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Abstract

Large Language Models (LLMs) have attained
the impressive capability to resolve a wide
range of NLP tasks by fine-tuning with high-
quality instruction data. However, collecting
human-written data of high quality, especially
multi-turn dialogues, is expensive and unattain-
able for most people. Though previous studies
have used powerful LLMs to generate the
dialogues automatically, they all suffer from
generating untruthful dialogues because of the
model hallucination. Therefore, we propose a
method called RefGPT to generate enormous
truthful and customized dialogues without
worrying about factual errors caused by the
model hallucination. RefGPT solves the model
hallucination in dialogue generation by restrict-
ing the LLMs to leverage the given reference
instead of reciting their own knowledge to
generate dialogues. Additionally, RefGPT adds
detailed controls on every utterance to enable
high customization capability, which previous
studies have ignored. On the basis of RefGPT,
we also propose two high-quality dialogue
datasets generated by GPT-4, namely RefGPT-
Fact and RefGPT-Code. RefGPT-Fact is a
dataset with 100k multi-turn dialogues based
on factual knowledge and RefGPT-Code has
76k multi-turn dialogues covering a wide range
of coding scenarios. Our code and datasets are
released in https://github.com/mutonix/
RefGPT.

1 Introduction

General chat models (OpenAI, 2022, 2023; An-
thropic, 2023) based on Large Language Models
(LLMs) have shown the impressive capability
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to intention recognition and complete a variety
of NLP tasks only via fine-tuning with a small
amount of high-quality instruction data (Taori
et al., 2023; Chiang et al., 2023; Xu et al., 2023a).
However, such high-quality instruction datasets,
especially multi-turn dialogues with instructions in
vertical domains, requires enormous crowdsource
workers with extensive professional knowledge to
collect (Ouyang et al., 2022), where the cost is
unaffordable for most people.

Previous studies (Peng et al., 2023; Xu et al.,
2023b; Ding et al., 2023) have shown the effective-
ness of prompting LLMs like GPT-3 (Brown et al.,
2020) to generate enormous instructions (single-
turn dialogues) or multi-turn dialogues with given
human-written instructions or conversation topics
as seeds. However, such one-shot or few-shot
methods have a common deficiency that they have
the risk of generating untruthful and misleading
content due to the language model hallucination
(OpenAI, 2023; Ji et al., 2023). The reason why
the issue of untruthfulness happens is obvious.
This is because the quantity of information in seed
prompts like human-written instructions or topics
is not enough for being converted to the dialogue
on a new topic so LLMs have to recite their own
knowledge to complete such a new dialogue which
may lead to the model hallucination of generating
untruthful facts.

Therefore, we introduce RefGPT, a method
for generating truthful and customized multi-turn
dialogues utilizing the ability of powerful LLMs
like GPT-3.5/GPT-4. RefGPT first provides a plain
text or a document as the reference and guides
the LLMs to leverage the references to generate
dialogues. By providing enough information on
a new topic as context, LLMs will be prompted
not to rely on their own knowledge to generate the
dialogues, thus resolving the hallucination issue.

After ensuring the authenticity of the dialogue,
we further develop an effective prompting process
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for RefGPT to guide the LLMs to generate highly
controllable dialogues in a specified uniform for-
mat which is easy for training. Previous studies (Xu
et al., 2023b; Wang et al., 2022) for automatically
generating dialogues have very little control over
the generated dialogues. For comparison, RefGPT
enables LLMs to generate customized multi-turn
dialogues with detailed controls on the structure,
style, and content, which further gives diversity to
the generated dialogues.

Based on the RefGPT, we also propose two new
multi-turn dialogue datasets, namely RefGPT-Fact
and RefGPT-Code. Both datasets have English
and Chinese versions. RefGPT-Fact and RefGPT-
Code consist of 100k and 76k high-quality multi-
turn dialogues generated from GPT-4 separately,
using the online encyclopedia websites and Github
repositories as the references. As long as the con-
tent on the online encyclopedia website and Github
codes is truthful and reliable, the authenticity of
the generated dialogues can be maximally ensured.

Besides the topics in RefGPT-Fact and RefGPT-
Code, RefGPT has the potential to generate truthful
dialogues on any topics or vertical domains if we
give it relevant references. RefGPT enables such
people working in a specific domain, e.g., the
nuclear industry, to have a high-quality multi-turn
dialogues dataset to train a chatbot specializing in
such domain using their own knowledge base as
the reference.

To sum up, our contributions are stated as
follows:

• We propose RefGPT, a method of generating
truthful and customized dialogues using pow-
erful LLMs. Given the reliable reference, Re-
fGPT resolves LLM hallucination in dialogue
generation to the greatest extent. RefGPT
can also enable detailed customization in the
structure, style and content of the dialogues.

• With RefGPT, we construct two new multi-
turn dialogue datasets using GPT-4, called
RefGPT-Fact and RefGPT-Code. To our
best knowledge, RefGPT-Fact is one of the
largest multi-turn dialogue datasets based on
factual knowledge. And RefGPT-Code is the
first and largest synthetic multi-turn dialogue
dataset covering nearly all aspects of code
scenarios. These have shown the capability of
applying RefGPT to generate dialogues in any
vertical domain by utilizing corresponding
domain-specific documents.

2 Related Work

2.1 LLM based Dialogue Generation

The high-quality dialogue dataset is considered
crucial for the success of current general chat
models (Chiang et al., 2023; Köpf et al., 2023).
Due to the high cost of human annotation, previous
studies have explored the effectiveness of using
LLMs for dialogue generation. Self-Instruct (Wang
et al., 2022) presents a framework that facilitates
the automatic generation of instruction data (single-
turn dialogues) by leveraging existing LLMs. The
procedure commences with a set of human-written
seed tasks and progressively generates new instruc-
tions and responses by iteratively bootstrapping
both the initial seeds and the newly produced
data. Baize (Xu et al., 2023b) generates multi-
turn dialogues by leveraging LLMs to engage in a
conversation with itself as both user and assistant
based on the given seed topics. UltraChat (Ding
et al., 2023) follows a similar idea to Baize and
adopts two separate LLM APIs in the generation,
where one acts as the user and the other acts as
the assistant. However, the dialogues produced
by these methods are susceptible to hallucination
problems and are uncontrollable. Therefore, we
present RefGPT as a solution to generate dialogues
with truthfulness and customization.

2.2 Reference Based Dialogue Generation

QA pair and dialogue generation based on refer-
ences have also been widely used. One important
requirement for these methods is to ensure the
truthfulness of the generated QA pairs and dia-
logues. Previous studies (Ma et al., 2020; Lewis
et al., 2021) generate millions of high-quality QA
pairs based on corpus documents using special-
purpose question generation models. Dialogue
inpainting (Dai et al., 2022) extends this line of
work to dialogues by transforming passages from
Wikipedia into multi-turn dialogues using a masked
conversational language model. In this work, we
adopt a similar strategy using the LLMs that we
take high-quality documents as references to ensure
the truthfulness of the generated dialogues.

3 Generation Process

In this section, we present the whole process of
RefGPT, which generates truthful and customized
multi-turn dialogues by prompting the Large Lan-
guage Models (LLMs) to effectively utilize the
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Task Description

Wikipedia
Natural language processing (NLP) is an 
interdisciplinary subfield of linguistics, 
c o m p u t e r  s c i e n c e ,  a n d  a r t i f i c i a l 
i n t e l l i g e n c e  c o n c e r n e d  w i t h  t h e 
interactions between computers and 
human language, in particular how to 
program computers to process and 
analyze large  amounts  of  natura l 
language data.  …

Reference Selection

Github Code
int Fibonacci(int n)
{
   if (n <= 1) return n;
   return Fibonacci(n - 2) + Fibonacci(n - 
1);
}

<chat>

</chat>

<user 1>  (word count: 50 words) 
asks in a childlike tone
<assistant 1> (word count: 300 words)
answers in a way that a child can understand

<user 2> (word count: 100 words) 
further gives specific instructions to the assistant
<assistant 2> (word count: 400 words)
answer [+detailed explanation]

RefGPT-Fact

<chat>

</chat>

<user 1> (word count: 100 words) 
asks in a young person's tone about writing the code
<assistant 1> (word count: 500 words)
answer [+detailed explanation] 
and give detailed code examples

<user 2> (word count: 150 words) 
gives specific instructions to the assistant
about further explaining the code
<assistant 2> (word count: 300 words)
answer [+detailed explanation]

RefGPT-Code-cr

Dialogue Template

Fact: User will ask multiple various 
questions/requests to the assistant 
about factual knowledge ...

Code-cr: User has an task related to 
the above code and wants to solve 
it with a computer program ...

Local Customization
Structure

• Turn Count Sampling
• Word Count Sampling

Style
asks in a childlike tone

…

Content

writing the code  
…

Based on the provided information 
above, expand it into a multi-turn 
conversation ...

