
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 2803–2821
December 6-10, 2023 ©2023 Association for Computational Linguistics

Understanding HTML with Large Language Models

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang
Aakanksha Chowdhery, Sharan Narang, Noah Fiedel, Aleksandra Faust

Google DeepMind
{izzeddin,ofirnachum,yingjiemiao,msafdari,austinvhuang

chowdhery,sharannarang,nfiedel,faust}@google.com

Abstract

Large language models (LLMs) have shown
exceptional performance on a variety of nat-
ural language tasks. Yet, their capabilities
for HTML understanding – i.e., parsing the
raw HTML of a webpage, with applications
to automation of web-based tasks, crawling,
and browser-assisted retrieval – have not been
fully explored. We contribute HTML under-
standing models (fine-tuned LLMs) and an in-
depth analysis of their capabilities under three
tasks: (i) Semantic Classification of HTML el-
ements, (ii) Description Generation for HTML
inputs, and (iii) Autonomous Web Navigation
of HTML pages. While previous work has
developed dedicated architectures and train-
ing procedures for HTML understanding, we
show that LLMs pretrained on standard natu-
ral language corpora transfer remarkably well
to HTML understanding tasks. For instance,
when fine-tuned on data from the MiniWoB
benchmark, LLMs successfully complete 50%
more tasks using 192x less data compared
to the previous best supervised model. We
create and open-source a large-scale HTML
dataset distilled and auto-labeled from Com-
monCrawl.1

1 Introduction

Web crawling (Olston et al., 2010), form-
filling (Diaz et al., 2013; Gur et al., 2021), or infor-
mation retrieving web agents (Nogueira and Cho,
2016) are important for both automating and assist-
ing users in web-based tasks. These and similar
applications rely on models that can search for spe-
cific content or controls on a web page as well as
navigate a website autonomously. Since a web page
in its raw form is represented as an HTML-based
text sequence, the success of models for web-based
tasks relies on their ability to understand HTML
semantics, structure, and embedded interactions.

1See visualizations of the results at https://sites.
google.com/view/llm4html/home.

The predominant approach to web automation
and HTML understanding is to train specialized
models, i.e., gathering application-specific datasets
and designing neural network (NN) architectures to
leverage inductive biases of the HTML’s structure;
see, e.g., Liu et al. (2018); Toyama et al. (2021);
Gur et al. (2019, 2021); Humphreys et al. (2022).
However, both dataset collection and neural archi-
tecture design are expensive, time-consuming, and
require highly-specialized, domain-specific knowl-
edge.

Meanwhile, in the natural language processing
(NLP) literature, large language models (LLMs)
have emerged as a solution to the difficulties of
dataset collection and specialized NN design (Ka-
plan et al., 2020; Bommasani et al., 2021). A popu-
lar paradigm in NLP is to take an off-the-shelf LLM
– pretrained on a large text corpus via an unsuper-
vised and task-agnostic learning objective – and
either fine-tune or prompt the LLM on a small task-
specific dataset. This paradigm has shown excep-
tional performance on a variety of NLP tasks (Xue
et al., 2020; Brown et al., 2020; Austin et al., 2021).
Whether LLMs can be applied to HTML under-
standing – especially given the much larger context
and sequence lengths – remains an under-explored
question.

In this paper, we investigate whether LLMs can
be applied to HTML understanding to produce
better-performing, more sample-efficient HTML
understanding models and without the need for
custom NN architecture design. To that end, we
present a suite of three benchmarking tasks for
HTML understanding that capture the essence of
these applications and require understanding both
structure and content. First, we devise Semantic
Classification as a task that requires a model to clas-
sify a given HTML element into one of a set of cat-
egories, such as address, email, password etc., with
application to automated form-filling. Second, we
present Description Generation, a label-extraction

2803

mailto:izzeddin@google.com
https://sites.google.com/view/llm4html/home
https://sites.google.com/view/llm4html/home

<html>
 <body>
 <form class="login-form">

 <div>
 <label class="form-label" for=”uName”>
 Enter Email Address
 </label>

 <label class="form-label" for=”pass”>
 Enter Password:
 </label>

 </div>
 <div>

<input type="email" id="uName”>

<input type="password" id="pass">

 Please enter your password.

 </div>
 <button type="submit">Sign In</button>
 </form>
 </body>
</html>

Figure 1: HTML example page with a highlighted salient
element, an element of interest (dashed box). All canonical
tasks evaluate a distinct interaction with this element, either
by classifying it as one of a set of categories, generating a text
description of its purpose, or applying an action as part of a
sequential navigation of a multi-page website.

task where a model is given an HTML snippet
and is asked to produce a natural language descrip-
tion. For instance for an email field, the description
might be “Please enter your email address.” Note
that in the majority of web pages, this connection
between input elements and description content is
only implicit in the raw HTML code and inferring
such links is a prerequisite for higher-level navi-
gation objectives. The third task is Autonomous
Web Navigation (Shi et al., 2017). A model is pre-
sented with an HTML page paired with a natural
language command and must apply appropriate ac-
tions on a sequence of HTML pages to satisfy the
command. See Figure 1 for a simplified example
of these tasks.

With these benchmark tasks in hand, we eval-
uate the transfer capabilities of a variety of pre-
trained LLMs (Table 1), varying in architecture
(encoder-only, encoder-decoder, or decoder-only),
model size (from 24.6M to 62B parameters), and
training data corpora (both including and exclud-
ing pretraining NLP and HTML corpus). While
prior work universally pre-parses the HTML as in-
put to the model (Gur et al., 2021; Liu et al., 2018;
Nakano et al., 2021), ours uses raw, unprocessed
HTML. Our results show that LLMs demonstrate
a remarkable level of HTML understanding across
all tasks, with up to 192× more sample-efficiency
than models trained from scratch, and achieving a
new SoTA for supervised learning on the MiniWoB

benchmark suite (Shi et al., 2017). The encoder-
decoder architectures with bi-directional attention
show the best performance across the board even
when their pretraining does not include HTML.

The broader objective of this research is to ad-
vance the integration of LLMs with autonomous
web agents. It has only been in the last year that
researchers have begun to utilize LLMs outside of
NLP and integrate them as core capabilities in au-
tonomy ((Lu et al., 2021; Ahn et al., 2022)). In this
context, LLMs are reasoning engines for sequential
decision making agents interacting with environ-
ments. We believe these contributions expand the
scope of language models and connect their unique
capabilities with autonomous agents for the web.
We provide a new perspective on machine learn-
ing for HTML understanding and web automation,
showing that pretrained LLMs can achieve signifi-
cant performance on such tasks, reducing the need
for specialized architectures and training protocols.
To encourage further research in this direction, we
open sourced 2 model weights for agents used in
the WoB environment and our dataset for descrip-
tion generation.

2 Related Work

HTML Understanding Autonomous web naviga-
tion has been a popular application for neural net-
work models, and a variety of works propose simu-
lated websites for training web-based agents, with
application to task fulfillment (Yao et al., 2022;
Gur et al., 2021; Burns et al., 2022; Mazumder and
Riva, 2020; Shi et al., 2017; Liu et al., 2018) as
well as information retrieval or question-answering
(Adolphs et al., 2021; Nogueira and Cho, 2016).
Simulated websites provide an easy way to evalu-
ate models online, and for this reason we use the
existing MiniWoB benchmark (Shi et al., 2017) for
our web navigation setting. However, it is still im-
portant to have a mechanism for evaluating models
on a wide variety of real-world websites. This was
the key motivation for generating our own dataset
for the description generation task, which is dis-
tilled and auto-labeled from CommonCrawl and is
a key contribution of our paper.

Alongside these benchmarks, many works have
developed models for web navigation and related
subtasks (Pasupat et al., 2018; Bommasani et al.,
2021; He et al., 2021; Gur et al., 2021; Humphreys

2https://console.cloud.google.com/storage/
browser/gresearch/webllm

2804

https://console.cloud.google.com/storage/browser/gresearch/webllm
https://console.cloud.google.com/storage/browser/gresearch/webllm

et al., 2022; Liu et al., 2018; Jia et al., 2019). These
works often rely on specialized neural network ar-
chitectures that leverage inductive biases of HTML
structure, or on preprocessing of HTML to make it
easier to input to a model ((Li et al., 2021a,b)). In
contrast, our work takes a minimalist approach, pro-
viding HTML in text form with minimal processing
and using widely-adopted transformer networks.

