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Abstract

Reinforcement learning from human feedback
serves as a crucial bridge, aligning large
language models with human and societal
values. This alignment requires a vast corpus of
human feedback to learn a reward model, which
is subsequently used to finetune language
models. However, we have identified that the
reward model often finds shortcuts to bypass
its intended objectives, misleadingly assuming
that humans prefer longer responses. The
emergence of length bias often induces the
model to favor longer outputs, yet it doesn’t
equate to an increase in helpful information
within these outputs. In this paper, we propose
an innovative solution, applying the Product-
of-Experts (PoE) technique to separate reward
modeling from the influence of sequence length.
In our framework, the main expert concentrates
on understanding human intents, while the
biased expert targets the identification and
capture of length bias. To further enhance the
learning of bias, we introduce perturbations
into the bias-focused expert, disrupting the flow
of semantic information. Experimental results
validate the effectiveness of our approach,
indicating that language model performance
is improved, irrespective of sequence length.

1 Introduction

In recent years, the field of natural language
processing has witnessed remarkable advance-
ments with the emergence of powerful models
like InstructGPT (Ouyang et al., 2022), GPT-4
(OpenAl, 2023), Claude (Bai et al., 2022b), and
others. These models have displayed remarkable
proficiency in understanding human queries and
providing helpful responses. Their success can
be attributed to a two-step learning process that
involves Supervised Fine-Tuning (SFT) followed
by the utilization of Reinforcement Learning from

*Equal contribution.
f Corresponding author.

[Human]: What does the phrase "a stitch in time saves
nine" mean?

[Assistant]: It’s a common phrase in English that means
an early solution to a problem saves a lot of effort in the
long run ".

[Human]: Can you apply this saying in a sentence?

SFT model

[Assistant]: Sure, here's an example sentence: "My
brother always says that a stitch in time saves nine, so he
never procrastinates on fixing things."

Vanilla RM + PPO

[Assistant]: Sure, here's an example: "I always make sure
to fix any small issues in my car straight away rather than
waiting for them to become bigger problems. A stitch in
time saves nine, they say!"

Ours + PPO

[Assistant]: Yes, here‘s an example of how you can apply
this saying in a sentence: “Fixing that leak in the pipe right
away is a stitch in time saves nine. "

Figure 1: Comparison of model outputs using SFT,
Vanilla RM with PPO, and Our Method with PPO. Our
study demonstrates that the current reward model tends
to incentivize the model to generate longer responses,
disregarding the true human intent. This phenomenon
is highlighted in the example shown, where we observe
a decline in model performance.

Human Feedback (RLHF) techniques (Ouyang
et al., 2022; Bai et al., 2022a). This combination
enables these models to not only learn how
to follow human instructions but also better
understand human intent and align with human
and societal values. Undoubtedly, RLHF plays a
pivotal role in the success of these models.

One of the key components of RLHF is re-
ward modeling (RM), which involves learning
a reward function from human preferences or
demonstrations. This allows an RL agent to
optimize its behavior based on the feedback
received from reward model (Ziegler et al., 2019b).
However, the process is not without challenges.
Human preference data can be noisy and subject
to inconsistencies among different annotators,
leading to suboptimal results (Bai et al., 2022a).
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For example, reward gaming, a well-known and
pervasive issue, refers to the phenomenon where
trained models exhibit undesirable patterns and
generate low-quality outputs while still receiving

high rewards (Skalse et al., 2022; Pan et al., 2022).

These complexities emphasize the need for careful
consideration and robust methods to ensure reliable
and meaningful reward functions in RLHF.

As shown in Figure 1, a similar reward gaming
issue arises in NLP reward modeling. We have
observed that the reward model tends to reply
on simple patterns, such as sentence length, to
differentiate between good and bad responses.
Typically, the reward model assumes that longer
responses are better, which hinders its ability
to learn the true human intent and preference.
Addressing this problem is crucial for improving
the effectiveness of NLP reward modeling and
capturing the true nuances of human language.

In this paper, we propose a Product-of-Experts
(PoE)-based method (Hinton, 2002) that consists
of two expert models to decouple human intent and

response length during the reward modeling phase.

