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Abstract

The classical deep clustering optimization
methods basically leverage information such
as clustering centers, mutual information, and
distance metrics to construct implicit general-
ized labels to establish information feedback
(weak supervision) and thus optimize the deep
model. However, the resulting generalized
labels have different degrees of errors in the
whole clustering process due to the limitation
of clustering accuracy, which greatly interferes
with the clustering process. To this end, this
paper proposes a general deep clustering
optimization method from the perspective
of empirical risk minimization, using the
correlation relationship between the samples.
Experiments on two classical deep clustering
methods demonstrate the necessity and effec-
tiveness of the method. Code is available at
https://github.com/yangzonghao1024/DCGLU.

1 Introduction

Cluster analysis plays a role in machine learning
and data mining as it can classify data into differ-
ent groups in an unsupervised way. Over the past
decades, a large number of clustering methods with
shallow models have been proposed (Ren et al.,
2019; Comaniciu and Meer, 2002; Ren et al., 2018;
Bishop and Nasrabadi, 2006; Ren et al., 2017; Cai
et al., 2013; Huang et al., 2021). The performance
of them on the complex data is limited due to the
poor power of feature learning.

Recently, deep learning based clustering ap-
proach (referred to deep clustering) aims at effec-
tively extracting more clustering-friendly features
from data and performing clustering with learned
features simultaneously (Chang et al., 2017; Albert
et al., 2022; Ronen et al., 2022).

After in-depth research, we find that most deep
clustering models are usually optimized through
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specific supervision information. We call it gen-
eralized supervision in clustering which is imple-
mented through generalized labels in most cases.
The generalized labels usually have different gener-
ation method according to different deep clustering
algorithm. We will elaborate them in Section 2.
Here, we argue that the generalized labels are full
of noise due to the performance limitation of clus-
tering model and estimation methods especially at
the beginning of clustering progress, which will
disturb the recognition of clustering group and in-
fluence the clustering result. To this end, inspired
by Positive and unlabeled Learning (PU learning),
we propose a novel method to reduce the impact
of noise in generalized labels, namely Deep Clus-
tering optimization from Generalized Labeled and
Unlabeled data (DCGLU for short).

The proposed DCGLU divides the clustering
samples into high confidence samples and low con-
fidence samples according to the confidence level
of the samples been correctly clustered. Obviously,
the generalized labels of low confidence samples
tend to have more errors (as the decision confidence
usually related to accuracy (Hu et al., 2020)). In
this case, we propose to regard the low confidence
samples as unlabeled samples and the high confi-
dence samples as labeled samples, then learning
the model in the same fashion with PU learning
to reduce the errors in generalized supervision and
thus improve the clustering performance.

Overall, our contributions can be summarized as
follows:(1) it proposes a new problem that exists in
most deep clustering approaches and formulate it as
a problem of generalized supervision with general-
ized label, which will facilitate the research of deep
clustering; (2) it proposes a general deep clustering
optimization method, which can be leveraged to
reduce the impact of noise in clustering; (3) experi-
ments show the proposed DCGLU can improve the
clustering features and clustering results of strong
baselines.
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Figure 1: Architecture overview of DCGLU.

2 Problem Formulation

Given the unlabeled text dataset D = {xi, i =
1, ..., N}, where xi represents the ith text in the cor-
pus, our goal is to cluster N samples into k differ-
ent classes by an unsupervised method. Each sam-
ple in D is represented by a feature vector. We use
the pre-trained language model Bert (Devlin et al.,
2018) to obtain the representation ei = BERT (xi)
of each text.