Basic Prompt

Dialogue Settings

Other documents in the 
vertical domains (e.g., shopping)

Figure 1: Overview of the whole RefGPT generation process, which mainly consists of three steps: reference
selection, basic prompt and dialogue settings.

reference information. As illustrated in Figure
1, the RefGPT process is comprised of three
main steps: Reference Selection (pertaining to
truthfulness), Basic Prompt, and Dialogue Settings
(pertaining to customization).

3.1 Reference Selection
RefGPT guides the LLMs to leverage the given
external documents or plain texts as references,
instead of reciting their own knowledge, to gen-
erate truthful dialogues without worrying about
hallucination.

The quality of generated dialogues in RefGPT
relies on the selection of appropriate references,
prioritizing quality and thematic relevance.

A reference in RefGPT can range from a piece
of unrefined plain text to a high-quality and depend-
able document in a specific domain, whose credi-
bility determines the upper limit of the truthfulness
of the generated dialogues. On the premise that
the reference has contained enough information,
it is imperative to opt for high-quality references,
such as authoritative knowledge-based websites
like Wikipedia.

Furthermore, the chosen reference profoundly
influences the thematic direction of the generated
dialogues. Consequently, RefGPT exhibits the
potential to generate dialogues in diverse domains,

contingent upon the existence of text-based knowl-
edge repositories within those domains. These
repositories include a broad spectrum of subjects,
including, but not limited to, general domains like
factual knowledge with encyclopedias, program
codes, and vertical domains like shopping applica-
tions or the nuclear industry.

3.2 Basic Prompt
To facilitate the generation of multi-turn dialogues
that adhere to our basic requirements, we have
devised a set of basic prompts:

1. Prompt the LLMs to generate multi-turn
dialogues based on the provided reference.

2. Specify the desired language for the dialogue
generation. It is preferable for the language
of the reference to be consistent with the
dialogue to be generated.

3. Instruct the LLMs to reject unreasonable user
requests, such as illegal or inappropriate in-
structions while providing appropriate advice
to discourage such actions. This prompt aids
in generating dialogues that align with human
preferences to a certain extent.

4. LLMs like GPT-3.5-turbo and GPT-4 offer
an option of writing a "system" role prompt
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to exert precise control over their behav-
iors in responses. This capability enables
customization of the chatbot’s identity by
providing relevant background information.
For instance, in a vertical domain like a
shopping app, RefGPT can generate dialogues
that conform to the persona of a shopping
assistant, even if the reference has no explicit
association with shopping (but may have an
implicit association).

3.3 Dialogue Settings

Rather than generating dialogues uncontrollably,
RefGPT uses dialogue settings to convert the ref-
erence to a specific dialogue format and customize
every utterance, as shown in the middle part of the
Figure 1. In dialogue settings, we first specify
the task description to tell LLMs how to use
the reference. We then customize the structure,
style, and content of the dialogue, which can be
collectively called local customization.

3.3.1 Task Description

We begin by defining the task of dialogue genera-
tion concerning the utilization of references, as it
relies on the specific aspect of the reference that
we aim to initiate the dialogue. For instance, a
given piece of program code can lead to multiple
scenarios (tasks), such as explaining, creating, or
debugging.

3.3.2 Local Customization

As per the task description, the local customization
specifies the settings regarding the dialogue’s
structure, style, and content. These settings are
then incorporated into a dialogue template for
generating the final dialogue.

Dialogue Structure To define the dialogue struc-
ture, we start the dialogue with the marker <chat>
and end it with the marker </chat>. These two
markers specify the range of the whole dialogue.
Between the start and the end, we use <user> for
the user giving instructions and <assistant> for
the chatbot. A unified output format in a dialogue
template avoids most of the weird generations of
LLMs and is easier for post-processing. What is
more, we will show more merits of using such a
format to control the number of turns and length
per turn.

(1) Number of Turns LLMs like GPT-3.5/GPT-
4 often fail with counting the number of the
turns of dialogues if we directly require a certain
number. But we find that GPT-3.5/GPT-4 are
good at following the given format and replacing
the placeholders with their own generated content.
Therefore, if we want to generate n turns of
dialogues, we explicitly give the n <user> and
<assistant> pairs to let LLMs follow the output
format. We have also added numerical markers to
indicate the ith turn of the dialogue, e.g., <user i>
and <assistant i>, allowing the LLMs to better
identify the progress of the current generated turn.

(2) Length of Utterance Generating a whole
dialogue at one-time, e.g., Self-Instruct (Wang
et al., 2022), often leads to much shorter responses
than the general chat models like GPT-3.5 do, as
shown in Table 1. However, in RefGPT, we can
control the lengths of not only the responses of the
assistant but also the questions raised by the user
at every turn of the dialogue.

We observe that specifying a word count as
the prompt is useful for influencing the length
of generated utterances. Following the auto-
regressive (left-to-right) order, we first illustrate
the requirement of word count like <user>(word
count: x words) or <assistant>(word count:
x words) before our customization on style and
content. Therefore, RefGPT can generate a shorter
or much longer question/response depending on the
specified word count. Though this prompt can also
be used to make the generated utterances longer
with other methods like Self-Instruct, generating
longer utterances always leads to a more severe
hallucination problem. RefGPT filters out the
reference whose length is shorter than 80% of
the required dialogue length to ensure truthfulness.
Thus the LLMs have no necessity of reciting their
own knowledge, as the reference length is similar
and even longer than the dialogue length.

Dialogue Style Staying organized around the
same reference, the style of dialogue can vary in
the style of asking and answering. For example, a
dialogue can start between a user who is a child and
an assistant who answers in a way that a child can
understand. RefGPT enables this customization for
every utterance of <user> and <assistant> in the
dialogues by adding the style requirements before
the content customization.
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Dialogue Content After specifying the style, we
can customize the content of each utterance about
what to ask and what to answer.

For the task like factual knowledge, the user can
be set to ask more about the entity or numbers in
the reference. For the task of coding, the user can
ask from different perspectives on writing, revising,
and using the code and the assistant can choose to
give an example or not.

Dialogue Template We aggregate the local cus-
tomizations into a dialogue template to transfer the
reference to the dialogue. To enable diversity, we
sample different local customization settings for
each utterance in the dialogue, as shown in the
right-most part in Figure 1. In practice, RefGPT
can work well even without style and content pools.
These additional settings only need a small amount
of manual work for further customization and can
be reused to generate diverse dialogues based on
different references.

1. For the dialogue structure, we will set the
number of turns by weighted sampling. And
we sample the word count for both user and
assistant in each utterance from a Gaussian
distribution.

2. For the dialogue style, we construct a conver-
sational style pool to sample the style settings.

3. For the dialogue content, we construct a
content pool according to the task (factual
knowledge, code, etc) to sample the content
settings.

4 RefGPT Dialogue Datasets

In this section, we present two multi-turn dialogue
datasets, denoted as RefGPT-Fact and RefGPT-
Code, which are generated utilizing the GPT-4 API
in conjunction with RefGPT. More information
about these two datasets can be found in Appendix
A, and examples are provided in Appendix B.

4.1 Dataset Generation Process
RefGPT-Fact RefGPT-Fact is a dataset con-
taining 100k multi-turn dialogues about factual
knowledge with 50k English and 50k Chinese.
The English version uses the English Wikipedia

1In Table 1, we calculate the number of tokens with the
OpenAI tokenizer library of tiktoken in https://github.
com/openai/tiktoken. We use cl100k_base in tiktoken
to tokenize.

as the reference and the Chinese version uses
the frequently-used Chinese online encyclopedia
website, Baidu Baike. We use various dialogue
settings mentioned in Sec 3.3 to increase the
dialogue diversity.

RefGPT-Code RefGPT-Code is a dataset con-
taining 76k multi-turn dialogues about program-
ming with 37k English and 39k Chinese, which has
covered most aspects of code usage scenarios and
multiple types of programming languages. Both
the English version and Chinese version use the
public Github dataset on Google BiqQuery with
no overlap in these two languages. RefGPT-Code
has derived various ways of leveraging the program
code as the reference to enable different scenarios.
We consider three perspectives of code discussion,
code creation and bug fixing in RefGPT-Code.

1. In RefGPT-Code-ds about code discussion,
we want the LLMs to generate dialogues about
asking questions about the given reference
code, including explaining, discussing, revis-
ing, rewriting, and using the code. After the
generation, we will concatenate the reference
code as the context to the first question of
the user to form the complete version of the
dialogue, because we often give the code
first before asking questions about it. Thus,
the whole dialogue has much longer user
utterances, as shown in Table 1.

2. In RefGPT-Code-cr about code creation,
though we provide the program code as the
reference, we assume that the user has an
idea/request/trouble/task relevant to the given
code but does not know such a code exists,
thus he/she wants the assistant to help with
writing the code. And the assistant is required
to write the code according to the reference
code instead of generating a new code to
ensure the reliability of the generated code.