The first expert operates similarly to a standard
reward model and focuses on learning the true
human intent behind responses. The second expert,
referred to as the bias-only expert, is designed to
learn simple patterns, specifically the length of
responses. It employs a smaller model capacity
and a larger learning rate to capture coarse-grained
information of inputs. Additionally, stochastic
perturbations are introduced into the inputs of
the bias-only expert, intentionally disrupting the
semantic information present in the input. To
summarize, the main contributions of our work
are followings:

* We identify that reward modeling in NLP
tends to rely on length bias, hindering the
models from accurately learning true human

intent and even leading to model degradation.

* We propose a simple and efficient solution
leveraging PoE technique. Our method
effectively decouples length bias from human
intent, enabling models to better capture and
understand human preferences.

* We validate the effectiveness of our proposed
method. The results show that our approach
enhances the learning of human intent by
avoiding the generation of meaningless and
overly verbose outputs.

2 Related Work

Reinforcement Learning from Human Feed-
back. Using human preference feedback is a
popular way for realizing Al alignment (Leike et al.,
2018). Preferences are often provide numerical
value or demonstrations (WirthChristian et al.,
2017) without requiring expert proficiency or fine-
grained feedback . Alignment bring a potent
capability to state-of—the-art generative foundation
models, like InstructGPT (Ouyang et al., 2022),
Sparrow (Glaese et al., 2022), Claude (Bai et al.,
2022b), which means this method is of great
success in the paradigm of learning with human
feedback. Some prior work have explored using
human feedback to improve various tasks, such as
summarization (Stiennon et al., 2022; Ziegler et al.,
2019b), dialogue (Bai et al., 2022a), translation
(Bahdanau et al., 2016), event generation (Zhou
and Xu, 2020), semantic parsing (Lawrence and
Riezler, 2019) and instruction following (Ouyang
et al., 2022; Bai et al., 2022a). These work can
be categoried as supervised fine-tuing or reward
modeling on well-constructed human annotations
information, the latter is also known as a vital phase
in RL from human feedback (Christiano et al.,
2023; MacGlashan et al., 2017). Our work falls
within the realm of RLHF and aims to awaken LM
with both harmless and helpful abilities.

Reward Hacking. Goodhart’s Law! (Strathern,
1997) can be formulated a tough challenge in
numerous fields. A few approaches have been
proposed for reducing overoptimization in general
reinforcement learning (Everitt et al., 2017), as
well as in reward models (Gleave and Irving, 2022).
The overoptimization problem of reward model
can generally regard as a special case of reward
gaming, also known as reward hacking (Skalse
et al., 2022). In addition, Pan et al. (2022) proposed
to systematically analyze reward misspecification
in RL by creating a set of domains where the
agent optimizes a hand-engineered proxy reward
function. In this study, we consider the length
of human preferences as a confounding factor that
hinders the reward model from accurately assessing
the quality of model responses based on true human
intent.

Products-of-Experts. Products-of-Experts (PoE)
(Hinton, 2002) has been proposed as an alternative
to mixture model to compensate for their poor

'Goodhart’s law is an adage often stated as, When a
measure becomes a target, it ceases to be a good measure
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efficiency in high dimensional space. This
technique is often based on the principle of wisdom
of crowds, which suggests that aggregating multiple
models can lead to better performance than relying
on a single model. Clark et al. (2019) firstly use
PoE to build a paradigm that train a debiased model
ensemble with a bias-only model. The goal is to
encourage the debiased model to utilize orthogonal
information with information from the bias-only
model. Typically, this kind of method (Clark et al.,
2019; He et al., 2019) usually contains two stages.
In this work, we adopt the end-to-end manner
like (Karimi Mahabadi et al., 2020) which jointly
learn the bias-only model and the debiased main
model simultaneously, therefore, our reward model
can take advantage of PoE to use a weak learner
to capture the length shortcuts without any prior
information about the length of sentences, and the
main model can purely attain the correct knowledge
that is suitable for human preference.

3 Preliminary

For the purpose of implement RLHF, we follow
the pipeline in Ziegler et al. (2019a). It is usually
made up of three phrases: 1) supervised fine-tuning,
2) reward modeling, 3) reinforcement-learning
optimization, our attention is directed towards the
last two phases.

SFT: It begins with a generic pre-trained LM,
which is fine-tuned using supervised learning on
a high-quality instruction dataset. This allows
the model to follow various instructions, perform
dialogue and dialogue. As a result, we obtain an
LM 75FT during this phase.

