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Abstract

Self-supervised representation learning on text-
attributed graphs, which aims to create expres-
sive and generalizable representations for vari-
ous downstream tasks, has received increas-
ing research attention lately. However, ex-
isting methods either struggle to capture the
full extent of structural context information
or rely on task-specific training labels, which
largely hampers their effectiveness and gener-
alizability in practice. To solve the problem of
self-supervised representation learning on text-
attributed graphs, we develop a novel Graph-
Centric Language model — GRENADE. Specifi-
cally, GRENADE exploits the synergistic effect
of both pre-trained language model and graph
neural network by optimizing with two special-
ized self-supervised learning algorithms: graph-
centric contrastive learning and graph-centric
knowledge alignment. The proposed graph-
centric self-supervised learning algorithms ef-
fectively help GRENADE to capture informative
textual semantics as well as structural context
information on text-attributed graphs. Through
extensive experiments, GRENADE shows its su-
periority over state-of-the-art methods. Im-
plementation is available at https://github.com/
bigheiniu/GRENADE.

1 Introduction

Text-Attributed Graph (TAG) (Yang et al., 2021)
(a.k.a., Textual Graph) has been widely used for
modeling a variety of real-world applications, such
as information retrieval (Cohan et al., 2020; Yang
et al., 2021), product recommendation (Zhu et al.,
2021) and many more. In TAG, each node rep-
resents a text document, while the relationships
among these text nodes are depicted by the edges.
For instance, in citation networks, text nodes rep-
resent academic papers, and edges are the citation
relationship between different papers. To conduct
different analytics tasks on TAG, the key is to learn
expressive node representations for the text nodes.
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Recent research has demonstrated that self-
supervised learning (SSL) can substantially im-
prove the effectiveness of representation learning
on text data (Reimers and Gurevych, 2019; Gao
et al., 2021; Wu et al., 2020) without using human
supervision. Those methods are commonly learned
under the assumption that text documents are inde-
pendently and identically distributed (i.i.d.), which
neglects the structural interdependencies among
text nodes on TAG. However, the interdependen-
cies between different text documents can provide
valuable insights for understanding their semantic
relationships. Take citation networks as an example,
those academic papers (text nodes) that have cita-
tion relationships often share similar topics. Hence,
it is necessary for SSL models to account for not
only textual semantics but also structural context
information.

In fact, self-supervised representation learning
on TAG remains in its infancy: (i) Though recent
research efforts (Zhao et al., 2022; Chien et al.,
2021; Cohan et al., 2020; Yasunaga et al., 2022)
try to empower pre-trained language models (PLM)
with structural context information, most of them
still stay superficial by designing local structure-
dependent SSL objectives. For example, both
GIANT (Chien et al., 2021) and SPECTER (Cohan
et al., 2020) train the language model by inferring
the local neighborhood based on representations of
text nodes. However, simply relying on those SSL
objectives cannot help the PLM fully understand
complex graph structures, especially compared to
models like graph neural networks (GNN) (Kipf and
Welling, 2017; Velickovic et al., 2018; Hamilton
et al., 2017; Ding et al., 2022a); (ii) Meanwhile,
another line of research (Mavromatis et al., 2023;
Zhao et al., 2022) try to combine the advantages
of both PLM and GNN by distilling the knowledge
from one to the other (Hinton et al., 2015) and have
shown promising results. Nonetheless, one major
issue is that those methods are task-specific (e.g.,
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semi-supervised node classification) and require
human-annotated labels to enable knowledge distil-
lation. Such an inherent limitation jeopardizes the
versatility of their models for handling different and
even unseen downstream tasks, which runs counter
to the goal of SSL.

To go beyond the existing learning paradigms
and capture informative textual semantic and graph
structure information, we develop a new model for
self-supervised learning on TAG, namely GRENADE
(Graph-Centric Language Model). GRENADE is
built with a PLM encoder along with an adju-
vant GNN encoder that provides complementary
knowledge for it. More importantly, GRENADE is
learned through two new self-supervised learning
algorithms: Graph-Centric Contrastive Learning
(GC-CL), a structure-aware and augmentation-free
contrastive learning algorithm that improves the
representation expressiveness by leveraging the in-
herent graph neighborhood information; and Graph-
Centric Knowledge Alignment (GC-KA), which en-
ables the PLM and GNN modules to reinforce each
other by aligning their learned knowledge encoded
in the text node representations.

Specifically, GC-CL enforces neighboring nodes
to share similar semantics in the latent space by
considering them as positive pairs. Even without us-
ing data augmentation, GC-CL performs node-wise
contrastive learning to elicit the structural context
information from TAG. In the meantime, GC-KA
bridges the knowledge gap between PLM and GNN
by performing dual-level knowledge alignment on
the computed representations: at the node level, we
minimize the distance between the representations
learned from two encoders that focus on different
modalities. At the neighborhood level, we minimize
the discrepancy between two neighborhood simi-
larity distributions computed from PLM and GNN.
By virtue of the two proposed graph-centric self-
supervised learning algorithms, we are able to learn
GRENADE that can generate expressive and general-
izable representations for various downstream tasks
without using any human supervision. In summary,
our work has the following contributions:

* We develop GRENADE, which is a graph-centric
language model that addresses the underexplored
problem of self-supervised learning on TAG.

* We propose two new self-supervised learning
algorithms for TAG, which allow us to perform
contrastive learning and knowledge alignment in
a graph-centric way.

* We conduct extensive experiments to show that
our model GRENADE significantly and consistently
outperforms state-of-the-art methods on a wide
spectrum of downstream tasks.