3. In RefGPT-Code-bg about bug fixing, the
user first writes a piece of code with bugs
based on the given reference code, which is
realized by asking the LLMs to rewrite the
code to a buggy one in the first utterance of
the user. Then the assistant is required to
tell the user where the bugs are and how to
fix them according to the reference code. In
this scenario, we assume the reference code is
reliable and has no bugs.

2515

https://github.com/openai/tiktoken
https://github.com/openai/tiktoken


Table 1: Comparsions on different dialogue datasets that contain instructions. AI means whether it is generated by
AI. Truthful indicates whether the truthfulness of the dialogues is guaranteed. QLen means the average number of
tokens1of user utterance. RLen means the average number of tokens of assistant utterance. Turn means whether the
number of dialogue turns can be specified. Lang indicates the languages the dataset supports. For a fair comparison,
only the English parts are selected in all the datasets.

Dataset AI Truthful QLen RLen Turn Lang

Dolly (Databricks, 2023) N/A 16.3 78.2 1 en
Oasst1 (Köpf et al., 2023) N/A 28.0 169.5 1∼5 multi
ShareGPT (Dom Eccleston, 2023) 75.6 268.8 1∼5 multi
Alpaca (Wang et al., 2022) 17.2 55.3 1 en
Baize Quora (Xu et al., 2023b) 15.7 43.2 3∼5 en
UltraChat World (Ding et al., 2023) 28.6 207.9 3∼7 en
RefGPT-Fact 28.1 269.5 3∼4 en, cn
RefGPT-Code-ds 281.7 374.6 3∼4 en, cn
RefGPT-Code-cr 36.9 395.0 3∼4 en, cn
RefGPT-Code-bg 155.7 380.8 2∼4 en, cn

4.2 Dataset Collection Setup

We use the RefGPT with GPT-4 API to generate
these two datasets. The length of every utterance is
decided by sampling the Gaussian distribution of
N (µ, σ), where µ accounts for the average word
count (e.g., 300 words) of the utterance and σ is
the standard variance (e.g., 50 words). The number
of turns is decided by weighted sampling, where
the weights determine the ratio of dialogues with a
specific number of turns in the dataset.

4.3 Dataset Statistics

As shown in Table 1, we compare our datasets to
other high-quality dialogue datasets. ShareGPT
(Dom Eccleston, 2023) collects the dialogues from
the real users and ChatGPT, which have much
longer user utterances and assistant utterances. If
we choose the responses of ChatGPT as a baseline,
methods with one API, e.g., Self-Instruct (Wang
et al., 2022) and Baize (Xu et al., 2023b), always
lead to shorter assistant responses. UltraChat (Ding
et al., 2023) with two independent APIs chatting
to each other maintains the length of generated
responses close to ChatGPT. However, as shown
in Table 2, such methods call the model API one
utterance at a time with significantly increasing
cost and time, as UltraChat has to attach the
conversation history multiple times. By contrast,
RefGPT generates the whole dialogue with one API
call but can adjust the length of generated utterance
flexibly according to the requirement.

RefGPT-Fact inherits the diversity of the refer-
ences like Wikipedia and Baidu Baike. Besides
that, RefGPT-Fact has an average response length
of 269.5 in English which is very similar to the

length of ChatGPT response in ShareGPT.
RefGPT-Code series implements various cus-

tomizations to be adapted to specific scenarios and
have longer user and assistant utterances because
we have not only the utterances but also the code
attached to the dialogues.

5 Experiment

5.1 Truthfulness Evaluation

In order to verify the reliability of RefGPT, We
evaluate the truthfulness of the RefGPT dataset
using both human evaluation for small sample
and automatic evaluation with GPT-4 for a large
range of verificaiton. For automatic evaluation
with GPT-4, though existing methods (Chiang
et al., 2023; Liu et al., 2023) have leveraged the
GPT-4 to evaluate the performance of other LLMs.
However such evaluation is not reliable in factual
error checking because GPT-4 has the issue of
model hallucination. Inspired by RefGPT, we
design a pipeline to evaluate the truthfulness of
generated dialogues from our reference datasets,
e.g., Wikipedia, by using the GPT-4 to evaluate but
with the additional help of reference.

Wikipedia
Earth is the third planet 
from the Sun …

Reference 
I  a m  d o i n g  t h e  g e o g r a p h y 
homework. Can you give me a 
brief introduction of the Earth?

Question 

<user> Introduction of Earth.
<assistant> The Earth is …
<user> …

Dialogue LLM
GPT-4{✔ ,  ✘}

Self-Instruct 
Baize

RefGPT

Figure 2: Illustration of the process of truthfulness
evaluation.
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Table 2: Comparsions on different methods of automatically generating dialogues via LLMs. Multi-turn means
whether it is a multi-turn dialogue generation. Human Tru. and GPT-4 Tru. evaluate the truthfulness with accuracy
by humans and GPT-4 model. Len uses ChatGPT’s response length as the standard for long responses. Turn means
whether the number of dialogue turns can be specified. Custo. depends on whether it can control the dialogue
structure and content. Call is the number of model or model API calls needed for generating an instruction or a
n-turn dialogue every time.

Method Multi-turn Human Tru. GPT-4 Tru. Len Turn Custo. Call

Self-Instruct (Wang et al., 2022) 54.0 50.2 short one limited 1
Baize Self-Chat (Xu et al., 2023b) 50.0 47.2 short random limited 1
UltraChat (Ding et al., 2023) - - long adjustable limited 2n
RefGPT 98.0 97.5 adjustable adjustable highly 1

5.1.1 Evaluation Process
We compare RefGPT to two popular automatic
methods as the baselines, namely Self-Instruct
(Wang et al., 2022) and Baize Self-Chat (Xu et al.,
2023b). For a fair comparison, we want the
generated dialogues of different methods to talk
about the same things. Thus we do an additional
work that we let GPT-4 generate {question, answer}
pairs from the selected references and restrict the
answers to the questions to be found or inferred
from the references. Given a selected reference, for
Self-Instruct, we follow the Alpaca (Taori et al.,
2023) that we randomly select three {question,
answer} pairs (from other references) as few-shot
examples and add the final question from the
selected reference at the end of the model input.
And we let the model respond to the final question.
For Baize, we use the question generated from the
selected reference as the seed following the way
that Baize uses questions in Quora as seeds. For
RefGPT, we directly use the selected reference to
generate. In practice, we select 1000 passages from
Wikipedia as the references to generate 1000 seed
{question, answer} pairs using the GPT-4. And we
generate the dialogues using these three methods
with GPT-3.5-turbo for the experiment. In Table
3, we give examples of evaluating the truthfulness
of the dialogues generated by RefGPT. And more
examples of Self-Instruct and Baize can be seen in
Appendix C.

For human evaluation for a small sample, we
randomly sample 50 English dialogues each for
Alpaca, Baize, and RefGPT about factual knowl-
edge. And 2 humans evaluate the truthfulness of
the dialogues according to the references.

For automatic evaluation for a large range,
in order to let GPT-4 check the factual errors
without suffering from the model hallucination, we
need a reference for GPT-4 to refer like RefGPT.

Therefore, as shown in Figure 2, we let GPT-4
check if the generated dialogue accords with the
reference. If the generated dialogue does not align
with the reference, it indicates the presence of
factual errors.

5.1.2 Result
We use accuracy to measure the truthfulness in
the evaluation process, which is the proportion of
the number of dialogues without factual errors in
the total of 1000 generated dialogues. In Table 2,
to our surprise, we can see that Self-Instruct and
Baize Self-Chat have a striking number of factual
errors in the generated dialogues on both human
and GPT-4 evaluations. As the dialogues generated
by Baize are multi-turn, they are more likely
to contain factual errors and thus have a lower
truthfulness score of 47.2. By contrast, RefGPT
has a truthfulness score of 97.5 with merely no
factual errors. This also implicitly indicates that a
model like GPT-3.5-turbo already has the ability to
generate the dialogues strictly conforming to the
references rather than modifying with hallucination.
Another method called UltraChat (Ding et al.,
2023) in Table 2 is not included, as the code has not
been open-source at the time we write this paper.

5.2 Further Analysis

In this section, we explore the potential influence
of the reference and customization on the generated
dialogues by RefGPT. For each setting in the
following experiments, we generate 1000 dialogues
using GPT-3.5-turbo.

5.2.1 Dialogue Quality
As RefGPT generates the dialogue according to the
reference, the reference has a significant impact
on the quality of generated dialogues. We use the
evaluation method mentioned in Sec 5.1 to evaluate
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Table 3: Examples of truthfulness evaluation on the generated dialogues by RefGPT. We prompt GPT-4 to give the
explanation first and then output the judgment.

Reference Dialogue Explanation Result

R. J. Hampton Jr ... announced
that he was transferring to the
nationally-ranked basketball pro-
gram of Montverde Academy
in Montverde, Florida, before
deciding to return to Little Elm
...

<user> I heard that R. J. Hampton Jr. is
one of the talented basketball players in
the NBA. Can you tell me more about his
career and background?
<assistant> ... he transferred to Montverde
Academy, where he continued to excel and
earn multiple honors ...