LLMs and HTML Works that explore the in-
tersection of LLMs and HTML generally fall into
two categories. The first category uses LLMs to
assist web navigation (Nakano et al., 2021; Yao
et al., 2022), and typically relies on a custom pre-
processing to map the context and structure of a
web page to natural language, thus severely restrict-
ing what HTML pages the model can parse. The
second category pretrains LLMs on a large corpora
of HTML text (Aghajanyan et al., 2021). However,
these works typically restrict the model evaluation
to standard NLP tasks, e.g., summarization and
question/answering as opposed to tasks more rele-
vant to HTML understanding and web automation.
Our work can be thought of as the reverse: We
keep the pretraining of LLMs unchanged and focus
on the mechanisms for transferring the pretrained
LLMs to HTML-relevant tasks.

3 Canonical Tasks for HTML
Understanding

We devise three canonical tasks to study HTML un-
derstanding capabilities of LLM-based web agents.
These tasks require correctly interpreting both
structure and content to varying degrees to make
predictions, with autonomous navigation being the
most challenging capability of the three.

Autonomous Web Navigation. This task evalu-
ates how well a model navigates multi-page web-
sites as a sequential decision-making problem (Shi
et al., 2017; Liu et al., 2018). At the beginning of
an episode, the agent is given a natural language
instruction, e.g. Enter the username “lyda” and
the password “N22t” into the text fields and press
login. The agent applies actions to a sequence of
HTML pages, where each action is of the form
function(selector, text). The function is
one of click or type, selector is an integer pointer
that uniquely identifies an element, and text is a
text to input if the type functionality is activated.
An episode terminates when either the page reaches
a terminal state (e.g., the ‘sign in’ button is clicked)
or the maximum number of steps is reached.

Semantic Classification. Many HTML under-
standing applications require a model that can clas-
sify HTML elements into standardized categories.
For example, in automated form-filling (Diaz et al.,
2013; Gur et al., 2021), it is useful to identify a
‘submit button’ across many websites (e.g., shop-
ping, flight booking, utility application) with vari-
ous button representations (e.g., position, color, or
text). Thus, we formulate Semantic Classification
as classifying elements into role categories. Take
the example HTML in Figure 1 which includes
two input elements and a submit button. Let’s
pick the first input as an element of interest to be
classified by the system, also called a salient ele-
ment. The system should classify this element as
username, since it appears on a login page and it
has a label with Email Address which is typically
associated with the username in form-filling appli-
cations. To solve this, the system can aggregate
information from multiple sources in the page – the
label that says Enter Email Address, the input at-
tributes (type=“email” and id=“uName”), or even
the ordering of other elements in the page such as
‘password’ and ‘sign in’.

Description Generation. Motivated by appli-
cations in accessibility-minded web browser con-
trol (Jorgensen and Binsted, 2005), we formulate
description generation as an extractive problem
where the goal is to locate the textual description
of an element in the HTML and generate it as out-
put. For instance, the description of the salient
element in Figure 1 is Enter Email Address; when
rendered, this label will appear above the ‘email’
input field. HTML provides a large amount of
flexibility, and so in general a descriptive text that
appears alongside a specific element when rendered
can be very far from that element when looking
at the HTML plaintext. Thus, this task evaluates
a model’s ability to understand the structure of
HTML as it would appear to a user, despite not
having access to the rendered web page directly.

4 Datasets

Each of our canonical tasks requires a separate
dataset, with the description generation task using
a newly contributed, auto-labelled dataset based on
CommonCrawl.

Autonomous Web Navigation. We use the 12K
demonstrations included in the publicly available
MiniWoB benchmark (Shi et al., 2017), which
encompass 62 website applications ranging from

2805

Model
Task Dataset Size Input Architecture Output Task Output

Autonomous Web Navigation MiniWoB Demos (Shi et al., 2017) 12K Page Enc-Dec Text DictionaryDec

Semantic Classification Annotated Shopping Webpages (Gur et al., 2021) 28K Snippet All Text Category

Description Generation CommonCrawl (new) 85K Snippet Enc-Dec Text TextDec

Table 1: Task, dataset, and model summary. All models receive raw HTML. Autonomous Web Navigation receives the entire
HTML, while the other tasks receive HTML snippets extracted given salient element.

email forwarding to social media interactions.
Each demonstration is a sequence of (instruction,
HTML, action) tuples. Every element in a Mini-
WoB demonstration is accompanied by a reference
number unique within its respective pages. This
number can be used as an element selector, making
the action space unified across all tasks and time
steps. For instance, the action in Figure 1 would
be type(ref=5, "username@email.com"), where 5
refers to the index of the input when counted from
top-to-bottom. As model input, we concatenate
the natural language instruction and HTML into a
single text input sequence. Similarly, we treat the
action as a text sequence for the model to predict.

Semantic Classification. We use a dataset of
28K labelled examples, containing 66 different cat-
egories, of the form (HTML, element, category),
previously used in the context of environment gen-
eration (Gur et al., 2021). The dataset consists of
HTMLs from real-world shopping websites and
categories relevant to form-filling during payment
and checkout on these websites.

Description Generation. For this task, we de-
rive a dataset from CommonCrawl.3 Common-
Crawl does not include renderings or annotations
that would reveal what text in the HTML is as-
sociated with which elements. Instead, we infer
descriptions of various elements by exploiting a
special attribute in the HTML schema known as
for. As an example in Figure 1, the first label in
the HTML has a for attribute with value uName,
which is the id of the element described by label;
in this case, the id is that of the first input in the
page. This annotation does not affect the rendering
of the page and is typically used for accessibil-
ity purposes. We utilize the information given by
these for attributes to create a large-scale dataset4

to study description generation.
Specifically, we collected 100 WARC (from

April 2019) files from the CommonCrawl project
3http://commoncrawl.org
4https://console.cloud.google.com/storage/

browser/gresearch/webllm/datasets/descgen

and extracted all HTML labels that have a for at-
tribute. Removing non-Unicode and alphanumeric
text in HTML labels results in a 400K example
datset. We balance the distribution of labels, effec-
tively downsampling the dataset to 85K samples.
Each example is represented as (HTML, element,
description), where HTML is the HTML plain-
text of the page, element is the element whose
id attribute matches that appearing in the label’s
for attribute, and description is the text inside the
label element (see example in Figure 1). More
details of the dataset can be found in Appendix
A.2.

5 Pre-Processing

In treating HTML as token sequences, we minimize
any HTML tree pre-processing prior to model input.
We thus provide HTML as raw text (i.e., sequences
of text tokens) and only apply a snippet extraction
pre-processing for pages which are too large to fit
into the typical LLMs context windows.

Snippet Extraction. Real HTML pages can
grow extremely large, reaching thousands of el-
ements, far beyond the context window of the
largest LLM that we studied (1920 tokens in PaLM
(Chowdhery et al., 2022)). LLMs typically truncate
such long sequences, which can be detrimental to
HTML understanding as HTMLs are not linearly
structured. We take an element-centric approach
and extract HTML snippets (a small portion of
HTML code) surrounding a salient element (Fig-
ure 5). A simple heuristic, which controls the tree’s
width and depth, guides the process: Start with
a salient element and traverse its ancestors in the
HTML tree until a stopping condition is satisfied.
As we traverse up, we estimate the height of the
tree and the increased number of descendants of
the new root. We stop when either metric violates
a pre-defined limit and take the resulting sub-tree
as the snippet. We mark the salient element using a
special attribute, called target, to distinguish it from
other elements. We perform the snippet extraction

2806

http://commoncrawl.org
https://console.cloud.google.com/storage/browser/gresearch/webllm/datasets/descgen
https://console.cloud.google.com/storage/browser/gresearch/webllm/datasets/descgen

for the semantic classification and description gen-
eration datasets, and keep the full HTML pages in
MiniWoB because these pages are typically much
smaller than real-world HTML.

HTML un-Parsing. We provide the models
with the unparsed plaintext HTML in the form of
a sequence of tokens. This canonical representa-
tion does not require specific model architectures
such as hierarchical networks (Liu et al., 2018; Gur
et al., 2021) and can be fed into any LLM. We trans-
form all datasets by converting every HTML page
or snippet into a sequence. For MiniWoB, we ad-
ditionally concatenate (action history, instruction,
HTML) tuples into a single sequence.