2 Problem Definition

Notations. We utilize bold lowercase letters such
as d to represent vectors, bold capital letters like W
to denote matrices and calligraphic capital letters
like W to represent sets. Let G = (A, D) denote
a text-attributed graph with adjacency matrix A €
{0,1}IPIXIPl and text set D. The A;; = 1 when
there is a connection between node ¢ and j. Each
node ¢ represents a text document which consists
of a sequence of tokens D; = {w,} Llii[‘).

Problem 1 Given an input text-attributed graph
(TAG) denoted as G=(A, D), our goal is to learn
a graph-centric language model PLM(-), that can
generate expressive and generalizable representa-
tion for an arbitray node i on G: d;=PLM(D;).
Note that the whole learning process is performed
solely on the input graph G without the utilization
of human-annotated labels.

3 Proposed Approach: Graph-Centric
Language Model (GRENADE)

To learn expressive representations from TAG in a
self-supervised learning manner, we propose our
Graph-Centric Language Model GRENADE, which
bridges the knowledge gap between Pre-trained
Language Model (PLM) and Graph Neural Network
(GNN). By optimizing two distinct encoders with a
set of novel self-supervised learning algorithms, the
PLM encoder and GNN encoder mutually reinforce
each other, and we can finally derive our Graph-
Centric Language Model (GRENADE). GNN. The
overall framework is shown in Fig. 1.

3.1 Model Architecture

Our proposed model GRENADE is composed of a Pre-
trained Language Model (PLM) along with a Graph
Neural Network (GNN), which are optimized by a set
of novel self-supervised learning algorithms. We
first introduce the details about those two essential
components as follows:

PLM Encoder. The primary component PLM(-) is
a BERT (Devlin et al., 2018) based text encoder that
projects a sequence of tokens D; into a vectorized
text node representation d;:

d;=PLM(D;), (1
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Figure 1: Illustration of GRENADE. Given a text-attributed graph (TAG), GRENADE is jointly optimized by two graph-
centric self-supervised learning algorithms: graph-centric contrastive learning GC-CL and a dual-level graph-centric
knowledge alignment, which comprises node-level alignment (ND-KA) and neighborhood-level alignment (NBH-KA).

where d; is the hidden representation of the [CLS]
token computed from the last layer of the PLM
encoder.

GNN Encoder. As an adjuvant component, the
GNN encoder GNN(-) is built with a stack of message-
passing based GNN layers, which compute the node
1’s representation by iteratively aggregating and
transforming the feature information from its neigh-
borhood (Hamilton et al., 2017). For each node
1, its representation learned from a L-layer GNN
encoder can be denoted as:

e;=E}; |, E=GNN(E, A) 2)

where the input node feature matrix EV is obtained
from the hidden representations of [CLS] token
from the last layer of a pre-trained BERT model.

3.2 Graph-Centric Contrastive Learning

In order to improve the learning capability of those
two encoders without using any human-annotated
labels, one prevailing way is to conduct contrastive
learning from either the text perspective (Gao et al.,
2021) or graph perspective (Ding et al., 2022c).
However, most of the existing contrastive learn-
ing methods have the following two limitations:
(1) conventional instance-level contrastive learning
methods merely encourage instance-wise discrimi-
nation (Li et al., 2021b; Ding et al., 2023), which
neglects the property of TAG, i.e., the relational
information among text nodes. Hence, those in-
stances that share similar semantics may be unde-
sirably pushed away in the latent space; (2) existing
methods commonly rely on arbitrary augmentation
functions to generate different augmented views

for applying contrastive learning, while those aug-
mentations may unexpectedly disturb the semantic
meaning of the original instance (Lee et al., 2022).

To counter the aforementioned issues, we pro-
pose a new graph-centric contrastive learning
(GC-CL) algorithm, which is structure-aware and
augmentation-free. GC-CL exploits inherent graph
knowledge from TAG and can be applied to both
the PLM encoder and GNN encoder. As suggested by
the Homophily principle (McPherson et al., 2001),
neighboring nodes commonly share similar seman-
tics, meaning that their representations should also
be close to each other in the latent space. Based
on the PLM representation of node ¢, its K-hop
neighboring nodes N (), and the node i excluded
mini-batch instances (i), the GC-CL objective for
PLM can be defined as follows:

esim(d;,dp) /7

—1
LoccL, =——— log - )
GC-CL1 |N(Z)‘ pe%:(i) Zjec’(i) eSlm(dZ‘7dj)/T
(3)

where 7 denotes the temperature and sim(-,-)
represents the cosine similarity function. Here
C(i) = N (i) U B(i). Note that for node 7, we con-
sider its PLM representation d; as the query instance.
The positive instances are the representations of
node ¢’s K -hop neighboring nodes {d,|p € N (i)}.
Meanwhile, the negative instances are the represen-
tations of other text nodes excluding ¢ within the
same mini-batch {d;|j € B(7)}.

Similar to the PLM encoder, we also apply our
GC-CL algorithm to the GNN encoder GNN(-). Specif-
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ically, the objective function is defined as follows:

s1m(ei,ep)/'r

Z IOg sim(e;,e;) /7’
penty  2ugecq) €MV .
(

where e; is the query instance. The positive in-
stances are {e,|p € N (i)} and the negative in-
stances are {e;|j € B(i)}.

Apart from the conventional instance-level con-
trastive learning counterparts, our graph-centric
contrastive learning also enforces neighboring
nodes to share similar representations. In a sense,
this self-supervised learning algorithm is analogous
to performing link prediction task based on the rep-
resentations learned from the PLM encoder, which
inherently elicits informative graph knowledge dur-
ing the learning process.