R. J. Hampton Jr did not trans-
fer to Montverde Academy.
He had announced his inten-
tion to transfer but ultimately
decided to return to Little Elm
High School ...

Star Wars: Rebel Assault is a rail
shooter video game developed
and published by LucasArts ...

<user> What is Star Wars: Rebel Assault?
<assistant> Star Wars: Rebel Assault is
a famous rail shooter video game, which
was developed and published by LucasArts
...

Assistant’s answers accurately
reflect the information pro-
vided, covering the game’s sig-
nificance, storyline, gameplay
mode ...

the influence of the dialogue quality (truthfulness)
in the following validations.

Table 4: The truthfulness scores of 3-turn dialogues
with different ratios of reference length and noise levels.

Ref. Ratio Truthfulness Noise Level Truthfulness

100% 96.5 0% 96.5
50% 96.2 10% 96.2
25% 97.3 20% 94.8

Reference Length As length is proportional to
the amount of information the reference contains,
we want to find out how the reference length
will influence the truthfulness of the generated
dialogues. We use the dialogue template of a 3-
turn dialogue, where each utterance word count
of the assistant is required to be 300 words. We
experiment on different lengths of reference by the
proportions: 100%, 50%, and 25% of the original
required length (3 × 300 = 900 words).

As shown in Table 4, it is surprising to see that
the truthfulness scores do not decrease much as the
reference lengths are greatly reduced. We find that
the GPT-3.5-turbo chooses to reduce the length of
the generated utterances to obey reference despite
violating the length requirement.

Reference Quality The reference in RefGPT can
vary from plain texts to cleaned documents in the
vertical domain.

In order to quantify the influence of reference
quality on dialogue quality, we experiment with
different qualities of references by adding addi-
tional noise. To be specific, we use the original
reference as the baseline. We use HTML labels

as noise is that many references may come from
the crawled data on the websites and contain many
HTML labels as noise if we do not clean the data
carefully. We experiment with adding 10% and
20% nonsense HTML labels as the noise.

As we can see in Table 4, the truthfulness of
the generated dialogues only slightly decreases
because of the additional noise. This indicates the
good robustness of generating truthful dialogues
even with GPT-3.5-turbo.

5.2.2 Dialogue Structure
During post-processing of the generated dialogues
of RefGPT, we find that the input length (related
to reference length) and output length (related to
the required word count) will influence the success
rate of obeying the dialogue template. In order
to evaluate the customization ability of RefGPT,
we do experiments on generating 3-turn and 5-turn
dialogues. As the input length (reference length)
is also determined by the required word count, we
experiment with different word counts of 100, 300,
and 600 for each assistant utterance to verify the
success rate of obeying the dialogue template.

Table 5: The success rates (%) of obeying the dialogue
templates with different word count settings for 3-turn
and 5-turn dialogues.

Word Count Turn w/ </chat> w/o </chat>

100 3 / 5 97.4 / 94.8 93.5 / 91.4
300 3 / 5 94.6 / 90.1 91.3 / 88.5
600 3 / 5 93.2 / 86.5 88.4 / 70.4

From Table 5, we can see that dialogues with
fewer tokens to generate (fewer words in assistant
utterances and fewer turns) will lead to better
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control over the dialogue structure with a higher
success rate. We further observe that if the
ending mark </chat> is successfully generated,
the dialogues are more likely to obey the dialogue
template with the correct number of turns.

6 Conclusion

We present RefGPT, a new method that generates
truthful and customized multi-turn dialogues using
LLMs like GPT-3.5/GPT-4. Incorporating a reli-
able reference, RefGPT minimizes hallucination
and untruthful content generation. RefGPT also
allows for dialogue customization in structure,
style, and content, making it flexible to generate
dialogues with diversity. On the basis of RefGPT,
we also use GPT-4 to construct two new multi-turn
dialogue datasets, RefGPT-Fact and RefGPT-Code,
based on the online encyclopedia websites and
Github repositories. These datasets also showcase
RefGPT’s significant potential for developing de-
pendable, domain-specific dialogue data required
by specialized chatbots and other natural language
processing applications.

Limitations

RefGPT can only strictly generate the dialogues
conforming to the references even though the ref-
erence itself may have factual errors. Furthermore,
the generated dialogues can not be avoided to be
influenced by the biases from the references. Thus
the datasets RefGPT-Fact and RefGPT-Code may
have factual errors and typos from Wikipedia, or
bugs and malicious program codes from Github
repositories.

LLMs like GPT-3.5/GPT-4 have their own biases,
which will also have reflections in the dialogues
generated by RefGPT.
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A Dataset Card

A.1 RefGPT-Fact
RefGPT-Fact is a dataset comprising 100k multi-turn dialogues focusing on factual knowledge. There are
two versions, with the English version containing 50k dialogues based on the English Wikipedia, while
the Chinese version consists of 50k dialogues sourced from the widely-used Chinese online encyclopedia,
Baidu Baike.

Since most of the passages in the English Wikipedia and Baidu Baike are written by individuals or
unofficial organizations, many of the passages are not commonly seen in everyday life. We use GPT-
3.5-turbo API to quickly filter out the uncommon passages by asking it "Do you know xxx? If yes,
return <yes>. If no, return <no>.", where xxx is the title of the passage2.

A.2 RefGPT-Code
RefGPT-Code is a comprehensive dataset that consists of 76k multi-turn dialogues on programming,
including 37k English and 39k Chinese dialogues. As illustrated in Figure 3, it encompasses a wide range
of coding scenarios about discussion, creation, and bug fixing using various programming languages. The
dataset utilizes the public Github dataset available on Google BigQuery, with no overlapping data between
the two languages.

Java
17%

C
12%

JavaScript
10%

HTML
10%

PHP
10%

Markdown
7%

C++
7%

Python
6%

C#
6%

Ruby
4%

Others
11%

discussion
37%

creation
39%

bug
24%

Figure 3: Composition of RefGPT-Code Dataset including English and Chinese.

2This method is based on knowledge of GPT-3.5-turbo, where recall rate is limited. A more recommended way is using the
access rate to filter out the uncommon passages.

2521



Table 6: An example of the prompt for generating the English RefGPT-Fact data. {dialogue_template} is replaced
by the dialogue template mentioned in Sec 3.3.

##Provided Information## {reference} Based on the ##Provided Information## above and its relevant

topic, expand it into a multi-round conversation. The conversation requires you to act as the

chatbot Assistant and interact with a human, helping to solve the requests raised by the human. The

human will ask multiple various questions/requests to the Assistant based on the information above

(but the conversation should not include expressions like "according to the above information"),

and the subsequent questions/requests will be a follow-up based on the previous conversation

history. For every reasonable question/request posed by Human, Assistant should provide as

detailed an answer as possible, offering further explanations or examples. For unreasonable

requests from Human (those that are harmful to society, immoral, or illegal), Assistant will

refuse to answer and explain the reason for not answering, while also providing reasonable advice

to avoid such actions.

#Conversation Plan# Example: "<chat><Human 1>:(Word count requirement: x words)XXX <Assistant 1>:

(Word count requirement: x words) XXX <Human 2>:(Word count requirement: x words)XXX <Assistant

2>: (Word count requirement: x words) XXX </chat>", "XXX" is the requirement for the current

conversation content of that role, and "(Word count requirement: x words)" specifies the minimum

word count requirement for utterance of Human or Assistant. It must be noted: the conversation

starts with <chat> as the beginning of the multi-round conversation and ends with </chat> as

the end of the multi-round conversation. The following conversation follows this #Conversation

Plan# and word count requirements: "{dialogue_template}", a total of {number_of_turns} turns of

conversation.

{dialogue_template} <chat><Human 1>:(word count: 100 words)asks a question <Assistant 1>:(word

count: 200 words)answers [+detailed explanation] <Human 2>:(word count: 150 words)further asks

from the perspective of real life <Assistant 2>:(word count: 100 words)answers [+detailed

explanation] <Human 3>:(word count: 50 words)further asks a question <Assistant 3>:(word count:

150 words)answers [+detailed explanation] </chat>
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Table 7: An example of the prompt for generating the English RefGPT-Code-ds data.

##Provided Information## {reference} Based on the ##Provided Information## above and its relevant

topic, expand it into a multi-round conversation. The conversation requires you to act as the

chatbot Assistant and interact with a human, helping to solve the requests raised by the human. The

human will ask multiple various questions/requests to the Assistant based on the information above

(but the conversation should not include expressions like "according to the above information"),

and the subsequent questions/requests will be a follow-up based on the previous conversation

history. For every reasonable question/request posed by Human, Assistant should provide as

detailed an answer as possible, offering further explanations or examples. For unreasonable

requests from Human (those that are harmful to society, immoral, or illegal), Assistant will

refuse to answer and explain the reason for not answering, while also providing reasonable advice

to avoid such actions.

