemble 0.05 20.26 21.79
Ensemble 0.1 21.22 21.77
Ensemble 0.5 20.31 22.07
Ensemble 1 20.63 21.86
HS 1 21.38 22.05
Ensemble, HS 1, 1 20.87 21.86

Table 7: Performance of Models II with varying weights
and methods for acquiring pseudo-labels used in cross-
entropy loss calculation.

search by offering a handshape-enriched dataset,
PHOENIX14T-HS, and proposing two distinctive
handshape-inclusive SLR methods. Out method-
ologies maintain orthogonality with existing SLR
architectures, delivering top performance among
single-modality SLR models. Our goal is to draw
increased attention from the research community
toward the integration of sign language’s phono-
logical features within SLR systems. Furthermore,
we invite researchers and practitioners in NLP to
contribute to the relatively nascent and challenging
research area of SLP, thus fostering a richer un-
derstanding from linguistic and language modeling
perspectives.

In future work, we would like to explore three
primary avenues that show promise for further ex-
ploration: (1) Extension of multimodal SLR mod-
els. This involves expanding multi-modality SLR
models, which use inputs of various modalities like
RGB, human body key points, and optical flow,
to become handshape-aware. This approach holds
potential as different streams capture distinct as-
pects of sign videos, supplying the system with
a richer information set. (2) Contrastive learning.
Rather than using handshape labels as supervision,
they can be employed to generate negative exam-
ples for contrastive learning. This can be achieved
by acquiring the gloss segmentation from the CTC
decoder and replacing the sign in the positive exam-
ples with its counterpart in the handshape minimal
pair. The resulting negative examples would be par-
ticularly challenging for the model to distinguish,
thereby aiding in the development of better repre-
sentations. (3) Data augmentation. Alternatively,
to create negative examples for contrastive learn-
ing, the data volume could be increased using the
same method that generates negative examples for
contrastive learning.
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Limitations

Noisy labels: As highlighted in Section 3, the
handshape labels we create might be noisy, since
two-thirds of them are from a user-edited online
dictionary. Additionally, these labels may not cor-
respond perfectly to the sign videos due to the vari-
ations among signers and specific signs.

Single annotator: Finding DGS experts to serve
as our annotators proved challenging. Also, ob-
taining multiple annotators and achieving inter-
annotator agreements proved to be difficult.

Single parameter: The dataset used in our study
does not account for other sign language param-
eters including orientation, location, movement,
and facial expressions. Moreover, these parameters
are not explicitly incorporated as subsidiary tasks
within our SLR methodologies.

Single dataset: We only extend a single dataset
with handshape labels. It remains to be seen
whether the methods we propose will prove equally
effective on other datasets, featuring different sign
languages, domains, or sizes.
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