Loc-cL,=

3.3 Graph-Centric Knowledge Alignment

In this work, our ultimate goal is to learn expres-
sive and generalizable representations that encode
informative textual semantics within each text node
as well as the relational information among nodes.
However, individually conducting the graph-centric
contrastive learning on either PLM or GNN is not
enough due to the lack of knowledge exchange be-
tween them. To better align and enhance the knowl-
edge captured by the PLM and GNN encoders, we
propose a dual-level graph-centric knowledge align-
ment algorithm for TAG, which includes Node-Level
Knowledge Alignment (ND-KA) and Neighborhood-
Level Knowledge Alignment (NBH-KA).

Node-Level Knowledge Alignment. Different
from the previously introduced graph-centric con-
trastive learning, which only focuses on single-
modal contrasting, ND-KA tries to align the knowl-
edge across the two encoders by performing graph-
centric contrastive learning in a cross-modal form.
For each node 7, based on its representations learned
from the PLM encoder and GNN encoder (i.e., d; and
e;, respectively), we formulate the objective of
ND-KA as follows:

1 esim(ei,dp)/T
Z log _ sim(e;,d;)/T

£ND KA="—=

sim(d;,ep)/T

lo ¢ ) 2
+log Z]ea(l) esim(d;.e;)/T /
~ 5 )
where NV(i) = {i} UN(i) and C(i) = N (i) U
B(i). Note that for node i, we first consider e;

that is learned from the GNN encoder as the query,
then construct the positive and negative instances
based on the representations learned from the PLM
encoder. Specifically, the positive instances include
both the representation of node ¢ as well as the
representations of i’s K'-hop neighboring nodes
(i.e., {dy|p € N(4)}), and the negative instances
are the representations of other instances within the
same mini-batch {d;|j € B(7)}. In the meantime,
we also consider the d; as the query and construct
its corresponding positive and negative instances
in the same way. Here we omit the illustration for
simplicity.

By virtue of the proposed ND-KA algorithm, the
representations of the same node learned from two
separate encoders will be pulled together in the la-
tent space. In the meantime, ND-KA also encourages
neighboring nodes to have similar representations
across different modalities.

Neighborhood-Level Knowledge Alignment.
To further facilitate knowledge alignment between
PLM and GNN, we propose Neighborhood-Level
Knowledge Alignment (NBH-KA) to align the neigh-
borhood similarity distributions learned from the
two encoders. Specifically, NBH-KA first computes
the neighborhood similarity distribution between
the query node ¢ and its K -hop neighboring nodes
N (i) as well as the rest nodes within the same mini-
batch B(7) for each encoder. Then we minimize
the KL-divergence between the two distributions
to align the knowledge between two encoders. The
corresponding learning objective is:

Lomixa=(KL(Peun(i) | P (1)

+ KL(Pon(@) | Foun(0))) /2. )
Pepy(i)=softmaxec(; (sim(d;, dj)/7),

PGNN(i):SOftmaxjec(i) (sim(ei, ej)/T),

where Ppry(i) and Pgyy(7) are the neighborhood
similarity distributions for PLM encoder and GNN
encoder respectively. From a certain perspective,
our NBH-KA algorithm can be considered a self-
supervised form of knowledge distillation. Specif-
ically, NBH-KA leverages the neighborhood infor-
mation as self-supervision to guide the knowledge
alignment process. Moreover, we conduct two-way
knowledge alignment across two encoders, which
is different from original knowledge distillation.
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3.4 Model Learning

In order to learn our graph-centric language model
GRENADE on TAG without using human-annotated
labels, we jointly optimize the proposed graph-
centric contrastive learning and knowledge align-
ment algorithms. For the sake of simplicity, we
define the overall training loss as follows:

L=Lqc-cL, + Loc-cLy + Lap-ka + Lugu-ka. (7)

Once the training is finished, we can freeze the
parameters of the PLM encoder and use it to compute
the representations of each text node with a forward
pass. The computed representations can be further
used for different downstream tasks.

4 Experiment

To evaluate the effectiveness of our approach
GRENADE, we conduct comprehensive experiments
on different datasets and various downstream tasks.

4.1 Experimental Setup

Evaluation Datasets. We evaluate the general-
izability of the representations computed from
different methods on three Open Graph Bench-
mark (OGB) (Hu et al., 2020) datasets: ogbn-arxiv,
ogbn-products, ogbl-citation2. These datasets are
utilized to evaluate the performance of few-shot and
full-shot node classification, node clustering, and
link prediction tasks. It should be noted that ogbn-
arxiv and ogbn-products datasets are not originally
designed for link prediction evaluation. There-
fore, we create two link prediction tasks based on
these two datasets, respectively. Furthermore, we
incorporate obgl-citation2 into our node classifica-
tion experiment. The statistical information of the
datasets is shown in Tab. 1. More comprehensive
information regarding the dataset extension can be
found in Appendix A.

Dataset | #Nodes #Edges #Classes
ogbn-arxiv 169,343 1,166,243 40
ogbn-products | 2,449,029 61,859,140 47
ogbl-citations2 | 2,927,963 30,387,995 172

Table 1: Statistical information of the datasets.

Baseline Methods. The baseline methods in-
cluded in our study encompass three categories:
(1) Untuned representations: BERT (Devlin et al.,
2018) and OGB representations (Mikolov et al., 2013;
Hu et al., 2020). For BERT, we extract the final

layer’s hidden state of [CLS] token from frozen
bert-base-uncased as the text node representa-
tion. As for OGB, we utilize the default features
from benchmark datasets, such as averaged word
embeddings and bag-of-words representations. (2)
Text-only self-supervised representation learning
models: BERT+MLM and SimCSE (Gao et al., 2021);
In BERT+MLM, we apply masked language model-
ing to BERT for the target TAG. SimCSE employs
instance-wise contrastive learning to learn text node
representation. (3) Structure-augmented language
models: This category includes SPECTER (Co-
han et al., 2020), GIANT (Chien et al., 2021) and
GLEM (Zhao et al., 2022). SPECTER applies graph-
centric contrastive learning on the language model,
and GIANT employs the extreme multi-label classifi-
cation to train the language model for neighborhood
prediction. It is noteworthy that GLEM utilizes task-
specific labels to alternatively guide the pre-trained
language model PLM and graph neural networks
GNN through self-knowledge distillation. Com-
pared with GLENM, our proposed method GRENADE
is fully self-supervised and does not rely on any
human-annotated labels. The learned text node
representations can be efficiently and effectively
generalized to downstream tasks.