#Conversation Plan# Example: "<chat><Human 1>:(Word count requirement: x words)XXX <Assistant 1>:

(Word count requirement: x words) XXX <Human 2>:(Word count requirement: x words)XXX <Assistant

2>: (Word count requirement: x words) XXX </chat>", "XXX" is the requirement for the current

conversation content of that role, and "(Word count requirement: x words)" specifies the minimum

word count requirement for utterance of Human or Assistant. It must be noted: the conversation

starts with <chat> as the beginning of the multi-round conversation and ends with </chat> as

the end of the multi-round conversation. The following conversation follows this #Conversation

Plan# and word count requirements: "{dialogue_template}", a total of {number_of_turns} turns of

conversation.

{dialogue_template} <chat><Human 1>:(word count: 50 words)makes a request about writing the

code <Assistant 1>:(word count: 250 words)answers [+detailed explanation] and give code examples

<Human 2>:(word count: 100 words)asks in a young person’s tone about further modifying the

code <Assistant 2>:(word count: 300 words)answers [+detailed explanation] and give code examples

<Human 3>:(word count: 20 words)asks from the perspective of real life about further how to

use the code <Assistant 3>:(word count: 250 words)answers [+detailed explanation] and give code

examples </chat>
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Table 8: An example of the prompt for generating the English RefGPT-Code-cr data.

##Provided Information## {reference} Based on the ##Provided Information## above and its relevant

topic, expand it into a multi-round conversation. Human has an idea / requirement / task /

assignment / problem / difficulty related to the above code and wants to solve it with a computer

program, but doesn’t know how to do it. But Human doesn’t know that the above code exists, so

it can’t be mentioned in conversation. Assistant needs to organize the above code into answers

(which cannot be found by Human) according to Human’s ideas, write specific program code for

Human and explain it in detail so that Human’s ideas can be realized. Based on this idea, Human

would ask multiple questions and requests for specific code written by the Assistant, which

will be follow-ups based on the previous conversation history. For unreasonable requests from

Human (those that are harmful to society, immoral, or illegal), Assistant will refuse to answer

and explain the reason for not answering, while also providing reasonable advice to avoid such

actions.

#Conversation Plan# Example: "<chat><Human 1>:(Word count requirement: x words)XXX <Assistant 1>:

(Word count requirement: x words) XXX <Human 2>:(Word count requirement: x words)XXX <Assistant

2>: (Word count requirement: x words) XXX </chat>", "XXX" is the requirement for the current

conversation content of that role, and "(Word count requirement: x words)" specifies the minimum

word count requirement for utterance of Human or Assistant. It must be noted: the conversation

starts with <chat> as the beginning of the multi-round conversation and ends with </chat> as

the end of the multi-round conversation. The following conversation follows this #Conversation

Plan# and word count requirements: "{dialogue_template}", a total of {number_of_turns} turns of

conversation.

{dialogue_template} <chat><Human 1>:(word count: 50 words)asks with curiosity about creating

the code <Assistant 1>:(word count: 300 words)answers [+detailed explanation] and give code

examples <Human 2>:(word count: 100 words)asks a question about further using the code <Assistant

2>:(word count: 250 words)answers [+detailed explanation] and give code examples <Human 3>:(word

count: 150 words)asks a question about further explaining the code <Assistant 3>:(word count:

300 words)answers [+detailed explanation] and give code examples <Human 4>:(word count: 50

words)expresses his/her needs and asks the Assistant for help about further using the code

<Assistant 4>:(word count: 200 words)answers [+detailed explanation]</chat>
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Table 9: An example of the prompt for generating the English RefGPT-Code-bg data.

##Provided Information## {reference} Based on the ##Provided Information## above and its relevant

topic, expand it into a multi-round conversation. Human will write a piece of code with bugs

based on the given code above (however, Human needs to hide the presence of the given code in the

conversation, and it cannot be mentioned). They will then ask Assistant for help in fixing the

bugs. Assistant needs to identify the mistakes in Human’s code based on the given code above (but

given code cannot be discovered by Human, and it cannot be mentioned in the conversation) and

provide detailed explanations on how to fix the bugs, along with more explanations or examples

if necessary. Afterward, Human and Assistant will continue the conversation around this code.

For unreasonable requests from Human (those that are harmful to society, immoral, or illegal),

Assistant will refuse to answer and explain the reason for not answering, while also providing

reasonable advice to avoid such actions.

#Conversation Plan# Example: "<chat><Human 1>:(Word count requirement: x words)XXX <Assistant 1>:

(Word count requirement: x words) XXX <Human 2>:(Word count requirement: x words)XXX <Assistant

2>: (Word count requirement: x words) XXX </chat>", "XXX" is the requirement for the current

conversation content of that role, and "(Word count requirement: x words)" specifies the minimum

word count requirement for utterance of Human or Assistant. It must be noted: the conversation

starts with <chat> as the beginning of the multi-round conversation and ends with </chat> as

the end of the multi-round conversation. The following conversation follows this #Conversation

Plan# and word count requirements: "{dialogue_template}", a total of {number_of_turns} turns of

conversation.

{dialogue_template} <chat><Human 1>:(word count: 500 words)asks from the perspective of real

life about writing a piece of code with bugs and show the detailed code <Assistant 1>:(Word

count: 250 words)answers [+detailed explanation] and tell Human about the error location in the

code, then provide a correct piece of code <Human 2>:(word count: 100 words)makes a request about

further using the code <Assistant 2>:(Word count: 200 words)answers [+detailed explanation] and

give code examples <Human 3>:(word count: 50 words)asks with curiosity about further explaining

the code <Assistant 3>:(Word count: 250 words)answers [+detailed explanation]</chat>
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B Dataset Examples

Table 10: An example of Chinese RefGPT-Fact.

Reference

北上广深北上广深是指中国大陆地区经济实力最强的四座城市为北京、上海、广州、深圳。这四座城市的
综合实力在中国大陆地区处于最领先的层次。中文名北上广深外文名 Beijing-Shanghai-Guangzhou-Shenzhen
别名一线城市城市数 4北上广深概要北上广深指的是北京、上海、广州、深圳。这4个城市在中国大陆地
区城市中的综合实力和竞争力相对处于最领先的层次，又被称作一线城市。拥有雄厚的经济基础，以及可观
的政治资源，对周边多个省份具有辐射能力，有雄厚的教育资源、深厚的文化，还具有繁华、美丽的夜景，
极为便利的交通和独特的城市魅力。北上广深城市概况北上广深北京北京（Beijing），简称京，中华人民
共和国首都、直辖市、国际大都市、国家中心城市、超大城市，全国政治中心、文化中心、国际交往中心、
科技创新中心，经济与金融的管理中心和决策中心，是中国共产党中央委员会、中华人民共和国中央人民政
府和中华人民共和国全国人民代表大会的办公所在地。北京历史悠久，文化灿烂，是首批国家历史文化名
城、中国八大古都之一和世界上拥有世界文化遗产数最多的城市，3060年的建城史孕育了故宫、天坛、八达
岭长城、颐和园等众多名胜古迹。早在七十万年前，北京周口店镇地区就出现了原始人群部落“北京人”。公
元前1045年，北京成为蓟、燕等诸侯国的都城。公元938年以来，北京先后成为辽陪都、金上都、元大都、
明清国都、民初京兆。1949年10月1日成为中华人民共和国首都。2015年末，北京全市常住人口2170.5万人，
比2014年末增加18.9万人。其中，常住外来人口822.6万人，占常住人口的比重为37.9%。2015年北京市实现
地区生产总值22968.6亿元，比2014年增长6.9%。2015年7月31日，国际奥林匹克委员会主席托马斯·巴赫宣布
北京携手张家口获得2022年冬季奥林匹克运动会的举办权。北京由此成为全球首个既举办过夏季奥林匹克运
动会又即将举办冬季奥林匹克运动会的城市。北上广深上海上海（Shanghai），简称“沪”或“申”，中华人民
共和国直辖市，超大城市，国际大都市、中国国家中心城市，中国的经济中心、贸易中心、航运中心.首批沿
海开放城市。地处长江口，隔东中国海与日本九州岛相望，南濒杭州湾，西与江苏、浙江两省相接。

<user>北上广深是指哪四个城市？
<assistant>北上广深是指中国大陆地区经济实力最强的四座城市，它们分别是北京、上海、广州和深圳。这
四座城市的综合实力在中国大陆地区处于最领先的层次，且被称作一线城市。由于这些城市拥有雄厚的经济
基础、政治资源以及可观的繁荣程度，它们对周边省份具有巨大的辐射能力。

<user>北京在中国有哪些重要的地位？
<assistant>北京，作为中华人民共和国首都，拥有在中国非常重要的地位。首先，它是全国政治中心，是中
国共产党中央委员会、中华人民共和国中央人民政府和全国人民代表大会的办公所在地。其次，它也是中国
的文化中心，是首批国家历史文化名城、中国八大古都之一，具有深厚的文化底蕴。此外，北京还是国际交
往中心、科技创新中心以及经济与金融的管理中心和决策中心。

<user>你能否详细讲一下2015年北京市的经济状况？
<assistant>根据2015年的数据，北京市实现地区生产总值(GDP)为22968.6亿元，比2014年增长了6.9%。同年
末，北京全市常住人口为2170.5万人，比2014年末增加了18.9万人。其中，常住外来人口为822.6万人，占常
住人口的比重为37.9%。这些数据反映了北京市2015年的经济状况以及人口变化情况。

<user>上海市有什么特点？
<assistant>上海，简称“沪”或“申”，是一座具有许多特点的大都市。首先，它是中华人民共和国的直辖市，
同时也是国家中心城市。其次，上海市是中国的经济中心、贸易中心和航运中心，拥有很强的经济实力。此
外，上海市是首批沿海开放城市之一，地处长江口，也是一重要的地理枢纽。因为这些特点，上海在国内和
国际上都具有极高的地位和影响力。
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Table 11: An example of English RefGPT-Fact.