As discussed in Section 1, the deep model in
deep clustering methods is usually optimized by
specific supervised information. We refer the
specific supervision to generalized supervision,
which is basically realized by generalized labels.
The generalized label generation method varies
among different clustering methods 1: 1) The clus-
ter center used in K-means-based methods (Yang
et al., 2017; Xie et al., 2016) can be considered as
the generalized label; 2) Spectral clustering correla-
tion methods (Chang et al., 2017; Yang et al., 2019)
use the distance similarity matrix between sam-
ples to minimize the similarity distance between
samples, the similarity between samples can be
regarded as generalized labels; 3) Gaussian Mix-
ture Model methods (Ronen et al., 2022) assume
that the samples in each class obey an indepen-
dent Gaussian distribution. The center of the Gaus-
sian distribution can be regard as the generalized
label; 4) (Caron et al., 2018) use the clustering
assignment results as pseudo-label information to
optimize feature generation. Thus clustering as-
signment results are the generalized labels.

Formally, deep clustering algorithm will gen-
erate a target distribution P , which is used to in-
dicate the probability distribution of samples of
the same category, and optimize the clustering
model through stochastic gradient descent algo-

1please note that the generalized label is not necessarily
a discrete classification label, but also a continuous measure-
ment, such as distance

rithm. Hence, the generated target distribution P
can be considered as the distribution of the gen-
eralized labels Y ′ of the samples. The process of
fine-tuning the deep clustering model is the process
of generalized label exploitation, which can be de-
scribed formally by the experience risk Rδ(f):

Rδ(f) =
1

n

n∑

i=1

L
(
f (xi) , y

′
i

)
(1)

where L is the distance metric function of f(x) and
the generalized label y′, (xi, y′i) ∼ P .

3 Method

The noises in generalized label Y ′ result in error
propagation problem. A common used method
for the problem is instance weighting (Lison
and Bibauw, 2017): R

′
δ(f) = 1

n

∑n
i=1wi ·

L (f (xi) , y
′
i). wi is the importance estimation

weight of each sample. Clearly, there are two main
challenges for instance weighting, (1) it reduces
the impact of noise while ignoring a large amount
of information in data with small wi; (2) the es-
timation of wi is very tricky due to the accuracy
limitation of unsupervised clustering.

For challenge (2), we propose to use the con-
fidence of samples been correctly clustered (easy
estimation, see appendix A.1) to measure the qual-
ity of generalized labels. Note that the confidence
cannot replace noise estimation as the generalized
labels tend to have little errors with high confidence
but the contrary is not necessarily true in most cases.
To solve the above problem and challenge (1), we
regard the samples with low confidence as the unla-
beled data as we cannot make sure the correctness
of their generalized labels.2 Therefore, the samples
are divided into high-confidence labeled samples
and unlabeled (low confidence) samples according
to their confidence levels by hyper-parameter t. 3

Then we adapt PU learning (Liu et al., 2002) to
our case for model optimization. Here we directly
provide the final adaptation formula, for detailed

2According to the maximum entropy principle, the optimal
treatment for samples with unknown distribution is to make
no assumptions, in which case the probability distribution is
the most uniform and the risk of prediction is minimal.

3We set t to 0.8 in the experiments which performs well in
different data sets and for different models.
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Dataset SNIPS DBPedia
Method NMI ARI ACC NMI ARI ACC

KM 71.42 67.62 84.36 67.26 49.93 61.00
AC 71.03 58.52 75.54 65.63 43.92 56.07

SAE-KM 78.24 74.66 87.88 59.70 31.72 50.29
DEC 84.62 82.32 91.59 53.36 29.43 39.60
DCN 58.64 42.81 57.45 54.54 32.31 47.48

BERT-KM 52.11 43.73 70.29 60.87 26.6 36.14
DAC 75.51± 4.93 67.13± 7.10 77.17± 6.61 72.73± 3.57 53.01± 5.04 63.27± 5.74

DAC* 79.92 ± 4.40 70.67 ± 6.89 79.64 ± 6.22 74.25 ± 2.57 56.93 ± 4.36 66.90 ± 4.96

DeepDPM 83.69± 2.62 79.48± 5.80 88.35± 6.10 69.17± 4.33 48.02± 6.68 58.30± 6.52

DeepDPM* 85.15 ± 0.10 82.93 ± 0.12 92.07 ± 0.05 72.14 ± 2.11 52.84 ± 3.21 62.36 ± 4.54