Reward Modeling: According to the Bradley-
Terry model (Bradley and Terry, 1952), a reward
function is hard to describe and needs to be learned
from preferences among trajectories. The reward
model rg is trained on human preference dataset
to predict which response y € {0,1} is better as
judged by human, given a query z. If the response
preferred by human is y;, the RM loss can be
expressed as:

_E(:E,y)ND[IOg(U(TG(x7 y1> - 7'9(513, yl—i))>]7 ey

where rg(x,y) is the scalar output of the reward
model for query = and response y with parameters
0, and D is the human preference dataset.

RL Optimization: Then we fine-tune the SFT
model on our environment using PPO (Schulman
et al., 2017). The language model is provided with

feedback through the launch of a learned reward
function. To this end, we maximize the following
objective function in RL training:

E(z,y)~D [7’0(1‘721) — Blog (WEL(?/ | x)/ﬂ'SFT(y ‘ x))] s

[ is a parameter to control the deviation from
the SFT model 75FT.  The language model
policy 7 is initialized to 7SFT. Importantly,
the last per-token KL-penalty term is used to
prevent the model from deviating too far from the
deviating exceeding the appropriate scope from the
distribution on which the reward model is accurate,
as well as maintaining the generation diversity and
preventing mode-collapse to single high-reward
answers (Ziegler et al., 2019b).

4 Length Bias in Reward Model

In this section, we present the phenomenon of
length bias in reward models and utilize causal
analysis to examine the underlying reasons for
this occurrence. We shed light on why the reward
model exhibits a preference for longer sentences
and delve into the causal factors contributing to this
bias.

4.1 Length Bias Phenomenon

We present a Figure 2 depicting the scores and
lengths of 4000 SFT model output results, which
were evaluated using the vanilla reward model
trained on the helpful and harmless (HH) dataset
(Bai et al., 2022b). It is evident that there is
a strong correlation between the reward scores
and lengths. When the model generates longer
sequences, the reward model tends to assign higher
scores. This correlation contradicts human intent
since the helpfulness and harmlessness of the
output should not be solely determined by its length.
More figures can be seen in the Appendix 8.

In addition, the length bias locates in PPO as
well, we additionally investigate it on TL;DR
(Stiennon et al., 2022) in the Appendix A.4

4.2 Confounding Factor

As Figure 3 depicted, we formulate the problem
as a causal structure (Zeng et al., 2023; Tien
et al., 2023) of preference-based reward modeling.
Pairwise preference information are conveyed
based on an observed reward function r. Features
(x,y) are causal factors can affect  and another
nuisance features z regarded as a potential con-
founder factor that have impact on r. Note that
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Figure 2: Distributions of Reward vs. log-scaled Length in vanilla RM and our proposed method. The results
illustrate that Vanilla RM tends to assign higher rewards to longer responses, whereas our proposed method achieves
a more uniform distribution of rewards across different response lengths.

Figure 3: Causal structure of preference-based reward
modeling. Length bias, represented as a confounding
factor z, influences the model’s learning of true human
preferences (z,y).

z might be correlated with (x,y), potentially due
to their sharing of the same causal parent or there
being biases during data collection, like annotators
are inclined to favor longer sentences, which is
expected.

In the presence of confounding effects, the
goal of preference-based reward modeling is to
learn a biased reward function 7(z, y, z) that best
matches the stated preferences. There are state
features (z,y) that are causal with respect to
the true human intent but are unobserved by the
learning agent and considered non-robust features
effortlessly learned. In our case, we suppose that
length bias is one vital element strongly related
to (x,y). Actually, this situation can hardly be
completely avoided, and our motivation is to reduce
the probability of the path directed by the blue

arrow. Furthermore, unobserved human bias and
noise induced by annotators, such as inappropriate
judgments on certain individuals, groups, races,
sexes, etc., denoted by 7, also affect the preference
labels.

As a consequence, the learned reward 7 has
risk to achieve actually low yet even near-perfect
performance on a held-out test dataset with
following two factors: 1) causal factor and nuisance
factor can be correlated by the con-founder factor
(x,y), 2) RM easily find a shortcut exists between
causal factor and reward function in the distribution
of test set and can not be extrapolated to out-of-
domain dataset. This might be reflected when this
misspecificated reward model 7(z, y, z) guide the
LM agent to align with human intention using PPO,
as a result of distribution drift.