Implementation Details. To ensure a fair com-
parison, we implemented all baseline methods and
GRENADE using the same language model, specif-
ically bert-base-uncased. For our proposed
method, GRENADE, we set the K -hop neighbor as
1, set the temperature parameter 7 to 0.05 in all the
loss functions. The optimal hyperparameter | ()]
is discussed in § 4.5. Please refer to Appendix B
for additional implementation details.

4.2 Experimental Results

Few-shot Node Classification. To assess the gen-
eralizability of learned representation to new tasks
under low-data scenarios, we conduct experiments
on few-shot node classification. Under this set-
ting, the classification models are trained with
varying numbers of labeled instances per class
(k = {2,4,8,16}). We repeat the experiment 10
times and reported the average results along with the
standard deviation. The classification models uti-
lized in this evaluation are the multilayer perceptron
(MLP) and GraphSAGE (Hamilton et al., 2017). The
hyperparameters for the classification models can be
found in Appendix B. As the result showed in Tab. 2,
several observations can be made: (/) In most cases,
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MLP GraphSAGE
Methods k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16
ogbn-arxiv |
OGB* 32164196  37.81l+162 42334107 45844047 | 49914346  55.524142  59.304+1.14  62.2140.58
BERT 34.06+2.73 40.2942.16 46.5940.88 50.17+1.02 52.9243.21 57.11+1.06 60.3641.17 64.1040.61
BERT+MLM 38.4142.11 46.7241.72 51.89+0.98 55.87+1.23 53.02+1.26 57.76+1.41 61.941¢.77 65.2240.49
SimCSE 28.8341.68 32.65+1.46 37.784+1.26 43.2510.69 46.6142.97 53.86+1.20 57.75+0.89 62.39410.61
SPECTER 50.1542.21 54.4640.96 58.7410.63 61.6340.78 53.8542.27 59.46+1.63 63.43+0.61 66.4140.45
GIANT* 48.5042.30 55.7241.90 59.80+1.03 64.1510.87 50.18+2.46 55.30+1.69 59.2441.33 63.4810.77
GLEM - - - - 27144231 45.5241.27 53.37+1.08 55.39+0.89
GRENADE 55.85:&2,34 61.10:{;1459 63.95:{:0,89 66.62:&0,47 57.17:{:3,54 60.49:&0,93 64.65:{;1_08 67.50:(:0,41
ogbn-products |
OGB* 9‘47:(:1,51 13.54:{:1,42 16‘83:(:2,63 20.71:(:1,32 24.74:!:3.01 33‘14;(:2.58 38.38:{:1418 44-19j:2,61
BERT 20.53;(:4,03 30-91i2.64 40‘82:(:1,52 47.77:{:1,07 40‘53;{:2.87 50.43;{:1.73 57.29:{:1448 59-03:{:0,48
BERT+MLM | 38.5443.35 47.1543.41 55.95+0.89 59.5741.53 54.734+4.35 60.80+2.65 64.6341.94 67.7541.48
SimCSE 7.76:(:1,22 11.30:{:1,30 17.94:(:1,91 25.61:&0_72 24.99:{:5.01 37.05;{:1,73 44.74:(:1,96 50.13:{;2,94
SPECTER 27.8644.14  43.704+2.70 51.5141.54 57.6341.45 42.7444.58 51.9142.31 57.7242 52 60.77+1.36
GIANT* 20.8342.68 31.37+1.95 42.8449.72 51.36+2.19 30.9044.63 40.80+4.01 52.3442.20 58.5842.36
GLEM - - - - 41.7244.62 42.5043.45 43.0542.78 48.6442.01
GRENADE 38.60i4_51 49.64i1_39 59‘34i2_3g 65.05i1_00 59‘63i2_30 64~95i1,63 67.38i2_17 70-92i1.18
ogbl-citation2 |
OGB* 21.783:1455 25‘543:1,55 27~39j:0.69 29.53i0_70 18.833:3,12 22.49j:1.84 31.38j:1,89 35.193:0,39
BERT 17.95i2_34 20.84i2_17 23~84i1,36 26.77i1_38 21.05i2,49 25.65i1_58 28.06i2_03 35.84i1_48
BERT+MLM | 32.03+1.84 34.3942.61 38.5341.82 41.6640.98 26.2842.35 28.10+2.47  37.6941.39 42.634+1.21
SimCSE 13'27i1.08 16.68i0.62 20‘01i1_03 23.57i0_77 20‘01i2_04 28.11i2_90 28~17i1.06 31-71i1.28
SPECTER 30.81i2_94 35.31i1_92 3974i153 42.31i0.64 31‘57i2_o4 35.66i2_13 37.23i2_70 45.59i1_32
GIANT* 38.9341.81 43.7441.93 48.8141.25 52.0540.72 35.7542.72 38.4343.43 40.9943.42 49.44 11 68
GLEM - - - - 30.86+4.62 33.78+1.88 47.3642.73 51.4241.41
GRENADE 46.404200 47.931131 50.61ig71 53.7541082 | 40.631377 44.44. 563 49151173 52.4141.94

Table 2: Experiment results of few-shot node classification.* indicates that the text node representations are obtained
from their official release. — indicates no result for GLEM. This is because in the representation learning stage, GLEM

will utilize the labeled dataset to train GNN.