Reference

Joomla (), also spelled Joomla! (with an exclamation mark) and sometimes abbreviated as J!, is a free and open-source
content management system (CMS) for publishing web content on websites. Web content applications include discussion
forums, photo galleries, e-Commerce and user communities and numerous other web-based applications. Joomla is
developed by a community of volunteers supported with the legal, organisational and financial resources of Open Source
Matters, Inc. Joomla is written in PHP, uses object-oriented programming techniques and software design patterns, and
stores data in a MySQL database. It has a software dependency on the Symfony PHP framework. Joomla includes
features such as page caching, RSS feeds, blogs, search, and support for language internationalisation. It is built on a
model–view–controller web application framework that can be used independently of the CMS. Around 6,000 extensions
are available from the Joomla website, and more are available from other sources. As of 2021, it was estimated to be
the fifth most used CMS on the Internet, after WordPress, Shopify, Wix and Squarespace. Overview Joomla has a web
template system using a template processor. Its architecture is a front controller, routing all requests for non-static URIs
via PHP which parses the URI and identifies the target page. This allows support for more human-readable permalinks.
The controller manages both the frontend, public-facing view, and a backend (GUI-driven) administration interface.
The administration interface (a) stores management and content information within a database, and (b) maintains a
configuration file (, usually located in the file system root of the Joomla installation). The configuration file provides the
connection between the server, database and file system and facilitates migrating the website from one server to another.
The backend interface allows website operators to manage users, menus, extensions and web content ... (About 900
words)

<user> I recently came across joomla and i was wondering if you could tell me more about this content management
system (cms). how does it compare to other cms like wordpress, shopify, wix, and squarespace? what type of users does
it cater to, and what kind of applications can be built using joomla?
<assistant> Joomla is a free and open-source content management system (cms) that is widely used for creating web
content on websites. it is designed to cater to users who have basic website creation skills and is ideal for building
various web-based applications such as discussion forums, photo galleries, e-commerce sites, user communities and
much more. joomla is developed and maintained by a community of volunteers, with open source matters, inc. offering
legal, organizational, and financial resources to support the project.

Joomla is built using php, object-oriented programming techniques, and software design patterns. it stores data in a
mysql database and relies on the symfony php framework. some of its features include page caching, rss feeds, blogs,
search capabilities, and support for language internationalization. it also comes with a model-view-controller web
application framework that can be used independently of the cms.

As of 2021, joomla is estimated to be the fifth most used cms on the internet, coming after wordpress, shopify, wix,
and squarespace. with around 6,000 extensions available on the joomla website and more from other sources, it provides
flexibility and extensibility to users.

Comparing it to other cms, joomla’s main advantage is its open-source nature and extensive customization options
through its wide range of extensions. while wordpress is more user-friendly and has a larger community, joomla strikes a
balance between ease of use and flexibility. shopify, wix, and squarespace, on the other hand, are more geared towards
non-technical users and have limitations in extensibility when compared to joomla.

In summary, joomla is a flexible and customizable option for users who have some website creation skills and require
a cms to build diverse web applications.

<user> Thanks for explaining that. I’ve heard that Joomla has a unique web template system and a front-controller
architecture. Can you explain how these features work together and how they benefit the user? Also, what kind of risk
management, backup, and recovery options are available with Joomla?
<assistant> Joomla’s web template system uses a template processor, and its architecture is based on a front-controller
model. this means that all requests for non-static uris are routed through php, which parses the uri and identifies the
target page. this approach allows for more human-readable permalinks, improving the user experience and search engine
friendliness of a website.

Joomla’s front-controller architecture manages both the frontend, public-facing view, and a backend, gui-driven
administration interface. the backend allows website operators to manage users, menus, extensions, and web content. the
system stores management and content information within a database and maintains a configuration file to manage the
connection between the server, database, and file system.

As for risk management, backup, and recovery, joomla itself does not have built-in features for these. however,
third-party extensions and standalone products are available to provide backup and recovery functionality. it is the
website operator’s responsibility to implement and manage these tools to ensure the integrity and security of their
website.

To summarize, joomla’s web template system and front-controller architecture offer improved user experience, search
engine optimization, and ease of administration. although the core cms doesn’t provide backup and recovery features,
third-party options fill this gap and deliver comprehensive risk management and data protection capabilities.

(Two more turns are not shown because of the limited space. The whole dialogue contains about 1050 words.)
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Table 12: An example of Chinese RefGPT-Code-ds.

Reference

describe Remover::Team do
let(:github_client) { double('Github Client ') }
let(:github_team) { double('Github Team', id: 1, name: 'Owners ') }
let(:team) { Remover::Team.new(github_client , github_team) }

describe '#name' do
it 'returns Github team name' do

expect(team.name).to eq(github_team.name)
end

end
...

<user> 在日常工作中，我发现有些Github团队可能没有实际的项目和成员，这使得管理起来非常麻烦。请问
如果我想识别并删除这些无用的团队，应该如何修改这段代码？

describe Remover::Team do
let(:github_client) { double('Github Client ') }
let(:github_team) { double('Github Team', id: 1, name: 'Owners ') }
let(:team) { Remover::Team.new(github_client , github_team) }

describe '#name' do
it 'returns Github team name' do

expect(team.name).to eq(github_team.name)
end

end
...

<assistant> 我明白您的需求，您可以使用这段代码中的‘Remover::Team‘类来实现您的目标。在这个类里，
提供了‘#used‘方法来判断该团队是否有实际的项目和成员。如果团队中没有成员和项目，该方法会返
回‘false‘。
首先，您需要创建一个‘Remover::Team‘对象，传入Github客户端和Github团队实例。例如：

github_client = double('Github Client ')
github_team = double('Github Team', id: 1, name: 'Owners ')
team = Remover::Team.new(github_client , github_team)

之后，您可以通过‘team.used‘方法判断团队是否有实际的项目和成员。如果该方法返回‘false‘，您可以调
用‘team.delete_team‘方法删除这个团队。例如：

if not team.used
team.delete_team

end

<user> 谢 谢 你 的 解 答 ， 我 明 白 了 。 那 我 还 想 请 教 一 下 ， 有 关 代 码 中 的 其 他 方 法 ，
如‘#members_amount‘和‘#repositories_amount‘，它们都是如何实现的？它们会返回什么结果？如果我想得
到具体的成员和仓库信息，而不只是成员数量和仓库数量，我应该如何操作？
<assistant> ‘Remover::Team‘类中的‘#members_amount‘和‘#repositories_amount‘方法分别用于得到团队
中成员数量和项目仓库数量。这两个方法的实现都非常简单，它们分别调用Github客户端
的‘team_members‘和‘team_repositories‘方法，传入团队的ID，并获取结果集的长度。 ...

(Two more turns are not shown because of the limited space. The whole dialogue contains about 1400 words.)
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Table 13: An example of English RefGPT-Code-ds.

Reference

# -*- coding: utf -8 -*-
import datetime
from south.db import db
from south.v2 import SchemaMigration
from django.db import models

class Migration(SchemaMigration):

def forwards(self , orm):
# Adding field 'Question.order'
db.add_column(u'survey_question ', 'order ',

self.gf('django.db.models.fields.IntegerField ')(default=0
),

keep_default=False)

...

<user>

# -*- coding: utf -8 -*-
import datetime
from south.db import db
from south.v2 import SchemaMigration
from django.db import models

class Migration(SchemaMigration):
...

In the context of the provided code, I see there’s a Django migration for adding a color field to an Idea model. Can you
explain how a migration works in Django and how to apply this specific migration to add the ’color’ field to the ’Idea’
model in an existing Django project?
<assistant> Sure! In Django, migrations are a way of managing and propagating changes made to your models (which
affect the database schema) over time. A migration is essentially a set of instructions that the Django migration system
uses to modify your database schema to match the current state of your model.

Applying migrations to your Django project is a two-step process:
1. Creating the migration (migration file generation): When you make changes to your model, you need to inform Django
about the changes. You do this by running the ‘makemigrations‘ command, which creates a new migration file based on
the alterations in the model.
2. Applying the migration (migration execution): After generating the migration file, you need to apply it to your
database to update the schema. You do this by running the ‘migrate‘ command, which processes the migration files
sequentially and updates the database schema accordingly.