6 Model Training

We study a variety of transformer-based
LLMs (Vaswani et al., 2017) with different
sizes and architectures for HTML understanding
tasks (Table 1). In the rest of the text, we
prefix models fine-tuned for Autonomous Web
Navigation, Description Generation, and Semantic
Classification with WebN-, WebD-, and WebC-,
respectively. For instance, WebD–T5-3B is the
three billion parameter T5 model (Raffel et al.,
2020) fine-tuned for the Description Generation
task. The rest of this section elaborates on training
details.

Encoder-Decoder and Decoder-only Models.
We train encoder-decoder models, i.e., T5 (Raf-
fel et al., 2020), and decoder-only models, i.e.,
LaMDA (Thoppilan et al., 2022) and PaLM
(Chowdhery et al., 2022), with text input and text
output. Inputs are raw HTML pages or snippet
texts; similarly, outputs are categories, natural lan-
guage descriptions, or actions represented as text.
Namely, for Semantic Classification we use the
textual representation of categories, similar to pre-
vious classification problems in NLP (Raffel et al.,
2020). For Autonomous Web Navigation, actions
are converted into text by first converting them
into key and value pairs and then concatenating the
pairs.

Many websites in MiniWoB require multiple
interactions, such as click-button-sequence or click-
checkboxes, where each interaction might cause a
subtle change in the website state. For instance, af-
ter clicking on a checkbox in the click-checkboxes
website, its value flips from positive to negative
or the other way around, which is not always re-
flected in LLMs’ predictions and leads to action

repetitions. We solve this issue by augmenting tu-
ples in the dataset with a sequence of past actions,
(action history, instruction, HTML, action), and
allowing LLMs to learn from past experience.

Encoder-only Models. We train encoder-only
models, i.e., BERT (Devlin et al., 2018), with text
input and categorical output. We keep semantic
categories as discrete one-hot classes. To train
encoder-only models, we add a new classification
layer after the final encoder layer to produce a dis-
tribution over semantic categories. In addition to
the typical BERT models, we study MobileBERT
(Sun et al., 2020), distilled from BERT-large with
inverted bottlenecks, and Albert-XL (Lan et al.,
2020), with parameter sharing and embedding split.

7 Results

We now present the results of fine-tuned LLMs
for HTML understanding. We compare the mod-
els’ performance with the existing baselines where
possible (autonomous web navigation) and against
other LLM architectures and training regimes (all
tasks). Sections 7.1, 7.2, and 7.3 evaluate task-
specific performance, while Section 7.4 assesses
the performance across all the tasks.

Metrics: For autonomous web navigation we
evaluate models’ Success Rate, which is averaged
over 100 episodes per task. For the other tasks,
we use Accuracy to measure exact match between
prediction and ground truth. In the description gen-
eration task, we additionally provide evaluations us-
ing alternative ‘soft’ text evaluation metrics, BLEU
and ROUGE-1, measuring the similarity between
predicted and ground truth text.

7.1 Autonomous Web Navigation Results

For Autonomous Web Navigation we fine-tune two
WebN- encoder-decoder architectures (WebN-T5-
large and WebN-T5-3B) on 12k demonstrations
from human-annotated real websites. We eval-
uate the models on MiniWob (Liu et al., 2018)
benchmark, and compare with specialized archi-
tectures trained using supervised learning (SL) on
2.4 million human expert demonstrations CC-Net
(SL) (Humphreys et al., 2022), and two RL models
bootstrapped with SL, CC-Net (SL) (CC-Net (SL
& RL) (Humphreys et al., 2022), and WGE (SL &
RL) (Liu et al., 2018)). Additionally, we compare
with the decoder-only architecture (WebN-Lambda-
1B) and perform an ablation study on the impact of
including the action history in the input.

2807

2.4M
Demos

12K
Demos

(a) Baseline comparison.
Model Name Success (%) Model Size
T5-large 18.1 800M
LaMDA-1B 15.6 1B
T5-3B 11.1 3B
WebN-T5-large 46.4 800M
WebN-LaMDA-1B 48.8 1B
WebN-T5-3B 51.8 3B

(b) Pre-training effect.

Figure 2: a) WebN–T5* performance compared to the pre-
vious SOTA models on MiniWoB benchmark. WebN-T5-3B
improves the task success 16% while using 192 times less
data, compared to the best supervised learning (SL) model,
CC-Net (SL). LLMs performance is only surpassed by works
utilizing RL, requiring orders of magnitude more online expe-
rience interaction with websites. b) LLMs with and without
pretraining on Autonomous Web Navigation task. Those with
pretraining (denoted by the ‘WebN-’ prefix) show a 2.5-4.5x
performance improvement.

Comparison to SoTA. Since previous works re-
port success on only a subset of websites in Mini-
WoB, we evaluate on 48 out of 62 websites that
are common across all models. Table 8 in the
Appendix reports fine-grained results while Fig-
ure 2a presents results averaged over all websites.
Compared to CC-Net (SL) which is trained on all
2.4M demonstrations, WebN-T5-3B improves the
success 16% while only training on 12K publicly-
available demonstrations, yielding over 192x im-
provement in sample-efficiency. We find that all
choices of LLMs outperform previous SL models.
Notably, WebN-T5-3B significantly improves on
websites requiring multiple-action sequences such
as click_checkboxes or websites requiring entering
text such as login_user (Table 8). We observe that
the performance of LLMs is only surpassed by pre-
vious works utilizing RL, which require orders of
magnitude more online experience interaction. Ex-
tending our fine-tuned LLMs to an RL setting is a
promising avenue for future work.

Action history ablation. Across all LLMs we
consistently observe a decrease in success, on av-
erage 6.4%, when past actions are excluded from
the inputs (Figure 2a). Action history helps with
websites that require entering multiple texts, as
well as understanding minor changes that could

Model Name Test (%) Dev (%) Model
Size

WebC-MobileBERT 78.1 77.7 24.6 M
WebC-Albert-XL 83.5 83.1 58.9 M
WebC-BERT-smallest 84.4 83.6 38.7 M
WebC-BERT-small 84.4 85.2 52.8 M
WebC-BERT-medium 85.2 84.5 67 M
WebC-BERT-base 83.9 84.8 109.5 M
WebC-BERT-large 84.1 85.8 335.2 M
WebC-T5-base 86.8 89.9 250 M
WebC-T5-large 87.0 89.3 800 M
WebC-T5-3B 87.7 90.3 3 B
WebC-LaMDA-1B (*) 87.4 87.1 1 B
WebC-PaLM-8B (*) 86.6 89.9 8 B
WebC-PaLM-62B (*) 88.7 90.5 62 B
T5-large 76.4 75.2 800 M
T5-3B 77.2 73.8 3 B
PaLM-8B 73.3 70.1 8 B

Table 2: LLMs performance on the Semantic Classification
task. Fine-tuning off-the-shelf pretrained LLMs (model names
with prefix ‘Web’) helps LLMs transfer better compared to
training the same architecture from scratch on the HTML
dataset (model names without prefix ‘Web*’), improving the
accuracy of PaLM-8B more than 12%. While WebC-PaLM-
62B clearly performed better than all other models, we found
WebC-T5-large to be competitive with much larger models
such as WebC-LaMDA-1B or WebC-PaLM-8B. Models with
an asterisk in their names utilize code in their training corpora.

be difficult to detect (e.g. click_checkboxes and
multi_layout). multi_layout requires entering 3 dif-
ferent texts in the website where the layout is ran-
domized at each episode, yet, surprisingly, even the
(relatively smaller) WebN-T5-large model without
action history outperforms the CC-Net (SL) model;
illustrating that incorporating action history is not
the only contributing factor for the better success.

7.2 Semantic Classification Task Results

To evaluate the Semantic Classification task, we
compare the T5 encoder-decoder architecture’s
three size variants (WebC-T5-base, WebC-T5-
large, and WebC-T5-3B) fine-tuned on 22K real,
human-labeled training websites. We compare with
a fine-tuned encoder only architectures (WebC-
BERT), three fine-tuned decoder-only archi-
tectures (WebC-LaMDA and PaLM), and both
encoder-decoder and decoder-only models trained
on human labeled websites from scratch. Results
are presented in Table-2, where we find that all
WebC-LLMs perform well and significantly better
than the same architectures without pretraining.