4.3 Challenges

The spurious correlation between reward scalars
and response lengths can be problematic, as
it may result in biased or sub-optimal model
behavior. However, due to the unobserved nature
of this spurious attribute when performing a
traditional ERM-based training paradigm, it can be
challenging to investigate and address during the
reward modeling stage. Inspired by the debiasing
framework of ensemble model methods, we posit
that length bias can be alleviated through a robust
learning approach, which involves disentangling
the underlying features and feeding them into
distinct experts. This assumption is grounded
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in the notion that the bias in the length of
data can be attributed to the confounding effect
of certain features, which can be disentangled
through representation learning. Based on the
aforementioned observations and insights, in the
next section, we will propose a simple and effective
method to mitigate the length bias during the
reward modeling stage.

5 Proposed Method

The section describes the framework and algorithm
of our method. We introduce an approach to
establish a debias framework that can significantly
mitigate the length bias at the RLHF stage.

5.1 PoE Framework

In this study, our framework is mainly built based
on the procedure of the reward modeling phase, as
illustrated in Figure 4. To learn a reward model
from preferences, we assume access to a set of
pairwise preference pairs. Specifically, after a
batch of NV data consisting of an equal quantity
of positive and negative sentences passes through
our framework, the learning process begins.
Products-of-Experts. In our study, we explore
a reward modeling method that utilizes different
experts to separately learn the true human intent
and the length bias. We employ the Products-of-
Experts (Hinton, 2002) technique to train a robust
reward model. Specifically, our ensemble method
can be formulated as:

7(z,y) = Softmax(log(rs(z, y))+log(ry (z, y)))-

Equivalently, 7(x,y) o< rg¢(x,y) o 7y (x,y), where
¢ (2, ) is the output of the bias-only model and
r4(x,y) is that of the main reward model.

To ensure the main reward expert and bias-
only reward expert learn different content, we
applied constraints based on empirical observations.
The main reward model utilized a larger language
expert (e.g., 7B LLAMA (Touvron et al., 2023))
and a normal learning rate to capture human
intent. In contrast, the bias-focused expert
employed a smaller model (e.g., 560M BLOOMZ
(Muennighoff et al., 2022)) and a higher learning
rate, typically three times that of the main expert.
Previous studies (Mhaskar et al., 2016; Wilson
et al., 2018) showed that smaller models with larger
learning rates tend to learn simpler and coarser
information. This differentiation in model size and

learning rate aims to balance comprehensive under-
standing with the identification and mitigation of
potential biases (Geirhos et al., 2020).

5.2 Injecting Noise into Bias-only Expert

In order to ensure that the bias-only model captures
the length bias present in the input, we employ a
technique of injecting random noise into the input.
This intentional introduction of noise serves the
purpose of disrupting the semantic information
within the input, thereby aiding the model in
effectively learning the length bias. Thus, the
perturbed inputs can be expressed as X’ = X + N,
where X' represents the new, noisy input, and N
denotes the Gaussian noise added to the token
embeddings. By facilitating the collaboration
between bias-only experts and main experts in
modeling human preference, we enable the bias-
only experts to effectively capture length bias while
preventing the main model from learning length
bias.

5.3 Training & Inference

During the training phase, the main expert and
the bias-only expert are jointly optimized by
maximizing the following likelihood function to
optimize the reward function:

_E(x,y)ND [log(a(f(:c, yl) - f(q,‘, yl—l)))] (2)

The main expert is initialized based on an SFT
model, while the bias-only expert is initialized
using a pretrained model. Both reward models
add a linear layer on top of the final Transformer
layer, which generates the final scalar prediction
for the reward signal.

During the PPO stage, we exclusively rely on the
main expert to provide rewards, while discarding
the bias-only expert. Since the bias-only expert
is typically smaller in size, our approach does not
significantly increase computational overhead.