Methods ogbn-arxiv ogbn-products ogbl-citation2
) ACC ARI NMI ACC ARI NMI ACC ARI NMI

OGB 39.57+0.39  12.7641.20 17431079 | 38.53+1.43 16461424  20.2111.81 | 40311040  22.824034  40.5710.38
BERT 35.6511.01 84liion 12784120 | 48.721057 52171181 35.76x0.s2 | 40.571031  22.584084  33.3840.44
BERT+MLM | 40.0740.60 15.0540.17  19.244051 | 64.351081  69.581131  54.641031 | 49.132046 3191046 44444034
SimCSE 334240724  5.8010.40 9.62+0.74 | 39404102  29.004220  19.88+101 | 26.67+0.64 8494041  14.2610.65
SPECTER 58-00i0.66 40-44i1.17 42.81i0_53 70~15i0.67 69.82i1_25 58.99i0.82 63.36i0_35 48.6610.14 58.96i0_23
GIANT 58.00+0.82  39.69+1.20  43.731068 | 61.99+078  47.60+418  47.51i1.14 | 63.0610.53  48.57+0.89  58.68+0.25
GRENADE 61.96+079 44.981185 49.194063 | 73.54+0.75 69.644+1.64 64.1410.71 | 64.894030 50.221042 59.6810.23

Table 3: Experiment results of node clustering.

SSL based methods achieve better performance than
non-SSL methods (BERT+MLM,SPECTER and GIANT
> GLEM), this indicates the significance of SSL in
enhancing model transferability to new tasks with
limited labels. (2) Among state-of-the-art TAG
representation models, GRENADE achieves the best
performance on these datasets. This indicates the
superior generalization ability of representations
extracted by GRENADE. The designed knowledge
alignment allows the GRENADE to integrate the pre-
trained knowledge from PLM encoder and structure
inductive bias learned by GNN encoder. These ex-
pressive representations can be easily and efficiently
generalized to few-shot learning tasks.

Full Data Node Classification. We also conduct
the node classification experiment with full training

dataset under MLP, GraphSAGE (Hamilton et al.,
2017) and RevGAT-KD (Li et al., 2021a). As the
result shown in Tab. 4, we can observe that: (/)
GRENADE achieves the best performance across all
the baseline methods. (2) The performance gap
between GRENADE and some baseline methods like
GIANT and GLEM becomes smaller as more labeled
data provided, but GRENADE is consistently better
than these methods.

Node Clustering. In the node clustering task, we
utilize the learned text node representations to train
a K-means++ model for clustering instances. We
apply the default hyperparameters of K-means++
as provided by scikit-learn (Pedregosa et al., 2011).
The number of clusters is set to the number of
classes in the dataset, and we assign the cluster label
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Methods arxiv products citation2
MLP GraphSAGE  RevGAT-KD | MLP GraphSAGE | MLP GraphSAGE
0GB 55.50+0.23°  71.49+0.27"  T74.2610.17" | 61.06+0.08" 75.81+046 | 48.98+1174  62.10+0.25
BERT 62.9140.60" 70.97+0.33"  73.5940.10" | 60.90+1.00" 80.70+0.50 56.75+10.33  60.3840.67
BERT+MLM | 67.71+0.22 73.65+0.14 75.3940.16 76.86+0.24 80.9040.11 66.1140.35  64.57+0.50
SimCSE 60.58+0.13 67.26+0.24 73.6940.15 67.69+0.06 80.41+40.44 53.9110.36  58.7540.24
SPECTER 70401025  74.1910.1s8  75.6110.67 75.38+0.22  79.4210.34 54.20+0.67  66.58+0.23
GIANT 73.0840.06" T4.59+0.28  76.1240.16% | 79.824007" 82.0310.65 | 67.241027  70.3240.27
GLEM - 73.5940.40 - - 82.0210.62 - 68.25+10.18
GRENADE 73.16i0.12 75.00i0_19 76.21i0_17 81.58i0_18 83~11i0.56 68.11i0_34 70.89i0_34

Table 4: Supervised node classification performance comparison on benchmark datasets. Boldfaced numbers
indicate the best performance of downstream models. The * represents the experiment results adopted from (Chien
et al., 2021), while T denotes the experiment results adopted from (Zhao et al., 2022).

based on the most common label within each clus-
ter. Following the evaluation protocol described in
(Ding et al., 2022b), we report three clustering eval-
uation metrics: accuracy (ACC), normalized mutual
information (NMI), and adjusted rand index (ARI).
We exclude the GLEM model from this evaluation
since it requires the labels during representation
learning. To ensure robustness, we perform 10
runs of K-means++ with different random seeds
and report the average results. As shown in Table
3, we observe that the structure augmented SSL
methods outperform the text-only self-supervised
representation learning methods (GRENADE, GIANT,
SPECTER > BERT+MLM, SimCSE). This indicates
structure-augmented SSL methods can understand
the context within graph structure that can lead
to more accurate node representations, which in
turn can lead to better clustering. Additionally,
our proposed method GRENADE consistently out-
performs all baseline methods. The improvement
demonstrates that GRENADE can better preserve
neighborhood information which will inform the
clustering methods of how data points are intercon-
nected or related to each other.

max OGB
o BERT

. BERT+MLM
= SimCSE

N SPECTER
414 GIANT

rn GLEM
I"I" GRENADE

ogbn-arxiv ogbn-products ogbl-citation2

Figure 2: Experiment results of link prediction.