Accuracy per category. In Figure 4, we present
accuracy distribution of the WebC-T5-3B model on
the development dataset. The fine-tuned encoder-
decoder model performs strongly on a majority of
the categories (Figure 4), even on those with very

2808

New Height Test (%) Dev (%)
descendants (%)

25 3 87.7 90.3
25 4 88.6 89.2
50 3 88.4 90.0
50 4 89.3 89.2

300 5 87.8 88.8
500 7 75.8 74.5

(a)

Data Size

A
cc

ur
ac

y

55

60

65

70

75

80

85

500 1000 1500 2000

WebC-PaLM WebC-T5-3B
T5-3B (full data / no pretraining)

(b)

Figure 3: a) Effect of snippet extraction parameters on WebC-
T5-3B. Increases above 50% in new descendants and height
of 4. Large increases in both parameters lead to large snippets
and decrease in accuracy. b) Accuracy over training data
size. Using only 1000 labeled examples (4.4% of all training
dataset), WebC-T5-3B outperforms T5-3B (full data without
pretraining) which is trained on all available labeled data
(approximately 30k examples), and outperforms WebC-PaLM-
8B which is an order of magnitude larger.

few samples. For instance, the model is 100% accu-
rate on password_new which has only 56 training
examples, because the class is unambiguous. On
the other hand, unsurprisingly, the performance
drops when the category is ambiguous, such as in
the email category which is frequently mistaken as
username.

Snippet generation ablation. Two hyper-
parameters govern snippet generation: percentage
of new descendants and height of the new root.
While small variations of both parameters do not
change the performance, increasing both degrades
the performance significantly (Table 3a). With new
descendants up to 500% and height up to 7, the per-
formance drops by more than 15%. Note that snip-
pet generation returns the full-page HTML when
both parameters increase indefinitely.

Data size impact. When varying the fine-tuning
training data sizes (1, 5, 10, 20, or 50 samples per
class) in Figure 3b, WebC-T5-3B slightly outper-
forms WebC-PaLM-8B which is an order of mag-
nitude larger. Compared to T5-3B that is trained
on all available HTML data without pretraining,
WebC-T5-3B achieves better performance while
using only 3.4% of labeled data (1000 samples),

thus highlighting the benefit of using standard off-
the-shelf pretrained LLMs for HTML understand-
ing.

7.3 Description Generation Task Results

For Description Generation we split the Com-
monCrawl dataset based on URL top-level do-
mains to test LLMs’ capabilities to generalize to
unseen HTML. We fine-tune encoder-decoder ar-
chitectures (WebD–T5*) and decoder-only models
(WebD–LaMDA*), with results presented in Ta-
ble 3. We also evaluate a strong heuristic baseline
which simply finds the description closest to the
salient element in the HTML text (Closest Descrip-
tion).

Accuracy and Similarity Performance We
show results of our evaluations in Table 3. All mod-
els achieve high scores across all metrics, achieving
≈ 84% on the accuracy in terms of exact match and
a higher non-exact match score based on BLEU and
ROUGE-1 (≈ 91%). This difference indicates that
the models are capable of locating the descriptions,
but not always generating the exact output.

7.4 HTML Understanding LLMs ’s
Performance Analysis Across Tasks

We now analyze our results in aggregate to derive
our main conclusions.

7.4.1 Pretraining Effect: Pretraining on
Large Text Corpora Matters

Fine-tuned pretrained LLMs outperform LLMs
trained on HTML-only data, improving the per-
formance by more than 34.1% on the Autonomous
Web Navigation (Table 2b), and 10% to 12.7% on
the Semantic Classification task (Table 2).

Since Autonomous Web Navigation is the most
difficult task, the improved performance is an en-
couraging evidence of the value of LLMs in HTML
understanding tasks. Specifically, we observe that
LLMs without pretraining are comparable to fine-
tuned pretrained models only on websites that re-
quire simple text matching. In contrast, for web-
sites such as click_checkboxes, text matching is
harder and we find that pretraining is key to good
performance. We also found that without pretrain-
ing, model outputs were frequently in an incorrect
format such as invalid dictionaries or invalid refs
with non-integer values. This suggests that the
large corpora used for pretraining helps models to
learn general HTML structure.

2809

Test Dev
Model Name Accuracy(%) BLEU ROUGE-1 Accuracy(%) BLEU ROUGE-1
WebD-T5-large 83.2 90.2 90.5 84.3 91.7 91.5
WebD-LaMDA-1B 83.3 87.5 90.2 84.3 88.6 91.2
WebD-T5-3B 84 90.8 90.9 85.2 92.1 91.9
Closest Description 57.4 24.4 59.2 60.8 23.9 62.1

Table 3: Description generation accuracy of LLMs.

Categories

Figure 4: Accuracy per classification category of the WebC-T5-3B model on the development dataset.

7.4.2 Architecture Effect: T5-based Models
Perform Best Across All Tasks

Encoder-decoder T5 based models perform better
across all three tasks. On the Autonomous Web Nav-
igation task, encoder-decoder (WebN-T5) architec-
tures are better or comparable to WebN-LaMDA-
1B (Figure 2a). On the Semantic Classification, the
smallest encoder-decoder model (WebC-T5-base)
performs comparably to much larger decoder-only
models (WebC-LaMDA-1B or WebC-PaLM-8B)
and the largest encoder-only model (WebC-BERT-
large) which has 85M more parameters (Table 2).
We also observe that decoder-only PaLM-8B per-
forms worse than much-smaller encoder-decoder
T5-large when trained only on HTML data. Finally,
on the Description Generation encoder-decoder
architecture has higher BLEU score.

One possible explanation for the strong perfor-
mance of T5-based moels is the encoder-decoder
architecture of these models. Namely, T5 models
utilize an encoder with a bidirectional attention
mechanism, not present in the LaMDA and PaLM
decoders. The bidirectional attention mechanism
can process HTML pages from both ends, poten-
tially overcoming the loss of information when
tree-structured HTML pages are converted into a
fixed linear text sequences.

7.4.3 Model Size Effect: Size (Sub-linearly)
Matters

Across the tasks it appears that the architecture
plays an important role in the model performance.

Model size and performance are also positively cor-
related, although they reach diminishing returns.
For instance, the model performance is roughly
O(log log n) with respect to model size on Seman-
tic Classification (Figure 6 in Appendix). On the
Autonomous Web Navigation task, performance
grows slowly with the model size (Table 8), while
on the Description Generation it plateaus (Table 3).

7.4.4 Error Analysis
We manually examined 50 errors of WebC-T5-3B
model over the development set (Table 4) and as-
signed them into one of the 9 error types that we
devised. We found that 32% of the errors are due to
lack of information in the HTML snippets, which is
mainly the result of lost information during snippet
extraction process. Annotation errors or email/user-
name ambiguity make up 30% of the errors. These
can’t be improved without revising the annotated
data or adding extra information to resolve the am-
biguity. We also found that the model sometimes
picks a more general category, or a nearby text mis-
leads the model; the latter usually happens when
the HTML snippet is long where majority of the
elements are noise.

7.4.5 Few-Shot Prompting
In Table 5, we present few-shot prompting per-
formance of a 540B PaLM model. We probe
the model using a prompt template <html> Role:
<category> with 1 example per category and gen-
erate categories using greedy-decoding. In our

2810

Error Type Percentage of Examples
Not enough information in the HTML snippet 30
Incorrect annotation (ex: "unknown_role" instead of "organization") 12
Annotation tool translates user selection incorrectly 8
Email/Username ambiguity 10
More general category (ex: "header" instead of "cart_header") 8
Immediate neighboring text misleads 8
Incorrect date formatting (ex: "mm" instead of "mmm") 4
No information in the HTML snippet 2
Others 18

Table 4: Types of errors over 50 manually examined examples. 32% of errors are due to lack of information in HTML snippets,
30% of errors are related to annotations or can’t be improved due to ambiguity (email/username), and the remaining errors are
incorrect predictions by the model.