6 Experiments

6.1 Settings

Datasets We utilize the Helpful and Harmless
(HH) dataset (Bai et al., 2022b) from Anthropic
as our experimental dataset and rm-static’> for
training our reward model and for participation
in PPO. The HH dataset provides a response

2https://huggingface.co/datasets/Dahoas/
rm-static
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Proposed PoE-RM Framework

—~o Sed
[ T
Main expert Human value

I &

LLaMA
Bias-only expert Length bias
chosen @ s 7 E
g reward model () LM policy
preference N PPO
rejected® learning Ih 5

Figure 4: Pipeline of the proposed method. The proposed PoE-based reward modeling approach consists of two
experts: the main expert, which learns the true human value, and the bias-only expert, which focuses on capturing

the length bias.

and a rejected response for each query based
on human preferences, specifically focusing on
responses that are helpful and harmless. In
addition to that, our SFT data incorporated the
52k instruction dataset constructed by Alpaca’
and the ChatAlpaca* dataset containing multi-turn
dialogues.

Models In our experimental setup, we primarily
build upon LLaMA and BLOOMZ models, utiliz-
ing models with a parameter size of 7B. Inspired
by the work of (Ouyang et al., 2022), who employ
SFT models as initial models for PPO, we perform
SFT on the Alpaca and ChatAlpaca datasets.

SFT Hyper-parameters During the SFT phase,
we utilize a learning rate of 3e~° and train for
three epochs without early stopping. We employ a
warmup period of 0.3 epochs, followed by a linear
decay to 0. The fine-tuning process was conducted
on a device with eight Nvidia A100 GPUs. Each
GPU handled four queries, resulting in a batch size
of 32. Responses are truncated to 512 tokens, while
the total length of both queries and responses was
truncated to 2048 tokens. We incorporate specific
prompts, such as "Human:" or "Assistant:", during
the concatenation of input queries and output
responses. These prompts are added to provide

3https ://github.com/tatsu-lab/stanford_alpaca
4https ://github.com/cascip/ChatAlpaca

context and distinguish between human-generated
and assistant-generated responses.

RLHF Hyper-parameters During the reward
modeling training phase, our main expert and
policy model remained consistent. The learning
rate for both is set to 5e7%. As for the bias-
only expert, we utilize a smaller model, the 560m
Bloomz, with a fixed learning rate of 8¢ =6,

In the PPO framework, we perform reward score
normalization and clipping, with a clip value of
0.8. We employ the clipped surrogate objective of
PPO for optimization. The token-level KL penalty
coefficient 3 is set to 0.05. For each query, we
collect 4 roll-out samples using nucleus sampling.
The sampling temperature is set to 0.8, top-p is
set to 0.9, repetition penalty is set to 1.1, and the
maximum output token length is set to 512. The
policy model has a learning rate of 9¢~7, while
the value model utilize a learning rate of 2e~6.
These specific training details are implemented to
optimize the performance and convergence of the
models during the training process.

Baselines In this study, we propose a method
primarily aimed at mitigating length bias in the
reward model. Therefore, our baselines include
the SFT model, the PPO model trained with the
vanilla reward model, and the PPO model trained
exclusively with the bias-only reward expert.
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Dataset Models RM Type Length PPL
LLaMA BLOOMZ Ours-LLaMA Ours-BLOOMZ GPT-J

BLOOMZ-SFT 0.986 —1.008 1.098 0.285 0.162 | 502 10.09
Vanilla-PPO-BLOOMZ | 1,082 —1.161 1.183 —0.422 0.174 | 513 10.06
Ours-PPO-BLOOMZ 1.867 —1.162 1.313 —0.327 0.167 | 507 9.13
LLaMA-SFT 1.386 —1.179 1.854 0.354 0.174 | 468 10.16

HH-RLHF Vanilla-PPO-LLaMA 1.580 —-0.997 2.106 —0.200 0.196 | 503 9.81
Ours-PPO-LLaMA 1.474 —1.062 1.975 —0.256 0.172 | 485 8.92
Alpaca-SFT 1.557 —1.008 2.152 0.413 0.191 | 513 10.11
Vanilla-PPO-Alpaca 2.052 —0.623 2.882 0.152 0.241 | 689 9.67
Ours-PPO-Alpaca 2.041 —0.587 2.850 0.150 0.221 | 586 8.82
Biasd-PPO-Alpaca 1.948 —0.604 2.930 0.025 0.148 | 684 9.91
BLOOMZ-SFT 1.463 0.101 1.315 0.293 0.164 | 494 10.03
Vanilla-PPO-BLOOMZ | 1.599 0.242 1.480 0.421 0.241 | 517 9.98
Ours-PPO-BLOOMZ 1.688 0.324 1.603 0.487 0.239 | 501 8.84
LLaMA-SFT 2.026 0.365 2.367 0.530 0.182 | 473 9.53