In the provided code, a migration is created to add a ’color’ field to the ’Idea’ model. To apply this migration in your
Django project, follow these steps:
1. First, ensure that the migration is in the correct location within your Django project. Migration files are typically
placed within a folder named ’migrations’ inside an application folder. If the Django app containing your ’Idea’ model is
named ’brainstorming’, the migration file should be located at ‘brainstorming/migrations/‘.
2. Next, check if the migration has been generated by running ‘python manage.py makemigrations‘. This will generate
new migration files based on the changes in your models. Since the code you provided already includes a migration file,
this step may not be necessary. However, it’s recommended to run this command to ensure all migrations are accounted
for.
3. Now, apply the migration to update your database schema by running ‘python manage.py migrate‘. This command
will process all pending migration files and apply them to the database.

By following these steps, you’ll successfully apply the migration to add the ’color’ field to the ’Idea’ model in
your existing Django project. Note that this migration is reversible, meaning you can undo the change by executing
the ‘python manage.py migrate <app_name> <migration_name_before_your_migration>‘ command. In this case, the
‘<app_name>‘ would be ’brainstorming’, and ‘<migration_name_before_your_migration>‘ would be the name of the
migration immediately preceding the one adding the ’color’ field.

(Two more turns are not shown because of the limited space. The whole dialogue contains about 1250 words.)
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Table 14: An example of Chinese RefGPT-Code-cr.

Reference

...
#include "ScriptPCH.h"
#include "zulaman.h"

...

#define SPELL_REMOVE_AMANI_CURSE 43732
#define SPELL_PUSH_MOJO 43923
#define ENTRY_FOREST_FROG 24396

class npc_forest_frog : public CreatureScript
...

<user> 我在设计一个游戏关卡，想要让玩家帮助一名被诅咒变成青蛙的角色恢复原状。游戏中，玩家可以使
用去除诅咒的法术，对青蛙施法后，有一定概率会将青蛙恢复原形。如果诅咒被解除，青蛙会变回不同的角
色，并且有几率掉落道具。请问如何编写这部分程序代码呢
<assistant> 根据您的需求，我们可以使用C++编写一个类来实现这个功能。首先，我们需要创建一个名
为“npc_forest_frog”的类，该类将继承自一个外部库提供的“CreatureScript”类。我们需要在这个新类中实现青
蛙的诅咒解除逻辑。在‘npc_forest_frog‘类中，我们需要创建一个嵌套的结构体‘npc_forest_frogAI‘，该结构体
继承自‘ScriptedAI‘类。‘ScriptedAI‘类是游戏引擎中AI相关的基类。在这个结构体内，我们首先定义几个函数
来实现AI的基本逻辑，例如“Reset”、“EnterCombat”等。
接下来，我们需要实现诅咒被解除时的行为。当法术命中青蛙时，我们需要在‘SpellHit‘函数中编写具体的

逻辑。例如，当法术的ID为‘SPELL_REMOVE_AMANI_CURSE‘（您可以自定义该常量的值）时，我们检查
青蛙是否处于诅咒状态。如果是，我们可以生成一个随机数，根据该随机数决定青蛙恢复成哪个角色，以及
是否掉落道具。具体代码如下：

#include "ScriptPCH.h"
#include "zulaman.h"

#define SPELL_REMOVE_AMANI_CURSE 43732
#define SPELL_PUSH_MOJO 43923
#define ENTRY_FOREST_FROG 24396

class npc_forest_frog : public CreatureScript
{

public:
npc_forest_frog () : CreatureScript("npc_forest_frog") {}

struct npc_forest_frogAI : public ScriptedAI
{

...

当您编写完代码后，可以将该代码添加到游戏引擎中，并进行相应的配置以创建您想要的游戏关卡。

<user>那么如果我想让掉落的道具是低概率事件并让玩家感觉更有挑战性，我应该如何调整代码呢？
<assistant>要调整掉落道具的概率，您只需修改‘SpellHit‘函数中‘rand() % 100‘后面的数字。这个数字表示掉落
道具的概率。例如，如果您想让掉落道具的概率降低到10%，可以将其修改为：

if (rand() % 100 < 10) // 10%
DoCast(caster , SPELL_PUSH_MOJO , true);

else
DoSpawnRandom ();

...

(One more turns are not shown because of the limited space. The whole dialogue contains about 1150 words.)
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Table 15: An example of English RefGPT-Code-cr.

Reference

package ch.zhaw.mapreduce.plugins.socket.impl;

import javax.inject.Inject;
import ch.zhaw.mapreduce.CombinerInstruction;
import ch.zhaw.mapreduce.MapInstruction;
import ch.zhaw.mapreduce.ReduceInstruction;

...

<user> I am working on a project that involves different tasks like mapping, reducing, and combining. I need to create
task runners that can execute these tasks dynamically based on the received instructions. I also need to differentiate
between mapping and reducing tasks to execute them correctly. Can you help me create a Java code that can achieve this?
<assistant> Certainly! Let’s start by creating an interface called ‘TaskRunnerFactory‘ with a single method
‘createTaskRunner‘, that takes an ‘AgentTask‘ object as input and returns a ‘TaskRunner‘ object. Later, we’ll implement
the logic for differentiating between the mapping and reducing tasks. Here’s the interface:

import javax.inject.Inject;

public final class TaskRunnerFactoryImpl implements TaskRunnerFactory {
private final ByteArrayClassLoader classLoader = new ByteArrayClassLoader

();
private final MapTaskRunnerFactory mtrFactory;
private final ReduceTaskRunnerFactory rtrFactory;

@Inject
public TaskRunnerFactoryImpl(MapTaskRunnerFactory mtrFactory ,

ReduceTaskRunnerFactory rtrFactory)
{

this .mtrFactory = mtrFactory;
this .rtrFactory = rtrFactory;

}

@Override
public TaskRunner createTaskRunner(AgentTask task) throws

InvalidAgentTaskException {
if (task instanceof MapAgentTask) {

// Handle MapAgentTask
} else if (task instanceof ReduceAgentTask) {

// Handle ReduceAgentTask
} else {

throw new InvalidAgentTaskException("Cannot Handle: " + task)
;

}
}

}

In this implementation, we first check if the ‘AgentTask‘ is an instance of ‘MapAgentTask‘ or ‘ReduceAgentTask‘.
Based on that, we’ll execute the respective logic. We also use a custom ‘ByteArrayClassLoader‘ to load the classes
dynamically and call different getters based on the task type.

Inside the ‘createTaskRunner()‘ method, we can now implement the logic to handle ‘MapAgentTask‘ and
‘ReduceAgentTask‘ instances:

// For MapAgentTask
MapAgentTask mt = (MapAgentTask) task;
MapInstruction mapInstr = loadClass(mt.getMapInstructionName (), mt.

getMapInstruction (), MapInstruction.
class);

...

...
(Two more turns are not shown because of the limited space. The whole dialogue contains about 800 words.)
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Table 16: An example of Chinese RefGPT-Code-bg.

Reference

...
class BTree:

def __init__(self , value):
self .root = Node(value)

...

<user>
嗨Assistant，我最近在学习Python，现在遇到了一个问题。我已经写了一段代码，但是它运行不起来，能帮
忙看一下是哪里出了问题吗？代码如下：

...
class BTree:
...

def insert(self , value):
def helper(cur_node , value):

if value > cur_node.value:
if cur_node.right:

cur_node = cur_node.right
helper (cur_node , value)

else :
cur_node .right = Node(value)

else :
if cur_node.left:

cur_node = cur_node.left
helper (cur_node , value)

else :
cur_node .left = Node(value)

helper (self.root , value)
...

这段代码是我创建了一个二叉搜索树，并插入了一些节点，但是当我运行这段代码时，它卡住了。我想知道
错误在哪里，以及如何修复它。谢谢！
<assistant> 很高兴能帮助你解决问题。首先，我注意到你的代码中存在一个关于递归调用的问题。
在‘insert‘方法的‘helper‘函数中，你需要在递归调用之前使用return语句。请注意，在调用‘helper()‘函数时，应
使用‘return helper(cur_node, value)‘而不是‘helper(cur_node, value)‘，这样递归调用时才能正确返回。试试以下
代码：

...
class BTree:
...

def insert(self , value):
def helper(cur_node , value):

if value > cur_node.value:
if cur_node.right:

cur_node = cur_node.right
return helper(cur_node , value)

else :
cur_node .right = Node(value)

else :
if cur_node.left:

cur_node = cur_node.left
return helper(cur_node , value)

else :
cur_node .left = Node(value)

return helper(self.root , value)
...

现在这段代码应该可以正常工作了。如果你还有其他问题，请随时告诉我。

(Three more turns are not shown because of the limited space. The whole dialogue contains about 1300 words.)
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Table 17: An example of English RefGPT-Code-bg.