Table 1: The clustering results on two datasets, where with * denotes the result after introducing DCGLU. SNIPS
and DBPedia baseline results are obtained from the unsupervised section of (Lin et al., 2020). All reported results
are in percentages. DAC as well as DeepDPM results are averaged from the source code or third-party quality code
under 10 runs (±std.dev.).

derivation process, please refer to Appendix A.2:

R̂pu(f) = πpR̂
+
p (f) + max

{
0, R̂−

u (f)− πpR̂
−
p (f)

}

R̂+
p (f) =

1

np

np∑

i=1

L
(
f (xpi ) , y

′p
+

)

R̂−
p (f) =

1

np

np∑

i=1

L
(
f (xpi ) , y

′p
−
)

R̂−
u (f) =

1

nu

nu∑

i=1

L
(
f̄ (xui ) ,−1

)

(2)

where y′p+ is the multi-class generalized label corre-
sponding to the high confidence sample; in general,
y′p− can be expressed as y′p− = 1 − y′p+ ; πp is the
prior probability of positive samples.

Overall, we give the clustering optimization algo-
rithm in the Algorithm 1 in appendix A.2, and give
the architecture of DCGLU in Figure 1. Clearly,
DCGLU realizes decoupling from the clustering
model, therefore it can be applied to most cluster-
ing algorithms.

4 Experiments

4.1 Experiment Setup
We apply the DCGLU method on two strong deep
clustering method: DAC (Chang et al., 2017) and
DeepDPM (Ronen et al., 2022), and then evalu-
ate them on two publicly available text datasets:
SNIPS (Coucke et al., 2018)(7 classes) and DBPe-
dia (Lin et al., 2020) (14 classes). We further take
K-Means(KM) (MacQueen, 1967) and agglomer-
ative clustering(AG) (Gowda and Krishna, 1978),
SAE-KM, BERT-KM, Deep embedding cluster-
ing(DEC) (Xie et al., 2016), Deep clustering net-
work(DCN) (Yang et al., 2017), etc as the base-
lines into comparison to show the competitiveness

of DCGLU. We keep our primary experimental
setup consistent with what DeepDPM4 and DAC5

reported in their original paper. For more details of
datasets, baselines and implement settings please
refer to Appendix B.

4.2 Compared with strong baselines
Table 1 shows the clustering results of strong base-
lines and the effectiveness of DCGLU. We can
draw the following observations.

Firstly, the proposed DCGLU has significant im-
provement on two different kinds of deep cluster-
ing methods DAC and DeepDPM (with p-value <
0.01 on paired t-test). The consistency improve-
ment of multiple algorithms, evaluation metrics
and datasets indicates that DCGLU has better ef-
fectiveness and universality.

Secondly, we can see that 1) on the SNPIS
dataset, with the help of DCGLU, DeepDPM suc-
ceeds in significantly outperforming the strongest
baseline system (DEC) participating in the compar-
ison (with p-value < 0.01 on paired t-test); 2) on
the DBPedia dataset, DCGLU makes DAC as well
as DeepDPM, the top two powerful systems, get
better results. This indicates that the error propaga-
tion problem in generalized supervision described
in this paper has a large impact on the performance
of deep models and is prevalent (even in very strong
clustering systems), while DCGLU can deal with
the problem and get better results.