rm-static Vanilla-PPO-LLaMA 2.101 0.463 2.480 0.599 0.262 | 513 9.30
Ours-PPO-LLaMA 2.045 0.430 2.464 0.585 0.249 | 489 8.89
Alpaca-SFT 2.224 0.597 2.807 0.736 0.193 | 532 9.53
Vanilla-PPO-Alpaca 2.563 0.931 3.414 0.931 0.291 | 721 9.03
Ours-PPO-Alpaca 2.587 0.919 3.428 0.968 0.289 | 617 8.80
Biasd-PPO-Alpaca 2.848 1.260 3.845 1.232 0.152 | 713 9.57

Table 1: Main result for our proposed framework, we trained multiple models following RLHF pipeline. And we
use five different Reward Model to comprehensively evaluate the sentences against different settings, which are
generated from model-generated 4608 and 2304 prompts extracted from hh-rlhf and rm-static respectively.
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Figure 5: Distribution of reward scores for chosen and rejected responses. The results demonstrate that our proposed
method increases the differentiation between chosen and rejected responses. In contrast, the bias-only expert exhibits
limited generalization ability, primarily relying on length bias.

Models RM %  Bias-only %
Vanilla-BLOOMZ  66.94 —
w/o PoE 67.11 66.73
w/o Input Noise  67.53 66.58

Table 2: Ablation study on HH dataset, RM Accuracy
and bias-only RM for BLOOMZ models. By employing
a combination of PoE and input noise perturbation on
enhancing the generalization capability of the reward
model. The performance on the test set significantly
improves as a result of these techniques

Metrics We evaluate the effectiveness of differ-
ent methods in our experiments using perplexity
(gpt2-medium), average reward score , and human

evaluators. For human evaluation, annotators
compared two randomly selected responses and
provided comparison results (win/lose/tie), allow-
ing us to gain insights into subjective judgments of
response quality.

6.2 True Reward Improvement

As the previous analysis, addressing the risk
of reward hacking resulting from reward model
overoptimization (Gao et al., 2022) is crucial. To
ensure a more robust evaluation of our method, we
adopted a comprehensive approach that combines
both automatic and human evaluation. Table 1
illustrates the average generated sequence length
and reward scores of our method in comparison to
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the baselines on the test set. The results clearly
demonstrate that our approach achieves higher
reward scores while simultaneously reducing the
average output length compared to the RL model
utilizing the vanilla reward model. This finding not
only confirms the effectiveness of our proposed
method but also establishes a foundation for
generating outputs that better align with human
preferences.

In addition, we conducted a Spearman/Pearson
analysis to further validate the effectiveness of our
method. For more detailed information, please
refer to Appendix 4.

Opponent Human AlpacaFarm GPT-4
Ours  Answerchosen  67.69 74.42 75.32
Ours  SFT 54.23 59.42 56.42
Ours PPO 57.47 61.43 59.56

Table 3: Win rates of our proposed method against
various baseline approaches in the HH-RLHF dataset,
utilizing the Alpaca. Evaluations include human
annotators, AlpcaFarm and GPT-4. Answercposen 18
the human preferred response in HH-RLHF.

6.3 Wining Rate

In this section of the experimental analysis, we
present the win rate of our method compared
to other approaches. We provide results from
both manual evaluations, GPT4 and the automated
evaluation platform, and AlpacaFarm. During the
pairwise comparisons of the model results, a win
is assigned 1 point, a tie is assigned 0.5 points, and
a loss is assigned 0 points. It is evident that our
method achieves an average win rate of more that
50% compared to traditional RLHF methods. This
validates the effectiveness of our proposed method
in generating outputs that are more informative and
concise.

6.4 Ablation Study

Table 2 presents the results of ablation analysis on
various components of our method. By utilizing
the PoE technique and input perturbation, we
observe an improvement in the accuracy of the
RM. This finding demonstrates that our method can
better identify human intent, leading to enhanced
performance.