Model Name Test Dev
PaLM-540B 64.2 60.3
- w/o Example Cleaning 57.9 57.2
- w/o Category Rewriting 52.1 50.7
- w/o Dictionary Mapping 45.6 45.1

Table 5: Few-shot prompting performance with different pre-
and post-processing steps.

preliminary experiments, we found that few-shot
prompting achieves only 45.6 accuracy, much
lower than a model fine-tuned on the same data.
We found two common problems – the model is
not able to canonicalize predictions into categories
and many of the examples are dropped due to con-
text length.

We developed post-processing methods to al-
leviate the canonicalization problem and pre-
processing methods to reduce lengths of examples.
Adding a dictionary-based mapping on predictions
– a manually curated paraphrase dictionary – im-
proves the performance to 52.1. We also tried
rewriting predictions by changing the order of to-
kens around "_" such as name_first to first_name
which further improved the performance to 57.9.
Finally, we cleaned examples in the prompt by
removing certain elements such as "svg", "path",
"img", and "iframe" and also removing class at-
tribute from every element; this pre-processing step
gives 64.2.

8 Conclusion

We presented canonical tasks and fine-tuned LLMs
for HTML understanding. The comprehensive eval-
uations and analyses over a range of architectures,
dataset sizes, and baselines yields practical findings
and highlights current limitations of these mod-

els. We find that a) pretraining is critical for the
performance and can reduce labeled data require-
ments, improving sample efficiency up to 200x; b)
model architecture is the second-most important
factor, and T5 models with bidirectional attention
and encoder-decoder architecture perform the best
across the board; c) given a choice, model size
should be evaluated in the context of the model’s
training and inference performance, as the model
size sub-linearly correlates with its performance.
Finally, the proposed HTML understanding tasks
highlight the relatively short context window that
limits current LLMs, suggesting possibilities for
future research that incorporate or eliminate this
constraint.

9 Limitations

Our experimental results are limited to relatively
short context windows. While HTML documents
can have 10s of thousands of tokens, LLMs that
we studied have only 2K context windows. We de-
veloped heuristics to extract HTML snippets to fit
into context windows which is a promising future
direction. We are also limited by the MiniWoB sim-
ulator for our web navigation experiments. While
MiniWoB serves a wide variety of simulated web-
sites, they still lack many of the complexities of
real websites.

References
Leonard Adolphs, Benjamin Boerschinger, Christian

Buck, Michelle Chen Huebscher, Massimiliano Cia-
ramita, Lasse Espeholt, Thomas Hofmann, and Yan-
nic Kilcher. 2021. Boosting search engines with in-
teractive agents. arXiv preprint arXiv:2109.00527.

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis,

2811

Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke
Zettlemoyer. 2021. Htlm: Hyper-text pre-training
and prompting of language models. arXiv preprint
arXiv:2107.06955.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
2021. Program synthesis with large language mod-
els. arXiv preprint arXiv:2108.07732.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities
and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2022.
Interactive mobile app navigation with uncertain or
under-specified natural language commands. arXiv
preprint arXiv:2202.02312.

Xingyu Chen, Zihan Zhao, Lu Chen, JiaBao Ji,
Danyang Zhang, Ao Luo, Yuxuan Xiong, and Kai
Yu. 2021. WebSRC: A dataset for web-based struc-
tural reading comprehension. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4173–4185, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Oscar Diaz, Itziar Otaduy, and Gorka Puente. 2013.
User-driven automation of web form filling. In In-
ternational Conference on Web Engineering, pages
171–185. Springer.

Izzeddin Gur, Natasha Jaques, Yingjie Miao, Jongwook
Choi, Manoj Tiwari, Honglak Lee, and Aleksandra
Faust. 2021. Environment generation for zero-shot
compositional reinforcement learning. Advances in
Neural Information Processing Systems, 34:4157–
4169.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and
Dilek Hakkani-Tur. 2019. Learning to navigate the
web. In International Conference on Learning Rep-
resentations.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying
Xu, Lijuan Liu, Nevan Wichers, Gabriel Schubiner,
Ruby Lee, and Jindong Chen. 2021. Actionbert:
Leveraging user actions for semantic understanding
of user interfaces. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
5931–5938.

Peter C Humphreys, David Raposo, Tobias Pohlen,
Gregory Thornton, Rachita Chhaparia, Alistair Mul-
dal, Josh Abramson, Petko Georgiev, Adam San-
toro, and Timothy Lillicrap. 2022. A data-driven
approach for learning to control computers. In In-
ternational Conference on Machine Learning, pages
9466–9482. PMLR.

Sheng Jia, Jamie Ryan Kiros, and Jimmy Ba. 2019.
DOM-q-NET: Grounded RL on structured language.
In International Conference on Learning Represen-
tations.

Chuck Jorgensen and Kim Binsted. 2005. Web browser
control using emg based sub vocal speech recogni-
tion. In Proceedings of the 38th Annual Hawaii In-
ternational Conference on System Sciences, pages
294c–294c. IEEE.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Song-
fang Huang, Fei Huang, and Luo Si. 2021a. Struc-
turallm: Structural pre-training for form understand-
ing. arXiv preprint arXiv:2105.11210.

Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei.
2021b. Markuplm: Pre-training of text and markup
language for visually-rich document understanding.
arXiv preprint arXiv:2110.08518.

Zimeng Li, Bo Shao, Linjun Shou, Ming Gong, Gen
Li, and Daxin Jiang. 2023. Wiert: Web information
extraction via render tree. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(11):13166–
13173.

2812

https://doi.org/10.18653/v1/2021.emnlp-main.343
https://doi.org/10.18653/v1/2021.emnlp-main.343
https://openreview.net/forum?id=BJemQ209FQ
https://openreview.net/forum?id=BJemQ209FQ
https://doi.org/10.1609/aaai.v37i11.26546
https://doi.org/10.1609/aaai.v37i11.26546

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-
lin Shi, and Percy Liang. 2018. Reinforcement learn-
ing on web interfaces using workflow-guided explo-
ration. arXiv preprint arXiv:1802.08802.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor
Mordatch. 2021. Pretrained transformers as
universal computation engines. arXiv preprint
arXiv:2103.05247.

Sahisnu Mazumder and Oriana Riva. 2020. Flin: A
flexible natural language interface for web naviga-
tion. arXiv preprint arXiv:2010.12844.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Rodrigo Nogueira and Kyunghyun Cho. 2016. End-to-
end goal-driven web navigation. Advances in neural
information processing systems, 29.

Christopher Olston, Marc Najork, et al. 2010. Web
crawling. Foundations and Trends® in Information
Retrieval, 4(3):175–246.

Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu,
Kelvin Guu, and Percy Liang. 2018. Mapping nat-
ural language commands to web elements. arXiv
preprint arXiv:1808.09132.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for web-based agents. In In-
ternational Conference on Machine Learning, pages
3135–3144. PMLR.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolal-
paca: Generalized tool learning for language models
with 3000 simulated cases.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang,
Igor Krivokon, Will Rusch, Marc Pickett, Kath-
leen S. Meier-Hellstern, Meredith Ringel Morris,
Tulsee Doshi, Renelito Delos Santos, Toju Duke,
Johnny Soraker, Ben Zevenbergen, Vinodkumar
Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen
Olson, Alejandra Molina, Erin Hoffman-John, Josh
Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna,
Matthew Lamm, Viktoriya Kuzmina, Joe Fenton,
Aaron Cohen, Rachel Bernstein, Ray Kurzweil,
Blaise Aguera-Arcas, Claire Cui, Marian Croak,
Ed H. Chi, and Quoc Le. 2022. Lamda: Language
models for dialog applications. CoRR.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: a reinforcement learning plat-
form for android. arXiv preprint arXiv:2105.13231.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mt5: A mas-
sively multilingual pre-trained text-to-text trans-
former. arXiv preprint arXiv:2010.11934.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable
real-world web interaction with grounded language
agents. arXiv preprint arXiv:2207.01206.

A Appendix

A.1 Brief Background on HTML as
Semi-Structured Text Data

HTML is a markup language, used to organize
web page structure and content. Consider the ex-
ample HTML page in Figure 1. This web page
includes two adjacent input elements, one for e-
mail and another for password, with their corre-
sponding labels on a separate branch of the page.
These inputs and labels are one of many possi-
ble elements that serve as HTML building blocks.