In Section 3, we discussed that the instance
weighting method can mitigate the noise problem
in generalized labels, unfortunately it is difficult to

4https://github.com/BGU-CS-VIL/DeepDPM
5https://github.com/thuiar/CDAC-plus
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estimate the noise of generalized labels accurately
in the clustering algorithm. This paper uses con-
fidence to select high confidence labeled samples
and unlabeled samples. In this case, can we use
confidence as weight to mitigate the noise prob-
lem? The answer is yes but we cannot get better
clustering results in experiments. Taking DAC al-
gorithm as an example, compared with the orig-
inal DAC algorithm, instance weighting (regard
the confidence level as the instance weight) de-
creases 3.31,3.79,2.63 percentage points for NMI,
ARI, and ACC metrics on SNIPS dataset, and
7.19,6.59,6.16 percentage points for the three met-
rics on DBPedia dataset, respectively. This is be-
cause the generalized labels with low confidence
level are not necessarily noise, so the instance
weighting using confidence level will ignore a lot
of relevant information, which makes the clustering
effect appear a certain degree of degradation.

4.3 More evaluations

We evaluate the representation ability of DCGLU
as learning better clustering features is very im-
portant for deep clustering algorithm (Caron et al.,
2018). Good representation of clustering indicate
the clustering results can be further improved by
fine-tuning or distance-based clustering methods,
etc. In the experiments, we leverage K-Means and
DEC as the post clustering method based on the
features learned by DCGLU, and get consistency
and significant improvements on the two datasets
(with p-value < 0.01 on paired t-test), which indi-
cates DCGLU can learn better representations. For
more details please see Appendix C.1.

The πp in Equation 2 is the key hyper-parameter
in DCGLU, we conducted a detailed analysis to
guide its setting in specific applications. Fortu-
nately, we found that using a constant πp (πp =
0.5) can already achieve good results, which greatly
reduces the conditions of DCGLU applications.
For more details please see Appendix C.2.

5 Related Work

Deep clustering. Researchers have proposed
many clustering methods, including center-of-
mass-based clustering (MacQueen, 1967), density-
based clustering (Ester et al., 1996; Comani-
ciu and Meer, 2002), agglomerative clustering
(AG) (Gowda and Krishna, 1978) and so on, but
these traditional clustering methods fix sample fea-
tures, and the clustering performance of the model

tends to be poor when the extracted sample features
are poor. In recent years, researchers (Xie et al.,
2016; Yang et al., 2017) have combined deep neural
networks to focus their work in deep clustering by
feature clustering jointly. (Chang et al., 2017) pro-
posed Deep Adaptive Cluster(DAC), which trans-
forms the clustering problem into a binary pairwise-
classification framework to determine whether sam-
ples belong to the same class. (Hadifar et al., 2019)
proposed to learn discriminative features from both
an autoencoder and a sentence embedding, and
then update the weights of the encoder network
using assignments of clustering algorithm as su-
pervision. (Zhang et al., 2021) proposed Support-
ing Clustering with Contrastive Learning (SCCL)
to leverage contrastive learning to promote better
separation. (Ronen et al., 2022) proposed Deep
Dirichlet Process Mixture(DeepDPM) to adapt to
changes in the k-values of clustering categories
by dynamically performing split-and-merge oper-
ations. In this paper, we focus on the influence of
noise in clustering which is not explicitly investi-
gated before.

PU learning. Positive-unlabeled (PU) learning
has been studied for a long time (De Comité et al.,
1999; Du Plessis et al., 2014, 2015; Kiryo et al.,
2017). For PU learning (Liu et al., 2002) is de-
fined as follows: given a set of positive samples P
and a set of unlabeled samples U , which contain
hidden positive and negative samples, construct a
binary classifier to classify the samples. PU learn-
ing is used in many natural language processing
applications, (Xia et al., 2013) combined instance
selection and instance weighting to apply PU learn-
ing to cross-domain sentiment classification; (Peng
et al., 2019) explored the way to perform named
entity recognition (NER) using only unlabeled data
and named entity dictionaries; (He et al., 2020)
presented a method to improve the performance
of distant supervision relation extraction with PU
Learning.