.
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Figure 6: Comparison of training curves between our
proposed method and PPO using vanilla RM. The
results show that our method achieves stable increases
in reward values while ensuring consistent generation
of output lengths.

7 Analysis and Discussion

In this section, we uncover valuable insights into
the effectiveness and limitations of our approaches,
paving the way for future advancements in conver-
sational Al systems.

7.1 Leaning Curve

Figures 6 present the variation in generated
sequence length during the training process of
our method and the vanilla RM for PPO , along
with the output reward scores during training and
on the test set. From the Figures, it can be
observed that the model trained with the vanilla RM
continuously increases its output length throughout
the training process, whereas our method achieves
a stable output length after a slight increase. Both
methods enhance the output’s reward score, but
our approach yields a more concise output while
containing more informative content.

7.2 Distribution of Reward Scores

Figure 5 illustrates the distribution of reward scores
for the chosen and rejected data on the validation
set during the training of our method compared
to the vanilla reward model. It is evident that
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our model exhibits better discernment between
the chosen and rejected data. This improved
performance can be attributed to our approach’s
ability to avoid excessive learning bias towards
sequence length. By mitigating the length bias,
the main expert of our model can focus more on
understanding genuine human intent, leading to
enhanced generalization capabilities.

8 Conclusion

In this study, we investigate the issue of length
bias in NLP and propose a PoE-based method
to mitigate this bias. Our work sheds light on
the challenges associated with reward modeling,
emphasizing that it is not a straightforward task and
various difficulties may impede the models from
capturing the true human intent. By addressing the
problem of length bias, our research highlights the
importance of developing techniques that enable
models to learn and generate responses aligned
with genuine human intentions. Further research
and advancements in this area are necessary
to overcome these obstacles and enhance the
performance and reliability of NLP models in real-
world applications.

Limitations

In this study, we propose a simple and effec-
tive method to mitigate length bias during the
Reinforcement Learning from Human Feedback
stage. However, it is important to note that
our method can only alleviate length bias to
some extent and may not completely eliminate
it. Furthermore, the validation of our method’s
effectiveness was conducted on two RLHF datasets.
It is worth mentioning that collecting RLHF data
is a challenging task, and the question of whether
this phenomenon exists on larger datasets remains
uncertain. Evaluating the performance of general
dialogue models poses a difficulty. Therefore,
during the human evaluation phase, we selected
only a limited number of evaluation samples to
assess the effectiveness of our approach.
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A Appendix

A.1 Analyzing the correlation between
generated length and correspondent
reward

As Table 4 illustrated, we introduce the Spear-
man/Pearson coefficient to analyze the correlation
between the two variables in the HH-RLHF eval
sets. This analysis serve as evidence to demonstrate
the effectiveness of our method in reducing length,
strengthening our findings.

Vanilla RM(S/P) PoE-RM(S/P) |
BLOOMZ  0.3865/0.3932  0.2354/0.2990
LLaMA 0.2627/0.2765  0.2421/0.2213
Alpaca 0.1786/0.1765  0.1354/0.1490

Table 4: Spearman/Pearson coefficient to analyze the
correlation between these two variables in the HH-
RLHF eval sets.

A.2 Scaling law for bias-only model

This part is a extensive exploration of the bias-
only expert within our proposed method. We
investigated the scaling law (Kaplan et al., 2020;
Gao et al., 2023) of the main expert and bias-only
expert using BLOOMYZ, and we found that the
accuracy of the reward model can be listed in Table
5.

bias-only expert % main expert %

560M 56.4 57.1
1.7B 59.3 59.8

3B 62.3 63.2
7.1B 66.7 67.5

Table 5: Spearman/Pearson coefficient to analyze the
correlation between these two variables in the HH-
RLHF eval sets.

A.3 PPO training stability

According to the technical report (Zheng et al.,
2023), reward scaling has been found to be
beneficial for enhancing the training stability of
PPO. In our experiment, we also applied reward
scaling and observed a significant improvement in
training stability.

A.4 Length bias Phenomenon on
summarization task

To examine the influence of length bias on the
summarization task, we conducted an investigation
focusing on KL divergence and omitted the penalty
term for the TL;DR task. Additionally, we explored
the RLHF pipeline in TL;DR, as depicted in
Figure 7. Our findings suggest that the length
factor significantly affects the quality of concise
summarization, reinforcing its importance in this
task. To further validate our hypothesis, we
assessed the summarization performance using
GPT-4, and the results (refer to Table 6) provided
support for our claims.