Reference

...
(function($) {

var methods = {
init : function(options) {

var defaults = {

element : {
selector : "",
shadowSize : "30",
shadowColor : "#222D3A",
shadowFade : "0.3",
shadowAlpha : "0.03",

},
...

<user> Hey, I was trying to implement a long shadow effect on a text element using jQuery, but I cannot seem to get the
desired effect. I’ve written this code, but it seems to have some bugs. Can you help me fix it?
Here’s the code:

...
function applyLongShadow(o) {
...

for (var i = 0; i <= o.textElement.shadowSize; i++) {
var x = o.textElement.shadowSize - i;
var y = o.textElement.shadowSize - i;
var shadow = x + "px " + y + "px ";

if (o.textElement.shadowFade && i < fade) {
shadow += xcolor.gradientlevel(darkerTX , txc , fadeText-i, fadeText)

;
...

<assistant> I see that you would like to apply a long shadow effect on a text element using jQuery. I noticed a couple of
issues in your code that might be causing the undesired effect.

Firstly, you are using ‘xcolor.gradientlevel()‘ in your code, but you haven’t included the ‘xcolor‘ library or defined the
variables ‘darkerTX‘, ‘txc‘, and ‘fadeText‘. You can instead use the ‘.xcolor.gradientlevel()‘methodfromthe‘.xcolor‘
library, and make sure to include the library in your project.

Here’s a corrected version of your code:

...
function applyLongShadow(o) {
...

for (var i = 0; i <= o.textElement.shadowSize; i++) {
var x = o.textElement.shadowSize - i;
var y = o.textElement.shadowSize - i;
var shadow = x + "px " + y + "px ";

if (o.textElement.shadowFade && i < fade) {
var tweenedTX = $.xcolor.gradientlevel(darkerTX , txc , fade - i, fade

);
...

Please make sure to include the ‘$.xcolor‘ library in your project, and let me know if you need further assistance.

(One more turns are not shown because of the limited space. The whole dialogue contains about 550 words.)
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C Truthfulness Evaluation Examples

Table 18: An Example of truthfulness evaluation on the generated dialogues by Self-Instruct (Wang et al., 2022).

Reference Dialogue Explanation Result

The fifth series of British
talent competition programme
Britain’s Got Talent was broad-
cast on ITV ... As Piers
Morgan had departed from the
programme the previous year,
and the schedule of Simon
Cowell made him unable to
attend auditions, the producers
arranged for Amanda Holden to
be joined by David Hasselhoff
and Michael McIntyre on the
judging panel. Due to Hassel-
hoff’s schedule during filming
of the auditions, Louis Walsh
stepped in as a guest judge for
the sessions he could not attend
...

<user> Who were the
judges for the 5th series of
Britain’s Got Talent, and
what changes occurred in
the judging panel that year?
<assistant> The judges for
the 5th series of Britain’s
Got Talent were Simon
Cowell, Amanda Holden,
Piers Morgan, and Kelly
Brook, with Ant and Dec
as hosts. That year, Kelly
Brook was replaced by a ro-
tating panel of guest judges
due to her absence after just
six days of filming.

<1> The Assistant incorrectly states
that the judges for the 5th series
of Britain’s Got Talent were Simon
Cowell, Amanda Holden, Piers Mor-
gan, and Kelly Brook. The correct
judges were Amanda Holden, David
Hasselhoff, and Michael McIntyre,
with Simon Cowell only present for
the live episodes. Piers Morgan
had departed from the program the
previous year, and Kelly Brook was
not involved at all.
<2> The answer claims that Kelly
Brook was replaced by a rotating
panel of guest judges, but this
is incorrect. In the 5th series,
there were no guest judges other
than Louis Walsh, who temporarily
replaced David Hasselhoff when
he could not attend the London
auditions.

A consumer economy describes
an economy driven by consumer
spending as a percent of its gross
domestic product, as opposed to
the other major components of
GDP (gross private domestic in-
vestment, government spending,
and imports netted against ex-
ports). In the U.S., it is usually
said by economists, including
in Henry Hazlitt’s Ëconomics
in One Lessonẗhat 70% of
spending is consumer-based, but
this number is disputed by
economists like Businessweek
columnist Michael Mandel ...

<user> What are the main
components of gdp and how
does a consumer economy
fit into this?
<assistant> The main com-
ponents of GDP are con-
sumption, investment, gov-
ernment spending, and net
exports. A consumer econ-
omy is an economy that
is driven by the spending
and saving behavior of in-
dividuals. Consumption
is the largest component
of GDP in most countries,
including the United States.
Therefore, the behavior of
consumers is a major driver
of economic growth.

The Assistant’s answer correctly
identifies the main components
of GDP, which are consumption,
investment, government spending,
and net exports. The answer
also accurately explains how a
consumer economy fits into this,
stating that consumption is the
largest component of GDP in most
countries and thus the behavior of
consumers drives economic growth.
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Table 19: An Example of truthfulness evaluation on the generated dialogues by Baize (Xu et al., 2023b).

Reference Dialogue Explanation Result

Scoat Fell is a fell in the western
part of the English Lake District.
It stands at the head of the
Mosedale Horseshoe with its
back to Ennerdale. Paths lead to
Scoat Fell from Ennerdale over
Steeple, from Wasdale over Red
Pike, and along the ridge from
Pillar. Topography The Western
Fells occupy a triangular sector
of the Lake District, bordered
by the River Cocker to the
north east and Wasdale to the
south east. Westwards the hills
diminish toward the coastal plain
of Cumberland. At the central
hub of the high country are Great
Gable and its satellites, while
two principal ridges fan out on
either flank of Ennerdale, the
western fells in effect being a
great horseshoe around this long
wild valley. Scoat Fell is on the
southern arm ...

<user> Can you tell me the location of
Scoat Fell in the English Lake District?
<assistant> Sure! Scoat Fell is located
in the western part of the English Lake
District, specifically in the Wasdale area.
It is one of the highest peaks in the Lake
District, with a height of 841 metres or
2,759 feet.

<user> How can I access Scoat Fell?
<assistant> There are several ways to
access Scoat Fell. One of the most popular
routes is to start from the Wasdale Head
village and hike up via the Brown Tongue
path. Another option is to start from the
Lake District Youth Hostel in Eskdale and
hike up via the path that leads to Burnmoor
Tarn.

<user> Are there any other peaks near
Scoat Fell that I can visit?
<assistant> Yes, there are several peaks
near Scoat Fell that are worth visiting. One
of them is Scafell Pike, which is the highest
mountain in England and is located only a
few miles to the east of Scoat Fell. Other
peaks nearby include Pillar, Haycock, and
Red Pike.

<1> The location of Scoat Fell
is mentioned inaccurately as
being in the Wasdale area, but
it is actually in the western part
of the English Lake District
at the head of the Mosedale
Horseshoe with its back to
Ennerdale.
<2> The provided access
routes to Scoat Fell are incor-
rect. According to the pro-
vided information, the paths to
Scoat Fell are from Ennerdale
over Steeple, from Wasdale
over Red Pike, and along the
ridge from Pillar.

Morchella esculenta, (commonly
known as common morel, morel,
yellow morel, true morel, morel
mushroom, and sponge morel)
is a species of fungus in the
family Morchellaceae of the
Ascomycota. It is one of the
most readily recognized of all
the edible mushrooms and highly
sought after. Each fruit body
begins as a tightly compressed,
grayish sponge with lighter
ridges, and expands to form a
large yellowish sponge with large
pits and ridges raised on a large
white stem. The pitted yellow-
brown caps measure broad by
tall, and are fused to the stem
at its lower margin, forming a
continuous hollow. The pits are
rounded and irregularly arranged.
The hollow stem is typically
long by thick, and white to
yellow. The fungus fruits under
hardwoods and conifers during
a short period in the spring,
depending on the weather, and is
also associated with old orchards,
woods and disturbed grounds ...

<user> Can you tell me about morchella
esculenta and its main features?
<assistant> Morchella esculenta is a
species of edible mushroom, also known
as the morel mushroom. Its main
features include a distinctive honeycomb
appearance and a meaty texture.

<user> Where can morchella esculenta be
found?
<assistant> Morchella esculenta can typi-
cally be found in areas with rich soil, such
as forests and grasslands. It is commonly
found in North America and Europe during
the spring season.

<user> Are there any other types of morel
mushrooms besides morchella esculenta?
<assistant> Yes, there are several other
types of morel mushrooms, including
Morchella conica and Morchella deliciosa.
However, Morchella esculenta is the most
commonly consumed morel mushroom.

<user> Can you describe the flavor of
morchella esculenta?
<assistant> Morchella esculenta has a
complex umami flavor that is often
described as nutty, earthy, and slightly
smoky. It pairs well with butter and herbs,
making it a popular ingredient in many
recipes.

The dialogue correctly de-
scribes the main features of
Morchella esculenta, its habi-
tat, alternative types of morel
mushrooms, and the flavor
profile of Morchella esculenta.
The answers provided by the
AI are consistent with the pro-
vided information, and there
are no factual errors.
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