Link Prediction. Next, we evaluate the learned
representation in predicting missing connections
given existing connections from TAG. We aim to
rank the positive candidates (1 or 2 positive in-
stances) higher than the negative candidates (1,000
negative instances) for each query node. The eval-

uation metric used for this task is the mean recip-
rocal rank (MRR), which measures the reciprocal
rank of the positive instance among the negative
instances for each query instance and takes the av-
erage over all query instances. As shown in Fig. 2,
we observe that GRENADE significantly outperforms
other approaches. In fact, GRENADE achieves at
least a 4% performance improvement compared
to methods that utilize structure-augmented self-
supervised learning loss (SPECTER and GIANT)
across all datasets. This demonstrates that GRENADE
can better preserve the neighborhood information,
which is consistent with the findings from § 4.2.

4.3 Representation Visualization

To visually demonstrate the quality of the learned
representations, we apply t-distributed stochastic
neighbor embedding (t-SNE) (Van der Maaten and
Hinton, 2008) to for representation visualization.
We compare GRENADE with two best-performing
baseline methods, including SPECTER and GIANT
on the arxiv dataset. In Fig. 3, we present the t-SNE
visualization of the embeddings for 10 randomly
sampled classes comprising 5,000 subsampled in-
stances. The colors in the visualization correspond
to the labels of these subsampled instances. From
Fig. 3, we observe GRENADE exhibits denser clus-
ters and more explicit boundaries among different
classes compared to the baseline methods. This ob-
servation confirms that GRENADE can learn compact
intra-class and distinct inter-class representations.

(a) SPECTER (b) GIANT (c) GRENADE

Figure 3: Representation visualization on arxiv dataset.
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4.4 Ablation Study

To validate the effectiveness of graph-centric con-
trastive learning and graph-centric knowledge align-
ment, we conducted an ablation study on GRENADE.
In this study, we respectively remove GC-CL, ND-KA,
and NBH-KA from the full model and report these
model variants’ performance in Tab. 5. In general,
the full model GRENADE has the best performance
in most cases, and we notice a performance de-
cline when any of the components is removed or
replaced, underscoring the significance of each
component in GRENADE. Remarkably, we observe
a performance improvement in link prediction after
removing graph-centric contrastive learning (w/o
GC-CL > GrenADE in terms of MRR). Considering
the task similarity between GC-CL and the link pre-
diction, one possible explanation is that removing
GC-CL could help the model mitigate overfitting and
further improve performance for the link prediction
task. Meanwhile, this observation, in turn shows
that the dual-level graph-centric knowledge align-
ment (ND-KA and NBH-KA) is effective for capturing
structural context information from the TAG.

Methods ‘ MLP(ACC) K-means++(ACC) MRR  Avg. Rank|

GRENADE ‘ 73.1610.12 61.9640.79 52.73 1.33
w/o GC-CL 72.83+0.08 58.75+0.99 55.87 2.67
w/o ND-KA 72.65+0.16 60.6940.72 49.15 3.33
w/o NBH-KA | 73.0540.17 60.50+0.86 52.56 2.67

Table 5: Ablation study of graph-centric contrastive
learning (GC-CL) and knowledge-alignment on ogbn-
arxiv datasets. “w/0” is the abbreviation of “without”.

4.5 Hyperparameter Analysis

K-hop Neighbors. We delved into understand-
ing the impact of the K-hop neighbor selection on
GRreENADE’s efficiency. The choice of different K
values directly affects the formulation of positive
pairs in graph-centric contrastive learning (Eq. 3
and Eq. 4), and the alignment of knowledge between
the graph neural network and the language model
(Eq. 5 and Eq. 6). Based on the results presented in
Fig. 4, itis evident that augmenting the hop distance
adversely affects performance metrics in full data
node classification (ACC of MLP), node clustering
(ACC), and link prediction (MRR). This suggests
that 1-hop neighbors optimally capture structural
knowledge within our algorithm. However, when
extending to 2-hop or 3-hop neighbors, there’s a
heightened risk of integrating noisy data. This in-
sight aligns with the conclusions drawn from related
research, specifically SPECTER (Cohan et al., 2020).

We contend that our methodology strikes a harmo-
nious balance between assimilating structural data
and filtering out extraneous noise, thereby ensuring
consistent performance in our assessments.

73. 62.3 -0

_ 729 61.6 515 _
S g
0725 61.0 50.1¢
o 4

< =
721 60.3 48.7

7174 3 59 3 3 3472
Link Prediction

2 2
Node Classification Node Clustering

Figure 4: Hyperparameter evaluation for K -hop neigh-
bors in the ogbn-arxiv dataset. Dashed lines indicate
the peak performance of GRENADE with K = 1.

1-Hop Neighbor Size. One crucial aspect of
GRENADE’s SSL objectives is the hyperparameter
|V (i) |, which controls the number of 1-hop neigh-
bors considered for representation learning. To
investigate the impact of subsampled neighbor size
in GRENADE, we conduct a hyperparameter analysis
on the full training dataset node classification, node
clustering, and link prediction tasks. As shown in
Fig. 5, we observe that GRENADE achieves its best
performance with a practical number of neighbors
(IN(i)| = 2 for ogbn-arxiv and [N ()] = 1 for
ogbn-products). This finding is particularly advan-
tageous as it reduces the computational burden of
the PLM encoder in graph-centric contrastive learn-
ing and knowledge alignment between the PLM and
GNN encoders.

73. 62.5 52.8

~73.1 61.6 52.2
B3

<
60.8 516
3

<
72.6 59.9 s1.0%

. 59. 50.4
72 z <

1 2 3 a 2 3 a 5 1 2 3 a
Node Classification Node Clustering Link Prediction

(a) ogbn-arxiv

81.2 74.2 71.2_
IS S
o 806 73.3 69.8¢

&

79.9 72.4 68.3

79.3 71.6 66.9
1 1 i 2 a 5
Link Prediction

2 a 5 2 a
Node Classification Node Clustering

(b) ogbn-products

Figure 5: Analysis of hyperparameters on both ogbn-
arxiv and ogbn-products datasets. The dashed line
represents GRENADE’s optimal result when [N (7)| = 2
for ogbn-arxiv and | A ()| = 1 for ogbn-products.