In this paper, inspired by PU learning, we pro-
pose a novel method (DCGLU) to improve the
performance of text clustering, which 1) transform
the multi-classification problem in clustering into
binary classification; 2) establish a binary classifi-
cation selector; 3) from the perspective of empirical
risk minimization, dig the correlation between gen-
eralized labeled and unlabeled samples. Clearly,
there are some major differences between PU learn-
ing and DCGLU.
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6 Conclusion

In this paper, we propose the concept of general-
ized supervision and generalized labels in cluster-
ing which can help to study the impact of noise
in clustering and thus improve the performance
of clustering. Based on the generalized supervi-
sion and labels, we propose a deep clustering op-
timization method, namely Deep Clustering opti-
mization from Generalized Labeled and Unlabeled
data (DCGLU) which can be leveraged to most
deep clustering methods of text. As we discussed
in related works, DCGLU different from existing
clustering and clustering optimization approaches.
The experimental results demonstrate the necessity
and effectiveness of the method.
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Limitations

Due to the limitations imposed by the data repre-
sentation methods, in future work, we will attempt
to apply our method to image data.
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A Detailed Explanations

A.1 Method of Confidence Estimation

Compared with the estimation of generalized la-
bels, the method of obtaining confidence is rela-
tively simple. For examples, in the method based
on the cluster center, the closer the sample is to the
cluster center, the higher the possibility of belong-
ing to the center, so the confidence level can be
acquired by the distance; in the method based on
the similarity between samples, the higher the sim-
ilarity between samples, the higher the possibility
of the sample pair belonging to the same category,
thus the confidence level can be acquired by the
similarity between samples.

A.2 Adapting PU Learning to Deep Clustring

According to the problem of learning from unla-
beled data discussed in Section 3, we find that PU
learning has more in-depth research, which can pro-
mote the identification of samples with similar char-
acteristics of positive data among unlabeled sam-
ples. In the scenario of clustering, high-confidence
labeled samples and unlabeled (low confidence)
samples can be regard as the positive samples and
unlabeled samples in PU learning respectively. The
classical PU learning (Du Plessis et al., 2014) relies
on the binary unbiased risk estimator to mine the
correlation between unlabeled samples and positive
samples:

R̂pu(f) = πpR̂
+
p (f)− πpR̂

−
p (f) + R̂−

u (f) (3)

where πp is the prior probability of positive sam-
ples. Among Eq. (3),

R̂+
p (f) =

1

np

np∑

i=1

L (f (xpi ) ,+1) (4)

R̂−
p (f) =

1

np

np∑

i=1

L (f (xpi ) ,−1) (5)

R̂−
u (f) =

1

nu

nu∑

i=1

L (f (xui ) ,−1) (6)

where {+1,−1} corresponds to the labels of posi-
tive and unlabeled samples, respectively.

Here we introduce PU learning to deep cluster-
ing to help use the generalized labels and extend
it to multiple classes to adapt for the application
scenario of the clustering, in which high confidence
labeled samples are considered as positive samples

and unlabeled (low confidence) samples are con-
sidered as unlabeled samples, thus:

R̂+
p (f) =

1

np

np∑

i=1

L
(
f (xp

i ) , y
′p
+

)
(7)

R̂−
p (f) =

1

np

np∑

i=1

L
(
f (xp

i ) , y
′p
−
)

(8)

where,y′p+ is the multi-class generalized label cor-
responding to the high confidence sample; Eq.(8)
indicates that the high confidence sample does not
belong to the loss of the currently assigned gen-
eralized label, in general, y′p− can be expressed as
y′p− = 1 − y′p+ . Based on the above development
method, R̂−

u (f) can be extended to:

R̂−
u (f) =

1

nu

nu∑

i=1

L
(
f (xui ) , y

′u
−
)

(9)

However, there is no reliable multi-class gen-
eralized label for low confidence samples. Simi-
larly, based on the maximum entropy principle, we
assume that the generalized label y′p of each un-
labeled (low confidence) sample obeys a uniform
distribution, i.e., the unlabeled sample expects the
minimum under all category labels, so for the unla-
beled sample,we transform Eq.(9) into:

R̂−
u (f) =

1

nu

nu∑

i=1

L
(
f̄ (xui ) ,−1

)
(10)

where f̄ (xui ) is the mean of the predicted probabil-
ities of unlabeled (low confidence) samples over
all categories. The extension method, including Eq.
(7), Eq.(8), and Eq.(10), can be approximated as
a way to complete the learning of high confidence
categorized samples and uncategorized (low confi-
dence) samples by transforming the multi-category
task split into multiple binary categories. Further,
to prevent overfitting we use the non-negative risk
estimator (Kiryo et al., 2017), which transforms
Eq.(3) into:

R̂pu(f) = πpR̂
+
p (f) + max

{
0, R̂−

u (f)− πpR̂
−
p (f)

}
(11)

By substituting Eq.(7), Eq.(8), and Eq.(10) into
Eq.(11), the loss function of the optimized deep
clustering model proposed in this paper can be
obtained, which is called Deep Clustering opti-
mization from Generalized Labled and Unlabeled
learning algorithm(DCGLU). It can be added as
a regularization term into the currently commonly
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used deep clustering algorithm, with good general-
ization ability:

Ltotal = Lori + λ · R̂pu(f) (12)

Where Lori is the original loss of deep clustering
algorithm, λ is the blend factor, and R̂pu(f) is the
loss function of deep clustering optimization model
proposed in this paper.

Algorithm 1 DCGLU
Input: Dataset X = {xi}ni=1, xi is the ith text in X .
Parameter: Clustering model parameter θ, hyper-parameters
confidence threshold t (0 ≤ t ≤ 1) and positive class-prior
probability πp.
Output: Cluster label ci for each xi ∈ X .

1: Initialization:Initialize the cluster network parameters;
2: for number of training steps do
3: Sample batch Xk from X , k indicates the batch id;
4: Input to clustering model f ,Get probability of sample

pairs or samples p;
5: if p > t then
6: Get high confidence samples X h

k from Xk as the
positive samples X p

k ;
7: Calculate the empirical risk of the positive samples

R̂+
p (f) and R̂−

p (f);//Eq.(7) and Eq.(8)
8: else
9: Get low confidence samples X l

k from Xk as the
unlabeled samples Xu

k ;
10: Calculate the empirical risk of the unlabeled sam-

ples R̂−
u (f);//Eq.(10)

11: end if
12: if R̂−

u (f)− πpR̂
−
p (f) ≥ 0 then

13: Set gradient ∇θLori +∇θR̂pu(f);
14: else
15: Set gradient ∇θLori +∇θ(πpR̂

−
p (f)− R̂−

u (f));
16: end if
17: Update θ by an external SGD-like stochastic optimiza-

tion algorithm;
18: end for
19: for all xi ∈ X do
20: li := f (xi);
21: ci := argmaxh (lih);
22: end for

B Experiment Setup

B.1 Datasets
We conduct experiments on two publicly available
text datasets. The detailed statistics are shown in
Table 2.

SNIPS It derives from (Coucke et al., 2018) and
is a personal voice assistant dataset containing
14,484 voices, divided into seven categories alto-
gether.

DBpedia It contains 14 non-overlapping
classes of ontology selected from DBPedia
2015 (Lehmann et al., 2015). We follow (Lin
et al., 2020), which contained 1,000 samples in
each classes.

B.2 Baseline and Evaluation Metrics

We follow (Lin et al., 2020), and chose the baseline
of the unsupervised part for comparison:

KM and AG. K-means(KM) (MacQueen, 1967)
and Agglomerative Clustering(AC) (Gowda and
Krishna, 1978) are classical clustering algorithms,
and here we represent the sentences with the av-
eraged pre-trained 300-dimensional word embed-
dings from GloVe (Pennington et al., 2014).

SAE-KM. We encode the sentences with the
stacked autoencoder (SAE), and then execute k-
means.