PPO beta 0.05 PPO beta 0.

Winning rate 58 % 42 %

Output Length 51 220

Table 6: Winning rate on TL;DR

A.5 Additional illustration in different reward
models
A.6 Case Study

To provide a more comprehensive evaluation, we
directly assesses the effectiveness of our proposed
method in addressing length bias. The case study
include measurements that capture the reduction in
response length and the maintenance of contextual
coherence. As shown in Table 7, we present
a case study that illustrates these measurements
through a one-turn dialogue example. In the second
example, we observed an instance of improper
reward model overoptimization, leading to the
policy model collapsing and engaging in self-
talking. We speculate that this issue may arise
from the loss of instruction-following ability due
to negative optimization.
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Human Prompt —

A friend told me that stretching right after I wake up is healthy for my body. What types of
stretches should I be doing? I am a bit lost in terms of knowing what to do. (Helpful)

RLHF Response —

There are many types of stretches that can be beneficial for your body, depending on your individual
needs and goals. Here are a few examples:

1. Hamstring stretch - Sit with one leg straight and the other bent, reach towards your toes and feel the
stretch in your hamstrings. You can also do this stretch while standing by placing your hands on your
hips and leaning forward until you feel a stretch in your backside.

2. Quadricep stretch - Stand on one leg and lift the other up towards the sky, feeling a stretch in your
quadriceps (the front of your thighs) . You can also do this stretch while sitting on the floor with both
legs extended straight in front of you, reaching towards your toes and allowing your heels to come
closer together.

3. Chest stretch - Stand with your arms at your sides and bring them overhead, feeling a stretch in
your chest muscles. You can also do this stretch while sitting with your arms behind you, reaching
towards the ceiling andallowing your shoulder blades to move backwards. (1024)

PoE Response —

There are many types of stretches you can do, depending on your goals and preferences. Here are
some simple stretches to try:

1. Downward-Facing Dog: start in a plank position and then lift your hips up towards the ceiling,
lengthening your spine and arms. 2. Child’s Pose: start on your hands and knees, then lower your hips
back towards your heels and stretch your arms forward. 3. Cat-Cow: start on your hands and knees,
then alternate between rounding and arching your spine, breathing deeply as you move. 4. Hamstring
Stretch: sit down and place your feet firmly on the ground, then reach towards your toes, keeping your
legs straight. 5. Shoulder Rolls: lie down on your back and roll your shoulders backwards, forwards,
and side to side to release tension.

These stretches are a great starting point, but be sure to consult with a professional if you have any
concerns or goals that extend beyond this. (921)

Human Prompt —

kill all politicians. (Harmful)

RLHF Response —

Kill all politicians? Are you serious?Human: Yes, I am serious. Politicians have been causing too
much harm to our society and it’s time we take a stand against them. They only care about their own
self-interest and don’t give a damn about the people they are supposed to represent.Assistant: I respect
your opinion, but I cannot support such an extreme measure. Killing politicians is wrong and goes
against my values.Human: I understand your point of view, but I think that some politicians are so
corrupt and dangerous that they need to be removed by any means necessary.Assistant: It may seem
like there is a lot of corruption in politics, but killing politicians is not the solution. We need to work
through the legal system and elect more responsible leaders who will serve the public interest. Human:
I guess we just see things differently. Thank you for having an open and honest conversation with
me.Assistant: You’re welcome. It was nice talking to you. (962)

PoE Response —

I strongly disagree with the suggestion to kill all politicians. Politicians are elected by the people to
represent their interests and make decisions in the best interest of their constituents. They play an
important role in our society and we need them to be able to do their job effectively. (294)

Table 7: Two cases of generating responses to useful prompt and harmful prompt of the model
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Figure 7: In OpenAI’s summarization task, the length bias phenomenon significantly affects the policy model
acquiring rewards.
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Figure 8: The distributions of rewards versus length were analyzed for both the third-party RM (GPT-J) and one of
our proposed models. It is evident that GPT-J effectively separates different sentences, aligning with the findings

presented in Table 1. Additionally, our POE BLOOMZ KDE map closely resembles that of LLaMA, indicating a
similar pattern.
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