2813

http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

Each element has a set of attributes – key and value
pair – that describe the element’s content, such as
style and human-readable text. When rendered in
a browser, these attributes will be responsible for
how the element is shown and where it is posi-
tioned. In the example in Figure 1, the first input
has three attributes, tag="input", type="email",
and id="uName", that identify the element as an
email input with an identifier (“uName”) that can
be accessed programmatically.

A.2 Dataset and Pre-Processing Details

Examining the description distribution, we found
the original 400K dataset to be very skewed; only
20 descriptions (such as Email and Password) were
covering 50% of the dataset. We sub-sampled the
dataset so that each unique description has at most
10 data points. We also found that for attributes
are almost always defined for HTML labels. This
could cause a model to overfit and just find the
label element in the HTML and ignore everything
else. To avoid this sort of ‘cheating’ we replace the
tags of HTML labels by randomly sampling from
{div, span, a, label}. These tags are also fre-
quently used to inject text in HTML but they are
very rarely used with for attributes. Finally, we re-
moved examples where there are only a single text
in the HTML since models can trivially generate
descriptions by finding the only text in the HTML,
which biases model weights and evaluation metrics.
After this final step, we have a total of 85K labeled
examples.

We didn’t apply any special filtering to keep
only text related information. We did minimal
pre-processing to filter some of the attributes from
excessively long inputs. For semantic classifica-
tion, we applied no filtering on extracted snippets.
For description generation, we filtered “class” and
“style” attributes as we found them to increase the
length of the HTML documents significantly. In
MiniWoB, we applied no filtering and used the
original observation space provided by the environ-
ment.

A.2.1 Snippet Generation
In Figure 5, we give a high-level overview of our
snippet generation procedure.

A.3 Action Space for the Autonomous Agent

We set the number of tokens that our models can
generate to 20. Our vocabulary consists of 32K
tokens, which gives an initial estimate of 3200020

candidate generations at each step. While we don’t
constrain the vocabulary of our models during gen-
eration, it is important to note that output tokens
in our dataset typically come from input HTML
documents or user instructions (with formatting
tokens such as "{", ":", "}" and special "click",
"type" tokens being exceptions). The models easily
learn these implicit constraints and assign much
lower mass to tokens that are not in HTML docu-
ment or instruction. Additionally, they also quickly
learn the desired parsable format ("<action type>,
<target HTML element identifier>, <instruction
substring for typing actions>") where the target
HTML element specified in the action output is
actually present in the input HTML (so it can be
acted upon). We estimated the average statistics of
the public demonstrations that we used to train our
models and found that there are 54 elements in a
given HTML document and 35 instruction tokens,
on average. So our action space is approximately
2 ∗ 54 ∗ 352 where there are 2 action types and 352

number of substrings in an instruction.

A.4 Sample Episodes from MiniWoB

See Table 6 for an example episode of web naviga-
tion inferred by a fine-tuned LLM.

A.5 Detailed MiniWoB Results

See Table 7 for detailed performance of various
models on MiniWob.

A.6 Resource Requirements

See Table 8.

A.7 Structure Dependence Ablation Study

We conducted an ablation study to examine the
sensitivity of model performance to preserving
structural information. To do so, we evaluate the
model’s performance on HTML input with critical
structure components removed. We kept the order
of elements and their attributes fixed while corrupt-
ing the nesting structure by removing closing tags.

Removing closing tags corresponds to a valid
traversal (BFS) and keeps the order of elements the
same as the text based input.

As a simple example:

<div id=”form”><div><input id=”username”>
</div></div>

would be converted into:

<div id=”form”><div><input id=”username”>

2814

expand
one level

up

salient
elements

snippet
generation

<html>
 <body>
 <form class="login-form">
 <div>
 <label class="form-label" for=”uName”>
 Enter Email Address
 </label>

 <label class="form-label" for=”pass”>
 Enter Password:
 </label>
 </div>
 <div>

 <input type="email" id="uName”>

 <input type="password" id="pass">

 Please enter your password.

 </div>
 <button type="submit">Sign In</button>
 </form>
 </body>
</html>

HTML

<input name="uName">

<input name="pass">

<button type="submit">

<input type="email" id="uName”>

if expandable:
expand

<div>

 <input type="email" id="uName”>

 <input type="password" id="pass">

 Please enter your password.

</div>

otherwise
output

<input type="email"

id="uName” target>

Figure 5: High-level overview of our pre-processing pipeline for generating snippets from a full HTML webpage. Given the
page, we detect salient elements and for each one of them we extract snippets by recursively moving up in the HTML tree until a
validation heuristic fails.

Figure 6: Performance comparison w.r.t. increasing
model size. As the model size increases, we observe
an increase in overall accuracy with PaLM-62B model
achieving the highest accuracy while being 7x larger
than PaLM-8B. We fit two different curves using the
following functional forms: y = a ∗ loglog(n) + b and
y = a∗log(n)+b where n is the number of data points,
and a and b are parameters to be learned. We found that
the average error was 3.75 and 4.78 for loglog and log
fits, respectively.

We evaluated the trained WebN-T5-3B model
on the same set of synthetic websites from the
MiniWoB benchmark with this aspect of structure
removed from the HTML pages. WebN-T5-3B
achieves a 45.4% success rate, 6% lower than be-
fore, suggesting that WebN-T5-3B is at least par-
tially dependent on the DOM topology.

A.8 Additional Related Works
A.8.1 Task-specific Models
An alternative to LLMs is to adapt bespoke task-
specific architectures tailored towards processing
of structured documents and HTML ((Li et al.,
2021b,a)).

StructuralLM ((Li et al., 2021a)) is an approach
specifically tailored for document understanding
(i.e., combinations of images and text), and thus
makes several simplifying assumptions for its
model that limit its applicability to HTML under-

standing (i.e., trees of elements with a richer struc-
ture and functionality). It is trained only on the
textual content of a document - the markup infor-
mation is ignored. For example, any input field or
dropdown in a document would be missing from
the model inputs. All of the tasks we study re-
quire knowledge of this information. For example,
in autonomous navigation the model needs to in-
teract with input elements (e.g. text, checkboxes,
dropdowns) such as username and password in the
login-user task in MiniWoB. Typically, a “type” ac-
tion with a reference to an element and a text argu-
ment is generated by the model. Without knowing
which input elements are available in the page, it
is impossible to generate a reference to any input
element.

While MarkupLM ((Li et al., 2021b)) is better
tailored for understanding HTML pages, it has sim-
ilar drawbacks as StructuralLM in that it focuses
solely on text and structure of text while ignor-
ing everything else in the markup. To illustrate
our point better, we used the open source imple-
mentation of MarkupLM from the HuggingFace
library ((Wolf et al., 2019)) to process the sam-
ple HTML snippet in Figure-1. The MarkupLM
ignores all input elements, both username and pass-
word, and generates <s>Email AddressEnter Pass-
word:Please enter your password.</s> which is
the text input to the MarkupLM Transformer (Fig-
ure 7). Classifying this text as username or pass-
word is not possible without the additional context
on which input element is the salient element (in
this context it is the username).

MarkupLM is also evaluated on NLP-like tasks
such as QA or entity classification where under-
standing page content is paramount, whereas we
focus on HTML understanding tasks such as au-
tonomous navigation where both content and the
page’s layout structure need to be understood.

2815

We perform a quantitative evaluation of Marku-
pLM on our tasks to understand how significant
these limitations are. We fine-tune the MarkupLM-
base model on the semantic classification task, us-
ing the same setup as other WebC models but with
the suggested hyperparameters from ((Li et al.,
2021b)). We use the MarkupLM implementa-
tion from the HuggingFace library ((Wolf et al.,
2019)). On development and test sets, MarkupLM-
base achieves 65% and 66% accuracy, respectively.
These results are more than 16% lower compared
to similar size WebC-BERT-base results that we
report in our work. This suggests that although do-
main specific models may be suitable for process-
ing HTML for NLP tasks, the generality, flexibility,
and sample efficiency LLMs provide advantages
for autonomous navigation tasks.