BERT-KM. We encode the sentences by
BERT (Devlin et al., 2018), and then execute
k-means.

DEC. Deep embedding clustering(DEC) (Xie
et al., 2016) learns the mapping from data space
to low-dimensional feature space, and uses t-
distribution iteration to fine-tune clustering model.

DCN. Deep clustering network(DCN) (Yang
et al., 2017) follows the idea of DEC and adds
regularization term in the optimization process.

As an optimization strategy, in order to show
the performance of our algorithm, we select two
advanced deep clustering algorithms of differ-
ent kinds as the main methods to test DCGLU:
Deep Dirichlet Process Mixture (DeepDPM) (Ro-
nen et al., 2022) and Deep Adaptive Clustering
(DAC) (Chang et al., 2017). DeepDPM is a deep
nonparametric clustering method that can adapt to
k-value changes by dynamically adjusting the split
and merge operations. DAC transforms the clus-
tering problem into binary pairwise-classification
framework to judge whether the samples belong to
the same category.

To evaluate the experimental results, we choose
three common clustering measures: Normalized
Mutual Information (NMI), Adjusted Rand Index
(ARI), and clustering accuracy (ACC). To calcu-
late clustering accuracy, we use the Hungarian al-
gorithm (Kuhn, 1955) to find the best alignment
between the predicted cluster label and the ground-
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Dataset Classes #Training #Validation #Test Vocabulary Size Length(Avg)
SNIPS 7 13084 700 700 11971 9.03

DBPedia 14 12600 700 700 45077 29.97

Table 2: Statistics of SNIPS and DBPedia datasets. # indicates the total number of sentences.

truth label. The higher the score of all metrics, the
better the clustering performance.

B.3 Implement Details
For both DeepDPM and DAC, we use the same
BERT model to get feature vectors of text data, but
as the adaptation of DeepDPM is limited for high-
dimensional features, in accordance with their sug-
gestions, we use Bert-Whitening (Su et al., 2021) to
reduce the dimension of text features. Text features
H is reduced from 768 to 64 dimensions. For fairer
comparison, we maintain the original dataset set-
tings of (Ronen et al., 2022) and (Lin et al., 2020).
Finally, we report the average results of each algo-
rithm over ten runs.

DeepDPM is divided into clustering module and
subclustering module. The model is optimized
by introducing a new loss caused by Expectation-
Maximization (EM) (Dempster et al., 1977) in
Bayesian GMM, where every E-step is followed by
a standard M-step. However, we believe that the
probability of E-step generation is too incredible,
and there are many misdivided samples. Therefore,
we sharpen the probability of E-step generation, se-
lect high confidence labeled samples and other sam-
ples as unlabeled samples to optimize the clustering
effect. DAC transforms the clustering problem into
a binary pairwise-classification framework to deter-
mine whether the samples belong to the same class,
so we optimize the clustering effect by treating two
samples with high similarity as high-confidence la-
beled sample pairs and those with low similarity as
unlabeled sample pairs. Our experiments conduct
on pytorch6 version 1.11.0 and 1.0.1 respectively.
All experiments were performed on the NVIDIA
Ge-Force RTX-2080Ti Graphical Card with 10G
graphical memory.

C Experimental Results

C.1 Effect on clustering features
Learning better clustering features is one of the
important directions of deep clustering algorithm
research (Caron et al., 2018), on which the cluster-
ing effect can be further improved by fine-tuning or

6https://pytorch.org

distance-based clustering methods, etc. To explore
more deeply the effect of DCGLU on clustering
features, we explored the experimental results of
different variants of the DAC algorithm, in which
DAC-KM clusters the embedded features learned
by DAC using the K-Means model, and DAC-DEC
combines the idea of DEC (Xie et al., 2016) model
to fine-tune and improve the clustering assignment
by expectation maximization iterations.