5 Related Work

Learning with TAG. This problem involves learn-
ing text node representations that encode both tex-
tual semantics and structural context information.
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A prominent approach uses structure-augmented
SSL objectives to incorporate structure informa-
tion into language models (Chien et al., 2021;
Cohan et al., 2020; Yasunaga et al., 2022; Os-
tendorff et al., 2022). For example, SPECTER and
LinkBERT focus on node-pair relationships (Co-
han et al., 2020; Yasunaga et al., 2022), while
GIANT targets extreme multiclass neighborhood
prediction (Chien et al., 2021). A concurrent
work PATTON (Jin et al., 2023) trains a language
model through network-contextualized masked lan-
guage modeling and link prediction. A parallel
line of research tries to integrate pre-trained lan-
guage models (PLMs) with graph neural networks
(GNN) (Yang et al., 2021; Zhao et al., 2022; Mavro-
matis et al., 2023; Shang et al., 2020; Zhang et al.,
2021). GraphFormers interweaves GNN with LMs’
self-attention layers (Yang et al., 2021). GLEM (Zhao
et al., 2022), GraDBERT (Mavromatis et al., 2023)
and LRTN (Zhang et al., 2021) leverage labeled
datasets for co-training between PLM and GNN. While
they excel in node classification benchmarks, their
reliance on labeled datasets limits the representa-
tion’s generalization ability to new tasks.

Contrastive Learning. Contrastive learning is a
self-supervised learning paradigm that aims to learn
representations by distinguishing between positive
and negative instances (Jaiswal et al., 2020). A key
practice in contrastive learning is to use augmented
versions of the same instance as positive instances
and other instances as negative instances (Gao et al.,
2021; He et al.; Radford et al., 2021). For ex-
ample, SimCSE creates augmented views for each
instance based on dropout (Srivastava et al., 2014).
However, conventional instance-level contrastive
learning only encourages instance-wise discrimi-
nation (Li et al., 2021b) and commonly assumes
different instances are i.i.d., which neglects the rela-
tionships among different instances on TAG. Hence,
conventional contrastive learning methods are inef-
fective to learn expressive representation learning
on TAG. To address those limitations, many recent
methods seek to extend the design of positive pair
construction by considering local neighborhood
information (Cohan et al., 2020; Ostendorff et al.,
2022). However, those methods cannot fully cap-
ture complex graph structures. In contrast, our pro-
posed method, GRENADE, leverages graph-centric
contrastive learning and graph-centric knowledge
alignment to fully exploit the structural context
information from TAG.

6 Conclusion

In this paper, we introduce a self-supervised graph-
centric language model: GRENADE, for learning
expressive and generalized representation from tex-
tual attributed graphs (TAG). GRENADE is learned
through two self-supervised learning algorithms:
(1) Graph-Centric Contrastive Learning, which
enables GRENADE to harness intrinsic graph knowl-
edge through relational-aware and augmentation-
free contrastive learning; and (2) Graph-Centric
Knowledge Alignment, which facilitates the ex-
change and strengthening of knowledge derived
from the pre-trained language model encoder and
the graph neural network encoder, thereby en-
hancing the capture of relational information from
TAG. We conduct experiments on four benchmark
datasets under few-shot and full data node classifica-
tion, node clustering, and link prediction tasks, and
find that GRENADE significantly and consistently
outperforms baseline methods.

7 Limitations

In this section, we acknowledge the following
constraints in our study: (/) Constraints on the
Choice of Backbone Model. Our choice of the
backbone model was restricted to the initialization
of “bert-base-uncased” in training GRENADE.
This choice was necessitated by the limitations
in computational resources available to us. Ex-
ploration with alternative PLM backbones such as
GPT2(Radford et al., 2019) and RoBERTa(Liu et al.,
2019) has not been carried out and represents a
promising direction for subsequent studies. (2)
Comparison with Large Language Models. The nat-
ural language processing domain has recently seen
breakthroughs with state-of-the-art large language
models like LLaMA(Touvron et al., 2023) and Chat-
GPT (OpenAl, 2023), which have demonstrated
exceptional performance in language understanding
tasks. Our experiment confirms that GRENADE sur-
passes existing representation learning techniques
in TAG, but the performance of GRENADE relative
to these cutting-edge language models remains to
be ascertained. (3) Breadth of Evaluation. In this
work, we evaluate GRENADE primarily through node
classification, node clustering, and link prediction
tasks. However, there are other relevant evaluation
dimensions, such as retrieval, reranking, co-view
and others (Cohan et al., 2020). Future work will in-
vestigate the applicability and capacity of GRENADE
to broader tasks.
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A Dataset Details

We extend ogbn-arxiv and ogbn-products for link
prediction and we evaluate models on the test-split
from these two node datasets. Specifically, for each
source node 7, we randomly choose its one neighbor
as the positive candidate and 1,000 negative candi-
dates and would like the model to rank the positive
candidate over the negative candidates. The nega-
tive references are randomly-sampled from all the
nodes from TAG that are not connected by .

For ogbl-citation2, we also extend it for node
classification. Here the task is to predict the subject
areas of the subset of the nodes/papers that pub-
lished in arxiv like ogbn-papers100M. We borrow
the labels for ogbl-citation2 from ogbn-papers100M.
We align the nodes from ogbl-citation2 and ogbn-
papers100M through Microsoft academic graph pa-
per ID. We split the data into training/validation/test
by year that the papers published before 2017 is the
training dataset, between 2017-2018 is the valida-
tion dataset and after 2018 is the test dataset.