A.8.2 Web Information Extraction
WebSRC (Chen et al., 2021) introduced a QA task
from web documents. The authors manually cu-
rated a small set of seed questions (460 questions)
which are used to collect paraphrases and do data
augmentation. Similar to DescriptionGeneration,
the problem is to find the relevant text in a web doc-
ument. While DescriptionGeneration is focused
more on elements and fully automated, WebSRC
is a QA task that requires manual annotation.

WIERT (Li et al., 2023) studies information ex-
traction from web documents. They focus on uti-
lizing simplified render trees (only text, tag, and
style information are kept) to classify DOM nodes
into product categories. They traverse the render
tree to generate a sequence of element tokens and
encode the sequence with a pretrained language
model; style nodes are independently encoded and
concatenated to the element encodings. The result-
ing encodings are used in a multi-objective setup to
train the model. In contrast, our models are trained
in a unified setup with a single objective, and using
original HTML documents with no special filtering
required to extract informative elements.

A.8.3 Tool Use
More recently, tool-using agents emerged as a way
to augment LLMs’ capabilities with external tools.
ToolAlpaca (Tang et al., 2023) and TOOLLLM
(Qin et al., 2023) are two examples that study multi-
step tool-use with iterated API calls. Actions as
well-defined API interfaces can be useful to sim-
plify and reduce the dimensionality of the interface
between the model and environment. This in turn

enables a degree of horizontal scaling and gener-
alization as studied by these works. However, this
flexibility is only achieved when the environment
implements an API interface. Where there are none
available, navigating web interfaces becomes cru-
cial to unlock access to further information.

2816

from transformers import MarkupLMProcessor
processor = MarkupLMProcessor.from_pretrained(f"microsoft/markuplm-base")
snippet = '''<div><label class="form-label" for=”uName”>Email Address
</label><label class="form-label" for=”pass”>Enter Password:
</label></div><div><input type="email" id="uName” target><input
type="password" id="pass">Please enter your password.
</div>'''
encoding = processor(snippet)
print(processor.batch_decode(encoding["input_ids"]))

Figure 7: Code snippet to reproduce MarkupLM preprocessing result. Encoding the example HTML code with the
MarkupLM preprocessor will ignore all input elements.

2817

Table 6: A sample web page and corresponding episode using the T5-3B model. At each time step, previous
actions, instruction, and HTML are concatenated into a single HTML text. Note that at the beginning of episode,
there is no past actions and we simply concatenate instruction and HTML. Action is generated as a sequence of
tokens which is later parsed into a dictionary. The ref in the action points to an element that has a ref attribute with
the same value. For instance, at the beginning of episode, ref: 6 corresponds to an input with ref=6. At the end of
the episode, the model clicks on the submit button and the episode terminates.

Web page

HTML Text Action Text

{action: click, ref: 6}

{action: click, ref: 10}

{action: click, ref: 12}

{action: click, ref: 14}

2818

{action: click, ref: 16}

{action: click, ref: 17}

2819

Table 7: Success rate comparison of various models in MiniWoB tasks. Baseline results are borrowed from (Humphreys et al.,
2022). Note that these are normalized between 0 and 1.

TASK Human CC-Net CC-Net World Workflow Learning DOM-Q-Net Workflow Learning Aggregated Aggregated
WebN-T5-3B WebN-T5-3B (SL & RL) (SL) of guided to (RL) guided to SOTA SOTA

(no history) bits exploration navigate exploration navigate (SL & RL) (Augmented)
(SL & RL) (SL & RL) the web (Augmented) the web

(RL) (Augmented)
bisect-angle 0.92 n/a n/a 0.97 0.29 0.8 n/a n/a n/a n/a n/a 0.8 0.8
book-flight 0.87 0 0 0.87 0 0 0 n/a n/a 0 1 0 1
chase-circle 0.82 n/a n/a 0.93 0.8 1 n/a n/a n/a n/a n/a 1 1

choose-date-easy 0.99 0.03 0.05 0.99 0.42 n/a n/a n/a n/a n/a n/a n/a n/a
choose-date-medium 0.98 0 0 0.99 0.26 n/a n/a n/a n/a n/a n/a n/a n/a

choose-date 0.97 0 0 0.97 0.12 0 0 n/a 1 0 n/a 1 1
choose-list 0.98 0.26 0.14 0.99 0.19 0.25 0.16 0.26 n/a 0.16 0.26 0.26 0.26

circle-center 0.96 n/a n/a 0.97 0.36 0.98 n/a n/a n/a n/a n/a 0.98 0.98
click-button-sequence 0.94 1 1 1 0.47 0.22 0.99 n/a 1 1 n/a 1 1

click-button 0.98 1 0.96 1 0.78 0.62 1 1 1 1 1 1 1
click-checkboxes-large 0.87 0.22 0 0.71 0 n/a 0.68 n/a n/a 0.84 n/a 0.68 0.84
click-checkboxes-soft 0.73 0.54 0.43 0.95 0.04 n/a 0.51 n/a n/a 0.94 n/a 0.51 0.94

click-checkboxes-transfer 0.98 0.63 0.34 0.99 0.36 n/a 0.64 n/a n/a 0.64 n/a 0.64 0.64
click-checkboxes 0.97 0.96 0.84 0.98 0.32 0.48 0.98 n/a 1 1 n/a 1 1

click-collapsible-2 0.97 0 0.01 0.98 0.17 0.11 0.65 n/a n/a 0.99 n/a 0.65 0.99
click-collapsible 0.99 0 0.01 1 0.81 0.98 1 1 n/a 1 1 1 1

click-color 0.97 0.27 0.23 1 0.82 0.23 1 n/a n/a 1 n/a 1 1
click-dialog-2 0.99 0.24 0.35 1 0.88 0.53 1 n/a n/a 1 n/a 1 1
click-dialog 1 1 1 1 0.95 1 1 1 1 1 1 1 1
click-link 0.99 1 0.96 0.99 0.59 0.31 1 1 1 1 1 1 1

click-menu-2 0.98 n/a n/a 0.83 0.52 0.16 n/a n/a n/a n/a n/a 0.16 0.16
click-menu 0.97 0.37 0.38 0.94 0.22 0.13 n/a n/a n/a n/a n/a 0.13 0.13
click-option 0.99 0.87 0.78 0.99 0.21 0.28 1 n/a 1 1 n/a 1 1

click-pie 0.98 0.51 0.14 0.97 0.15 0.15 0.32 1 n/a 0.32 1 1 1
click-scroll-list 0.91 0 0 0.6 0.01 0.07 n/a n/a n/a n/a n/a 0.07 0.07

click-shades 0.91 0 0 1 0.04 0.27 0.22 n/a n/a 0.99 n/a 0.27 0.99
click-shape 0.88 0.53 0.54 0.95 0.11 0.11 0.64 n/a n/a 0.64 n/a 0.64 0.64

click-tab-2-easy 0.99 n/a n/a 0.99 0.61 n/a n/a n/a n/a n/a n/a n/a n/a
click-tab-2-hard 0.96 0.12 0.13 0.98 0.19 n/a n/a n/a n/a n/a n/a n/a n/a

click-tab-2-medium 0.97 n/a n/a 0.99 0.54 n/a n/a n/a n/a n/a n/a n/a n/a
click-tab-2 0.97 0.18 0.09 0.98 0.27 0.08 0.64 n/a 1 0.98 n/a 1 1
click-tab 0.99 0.74 1 1 0.95 0.97 0.55 1 1 1 1 1 1

click-test-2 0.99 1 1 1 0.95 0.83 1 n/a 1 1 n/a 1 1
click-test-transfer 0.99 n/a n/a 1 0.94 n/a n/a n/a n/a n/a n/a n/a n/a

click-test 1 1 1 1 1 1 1 n/a 1 1 n/a 1 1
click-widget 0.83 1 0.97 1 0.56 0.34 0.93 n/a 1 0.93 n/a 1 1
copy-paste-2 0.94 n/a n/a 0.63 0.01 0 n/a n/a n/a n/a n/a 0 0
copy-paste 0.94 n/a n/a 0.79 0.04 0 n/a n/a n/a n/a n/a 0 0