As can be seen from Table 3 of the experimental
results, each method has a certain improvement
on both datasets after combining the DCGLU op-
timization method, which is more obvious on the
DBPedia dataset, which indicates that the DCGLU
method is able to optimize the clustering effect of
the DAC algorithm itself, in addition to obtaining
better clustering features. Note that DCGLU has
limited improvement on the SNPIS dataset, and we
believe this is because the performance improve-
ment on the clustering representation cannot be
efficiently transferred to the final clustering perfor-
mance after post-processing, therefore the limited
improvement can already indicate that DCGLU has
some improvement on the clustering features.

C.2 Effect of πp

In the PU learning domain, πp denotes that the prior
of positive samples can be estimated by the ratio of
positive samples in the data, however, in DCGLU,
the accuracy and recall of high confidence labeled
sample estimates in the generalized labels of most
deep clustering algorithms keep changing as the
clustering algorithm learns(generally, it will be pro-
moted first and then remain stable). This would
result in πp changing dynamically throughout the
training process and thus difficult to estimate. For-
tunately, we found that using a constant πp can al-
ready achieve good results, which greatly reduces
the conditions of DCGLU applications.

The effects of different πp on the experimen-
tal results are shown in Figure 2, where πp ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. It can be seen that for dif-
ferent πp, the three evaluation metrics of the two
data sets show the same trend of change, and the
optimal effect is reached at πp = 0.5. When πp
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Dataset SNIPS DBPedia
Method NMI ARI ACC NMI ARI ACC

DAC 75.51± 4.93 67.13± 7.10 77.17± 6.61 72.73± 3.57 53.01± 5.04 63.27± 5.74

DAC* 79.92 ± 4.40 70.67 ± 6.89 79.64 ± 6.22 74.25 ± 2.57 56.93 ± 4.36 66.90 ± 4.96

DAC-KM 86.65± 3.35 83.14± 5.34 91.49± 3.51 84.93± 2.45 73.74± 4.94 80.27± 5.46

DAC-KM* 87.60 ± 1.64 84.70 ± 2.06 92.52 ± 1.18 85.26 ± 2.53 74.34 ± 5.34 82.37 ± 5.95

DAC-DEC 87.17± 2.87 83.79± 4.46 91.78± 3.02 85.59± 2.42 74.74± 4.68 81.18± 5.31

DAC-DEC* 87.52 ± 1.49 84.59 ± 1.73 92.44 ± 1.00 86.52 ± 2.69 76.69 ± 5.23 83.14 ± 5.77

Table 3: The clustering results for variants of DAC.

Method-Dataset DCGLU Time Base Time Proportion(DCGLU Time/Base Time)
DAC-Snips 10.74s 829.22s 1.29

DAC-DBPedia 10.30s 1193.92s 0.86
DeepDPM-Snips 104.60s 1832.19s 5.70

DeepDPM-DBPedia 102.29s 2855.89s 3.58

Table 4: Experimental results of efficiency cost of DCGLU
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Figure 2: Experimental results of optimization of DAC
algorithm given πp ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

is overestimated, there is a significant decrease in
the experimental results, while the experimental
results tend to be stable when πp is small, so we
suggest not to use a larger πp. This is because
in the clustering process, there are still a small
number of errors in the high confidence labeled
samples. Hence, under the condition of ensuring
performance, a smaller πp should be used to reduce
the probability of introducing errors in DCGLU, so
as to improve model stability and clustering effect.

C.3 Effect of time efficiency
DCGLU does not increase the complexity of the
primary clustering algorithm in terms of efficiency.

We conduct a runtime complexity experiment, and
Table 4 shows the run time. “Proportion(DCGLU
Time/Base Time)” indicates the proportion of the
calculation time of DCGLU in the entire program
running time. As can be seen from the table, our
method does not bring much additional time over
the entire run time. This is because DCGLU has a
time complexity of O(N), and at the same time, the
additional spatial complexity brought by DCGLU
is O(N).
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