B Implementation Details

Our proposed methodology was implemented using
PyTorch version 1.13.1 (Paszke et al., 2019) and
HuggingFace Transformers version 4.24.0 (Wolf
et al., 2019). The experiments were executed
on A5000, A6000, and RTX 4090 GPUs. For
GRENADE, the learning rate is configured at 5e — 5,
and AdamW optimizer is employed for training over
the course of 3 epochs. The search space for the
number of GNN layers, L, ranges from {1,2,3, 4},
and further hyperparameter analysis is performed
as detailed in Fig. 6. The hyperparameters for few-
shot node classification are shown in Tab. 6 and
Tab. 7, respectively. It should be noticed that “—1”
means utilize all the training data for batch_size
and all the neighbors for neighbor sampling.

Hyperparameters ‘ Value

hidden_size 256

dropout 0.5

Ir le-4

epochs 300
batch_size -1

Table 6: Hyperparameter setting for MLP model in node
classification.

C Additional Experimental Results
Full Data Node Classification.

Datasets ogbn-arxiv ogbn-products ogbl-citation2
hidden_size 256 256 256
dropout 0.5 0.5 0.5
Ir le-3 le-3 le-3
epochs 500 50 50
batch_size -1 1024 1024
neighbors -1--1 5-10 5-10

Table 7: Hyperparameter setting for GraphSAGE model
in node classification.

Enhanced Node Classification Model. Besides
MLP and GraphSage, we incorporated the recent
Graph Transformer Network, NAGphormer (Chen
et al., 2023), into our node classification evalu-
ation. As evidenced by the data in Tab. 8, our
proposed approach consistently surpasses the base-
line techniques (BERT+MLM, SPECTER, GIANT) in
the few-shot and full-data node classification. This
performance is consistent with the observations of
using MLP and GraphSage.

Methods ‘ k=2 k=4 k=8 k=16 All
BERT+MLM | 42.47  49.29  56.78 60.52 66.37
SPECTER | 49.89 54.79  59.66 63.26 69.11
GIANT 40.57  44.81  54.27 58.93 65.82
GRENADE | 52.73 58.28 62.53 64.97 70.85
Table 8: ogbn-arxiv node classification result on

NAGphormer.

Additional Ablation Study. We have the ablation
study on ogbn-arxiv and ogbn-products dataset un-
der 7 different model variations. In the second row
of Tab. 9, the term ICL refers to instance-wise cross-
modality contrastive learning. It indicates that the
positive pairs are formed between identically in-
dexed document and node representations, while
the negative pairs consist of other document and
node representations within the minibatch. From
Table 9, have the consistent observation as 5 that
each component of GRENADE contributes the per-
formance improvement.

In-Depth Hyperparameter Analysis. To evalu-
ate the performance of the graph neural network
encoder (GNN), we conduct an analysis of the hyper-
parameter L as depicted in Fig. 6. Our observations
indicate that an optimal performance is achieved
when L = 2.

Inference Time Complexity Analysis When pro-
vided with an arbitrary node, GRENADE is capable
of generating the textual representation of the node
without requiring graph information. This leads
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Methods ogbn-arxiv ogbn-products
i MLP(ACC) K-means++(ACC) MRR  Avg. Rank| | MLP(ACC) K-means++(ACC) MRR  Avg Rank.]

GRENADE | 73.16410.12 61.9610.79 52.73 1.67 | 81.58410.18 73.5441.03 72.39 2.00
GC-CL+ICL+NBH-KA 72.2040.20 60.67+0.71 47.74 4.33 80.9040.24 72.4841.42 65.72 5.67
GRENADE w/0 GC-CL 72.8340.08 58.7540.99 55.87 3.33 80.5240.15 71.2540.98 74.51 4.33
GRENADE w/0 ND-KA 72.6540.16 60.69+0.72 49.15 4.33 80.96+0.29 73.37+0.71 68.47 4.33

GRENADE w/0 NBH-KA 73.05+0.17 60.50+0.86 52.56 3.33 81.36+0.30 T2.77+1.42 72.08 3.33
GRENADE W/0 ND-KA+NBH-KA | 72.711¢.01 60.34+1.00 49.67 4.67 81.1440.17 73.5910.52 68.71 3.00
GRENADE W/0 GC-CL+NBH-KA | 72.63+0.09 58.66+0.77 55.46 5.00 80.35+0.20 71.1041.20 74.27 5.33
GRENADE W/0 GC-CL+ND-KA 17.9746.48 22.4940.17 0.55 8.00 66.76-+0.62 44.83+0.26 21.08 8.00

Table 9: Ablation study of graph-centric contrastive learning (CL) and knowledge-alignment between PLM encoder
and GNN encoder (ND-KA and NBH-KA) on ogbn-arxiv and ogbn-products datasets.
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Figure 6: Hyperparameter analysis on L. Dashed hori-
zontal lines are the performance of chosen [ in this paper.

to an efficiency that is on par with BERT (Devlin
et al., 2018), while achieving approximately a 10%
enhancement in performance for full data node
classification.

Regarding the training efficiency, though our
model requires longer training time compared
to text-only PLM/SSL methods like BERT+MLM
(Th24m) and SimCSE (Gao et al., 2021)(around
41m), we are able to achieve a great margin of per-
formance improvement with reasonable additional
training time (around 2h50m). Also, our model can
achieve stable performance with 3-epoch training,
which is more efficient than structure-based con-
trastive learning method such as SPECTER (Cohan
et al., 2020) (around 3h19m for 3 epochs).
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