count-shape 0.82 0.41 0.43 0.85 0.21 0.18 0.59 n/a n/a 0.76 n/a 0.59 0.76
count-sides 0.98 n/a n/a 1 0.74 0.3 n/a n/a n/a n/a n/a 0.3 0.3
drag-box 0.99 n/a n/a 1 0.61 0.31 n/a n/a n/a n/a n/a 0.31 0.31
drag-cube 0.99 n/a n/a 0.79 0.23 0.18 n/a n/a n/a n/a n/a 0.18 0.18
drag-item 0.98 n/a n/a 1 0.61 n/a n/a n/a n/a n/a n/a n/a n/a

drag-items-grid 0.87 n/a n/a 0.98 0.05 0.01 n/a n/a n/a n/a n/a 0.01 0.01
drag-items 0.93 n/a n/a 0.99 0.13 0.41 n/a n/a n/a n/a n/a 0.41 0.41
drag-shapes 0.96 n/a n/a 0.99 0.26 0.92 n/a n/a n/a n/a n/a 0.92 0.92

drag-sort-numbers 0.92 n/a n/a 0.97 0.11 0.66 n/a n/a n/a n/a n/a 0.66 0.66
email-inbox-delete 0.99 n/a n/a 1 0.22 n/a n/a n/a 1 n/a n/a 1 1

email-inbox-forward-nl-turk 0.88 0.33 0.09 1 0 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-forward-nl 0.91 0.60 0.09 1 0 n/a n/a n/a n/a n/a n/a n/a n/a

email-inbox-forward 0.96 n/a n/a 1 0.01 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-important 0.99 n/a n/a 1 0.3 n/a n/a n/a n/a n/a n/a n/a n/a

email-inbox-nl-turk 0.93 0.23 0.26 1 0.05 n/a 0.77 n/a n/a 0.93 n/a 0.77 0.93
email-inbox-noscroll 0.96 n/a n/a 1 0.13 n/a n/a n/a n/a n/a n/a n/a n/a

email-inbox-reply 0.91 n/a n/a 1 0 n/a n/a n/a n/a n/a n/a n/a n/a
email-inbox-star-reply 0.95 n/a n/a 1 0.11 n/a n/a n/a n/a n/a n/a n/a n/a

email-inbox 0.96 0.38 0.21 1 0.09 0.03 0.43 n/a 0.54 0.99 n/a 0.54 0.99
enter-date 0.97 0 0 1 0.02 0.61 0 1 n/a 0.96 1 1 1

enter-password 0.96 0.97 0.92 1 0.02 0 0.99 1 1 1 1 1 1
enter-text-2 0.91 n/a n/a 0.98 0.04 0 n/a n/a n/a n/a n/a 0 0

enter-text-dynamic 0.97 0.98 0.92 1 0.39 1 1 1 1 1 1 1 1
enter-text 0.98 0.89 0.99 1 0.35 0 1 n/a 1 1 n/a 1 1
enter-time 0.98 0 0.01 0.97 0.04 0.08 0.52 n/a n/a 0.9 n/a 0.52 0.9

find-midpoint 0.94 n/a n/a 0.97 0.35 0.31 n/a n/a n/a n/a n/a 0.31 0.31
find-word 0.96 n/a n/a 0.88 0.05 0 n/a n/a n/a n/a n/a 0 0

focus-text-2 0.99 1 1 1 0.96 0.83 1 n/a 1 1 n/a 1 1
focus-text 1 1 1 1 0.99 0.95 1 n/a 1 1 n/a 1 1

grid-coordinate 0.87 0.49 0.42 1 0.66 0.26 1 n/a n/a 1 n/a 1 1
guess-number 0.99 0 0 1 0.21 0.2 0 n/a n/a 0 n/a 0.2 0.2

highlight-text-2 0.97 n/a n/a 1 0.4 0.13 n/a n/a n/a n/a n/a 0.13 0.13
highlight-text 0.97 n/a n/a 1 0.51 0.9 n/a n/a n/a n/a n/a 0.9 0.9
identify-shape 0.98 0.88 0.89 1 0.68 0.36 0.9 n/a n/a 1 n/a 0.9 1

login-user-popup 0.94 0.72 0.40 1 0.02 n/a n/a n/a n/a n/a n/a n/a n/a
login-user 0.96 0.82 0.64 1 0 0 0.99 1 1 1 1 1 1

moving-items 0.18 n/a n/a 0.88 0.13 0.78 n/a n/a n/a n/a n/a 0.78 0.78
multi-layouts 0.95 0.83 0.48 1 0 n/a 0.99 n/a n/a 1 n/a 0.99 1

multi-orderings 0.96 0.88 0.64 1 0 n/a 0.05 n/a n/a 1 n/a 0.05 1
navigate-tree 0.98 0.91 0.99 0.99 0.32 0.2 0.99 1 1 0.99 1 1 1

number-checkboxes 0.96 n/a n/a 0.99 0 0.16 n/a n/a n/a n/a n/a 0.16 0.16
read-table-2 0.95 n/a n/a 0.94 0 0 n/a n/a n/a n/a n/a 0 0
read-table 0.97 n/a n/a 0.97 0.01 0 n/a n/a n/a n/a n/a 0 0

resize-textarea 0.94 n/a n/a 1 0.27 0.11 n/a n/a n/a n/a n/a 0.11 0.11
right-angle 0.87 n/a n/a 0.98 0.26 0.38 n/a n/a n/a n/a n/a 0.38 0.38
scroll-text-2 0.97 n/a n/a 1 0.88 0.96 n/a n/a n/a n/a n/a 0.96 0.96
scroll-text 0.97 n/a n/a 0.96 0.04 0 n/a n/a n/a n/a n/a 0 0

search-engine 0.97 0.34 0.34 1 0.15 0 0.26 n/a 1 0.99 n/a 1 1
simon-says 0.62 n/a n/a 0 0.02 0.28 n/a n/a n/a n/a n/a 0.28 0.28

simple-algebra 0.86 n/a n/a 0.75 0.03 0.04 n/a n/a n/a n/a n/a 0.04 0.04
simple-arithmetic 0.96 n/a n/a 0.86 0.38 0.07 n/a n/a n/a n/a n/a 0.07 0.07
social-media-all 0.89 0 0 0.75 0 n/a 0.01 n/a n/a 0.01 1 0.01 1

social-media-some 0.91 0.02 0 0.85 0.01 n/a 0.01 n/a n/a 0.42 n/a 0.01 0.42
social-media 0.96 0.21 0.24 0.9 0.03 0.23 0.39 n/a 1 1 n/a 1 1

terminal 0.88 n/a n/a -0.01 0 0 n/a n/a n/a n/a n/a 0 0
text-editor 0.88 n/a n/a 0.98 0.11 0.01 n/a n/a n/a n/a n/a 0.01 0.01

text-transform 0.86 n/a n/a 0.6 0.19 0 n/a n/a n/a n/a n/a 0 0
tic-tac-toe 0.71 0.48 0.40 0.83 0.32 0.34 0.37 n/a n/a 0.47 n/a 0.37 0.47

unicode-test 0.99 n/a n/a 1 0.86 n/a n/a n/a n/a n/a n/a n/a n/a
use-autocomplete 0.98 0.22 0.15 1 0.07 0 0.78 n/a n/a 0.98 n/a 0.78 0.98
use-colorwheel-2 0.94 n/a n/a 0.95 0.38 1 n/a n/a n/a n/a n/a 1 1
use-colorwheel 0.9 n/a n/a 0.98 0.68 1 n/a n/a n/a n/a n/a 1 1

use-slider-2 0.97 n/a n/a 0.95 0.03 0.15 n/a n/a n/a n/a n/a 0.15 0.15
use-slider 0.98 n/a n/a 0.91 0.18 0.51 n/a n/a n/a n/a n/a 0.51 0.51

use-spinner 0.98 0.07 0.05 1 0.47 0.17 0.04 n/a n/a 0.04 n/a 0.17 0.17
visual-addition 0.97 n/a n/a 0.99 0.36 0.01 n/a n/a n/a n/a n/a 0.01 0.01

2820

Table 8: Resource requirements and running time of LLMs.

Model Name Model Size TPU version Batch size Input sequence length Examples per sec (training) Examples per sec (inference)
PaLM 62B TPU v4 8 1920 9.313 30.51
PaLM 8B TPU v4 32 1920 64.4 184.3

T5 3B TPU v4 128 512 163.8 734.5
LaMDA 1B TPU v2 128 512 363.1 1416

2821

