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Abstract

In this paper, we propose a hierarchical
contrastive learning framework, HiCL, which
considers local segment-level and global
sequence-level relationships to improve train-
ing efficiency and effectiveness. Traditional
methods typically encode a sequence in its en-
tirety for contrast with others, often neglecting
local representation learning, leading to chal-
lenges in generalizing to shorter texts. Con-
versely, HiCL improves its effectiveness by di-
viding the sequence into several segments and
employing both local and global contrastive
learning to model segment-level and sequence-
level relationships. Further, considering the
quadratic time complexity of transformers over
input tokens, HiCL boosts training efficiency
by first encoding short segments and then aggre-
gating them to obtain the sequence representa-
tion. Extensive experiments show that HiCL en-
hances the prior top-performing SNCSE model
across seven extensively evaluated STS tasks,
with an average increase of +0.2% observed on
BERTlarge and +0.44% on RoBERTalarge. 1

1 Introduction

Current machine learning systems benefit greatly
from large amounts of labeled data. However, ob-
taining such labeled data is expensive through an-
notation in supervised learning. To address this
issue, self-supervised learning, where supervisory
labels are defined from the data itself, has been pro-
posed. Among them, contrastive learning (Chen
et al., 2020a,b,c, 2021; He et al., 2020; Grill et al.,
2020; Chen and He, 2021) has become one of the
most popular self-supervised learning methods due
to its impressive performance across various do-
mains. The training target of contrastive learning is
to learn a representation of the data that maximizes
the similarity between positive examples and min-
imizes the similarity between negative examples.

1Our code will be released at https://github.com/
CSerxy/HiCL.

To achieve better performance, existing methods
mainly focus on designing better positive exam-
ples (Hendrycks et al., 2020; Fang et al., 2020;
Wu et al., 2020; Giorgi et al., 2021; Gao et al.,
2021b) or investigating the role of the negative ex-
amples (Robinson et al., 2020; Zhou et al., 2022;
Wang et al., 2022).

Despite the success, existing methods augment
data at the level of the full sequence (Gao et al.,
2021b; Wang et al., 2022). Such methods require
calculating the entire sequence representation, lead-
ing to a high computational cost. Additionally, it
also makes the task of distinguishing positive ex-
amples from negative ones too easy, which doesn’t
lead to learning meaningful representations. Sim-
ilarly, methods like CLEAR (Wu et al., 2020)
demonstrated that pre-training with sequence-level
naïve augmentation can cause the model to con-
verge too quickly, resulting in poor generalization.

In contrast, Zhang et al. (2019) considered mod-
eling in-sequence (or local) relationships for lan-
guage understanding. They divide the sequence
into smaller segments to learn intrinsic and under-
lying relationships within the sequence. Since this
method is effective in modeling long sequences by
not truncating the input and avoiding loss of infor-
mation, it achieves promising results. Given this
success, a natural question arises: is it possible to
design an effective and efficient contrastive learn-
ing framework by considering the local segment-
level and global sequence-level relationships?

To answer the question, in this paper, we pro-
pose a hierarchical contrastive learning framework,
HiCL, which not only considers global relation-
ships but also values local relationships, as illus-
trated in Figure 1. Specifically, given a sequence
(i.e., sentence), HiCL first divides it into smaller
segments and encodes each segment to calculate
local segment representation respectively. It then
aggregates the local segment representations be-
longing to the same sequence to get the global
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sequence representation. Having obtained local
and global representations, HiCL deploys a hierar-
chical contrastive learning strategy involving both
segment-level and sequence-level contrastive learn-
ing to derive an enhanced representation. For lo-
cal contrastive learning, each segment is fed into
the model twice to form the positive pair, with
segments from differing sequences serving as the
negative examples. For global contrastive learning,
HiCL aligns with mainstream baselines to construct
positive/negative pairs.

We have carried out extensive experiments on
seven STS tasks using well-representative models
BERT and RoBERTa as our backbones. We as-
sess the method’s generalization capability against
three baselines: SimCSE, ESimCSE, and SNCSE.
As a result, we improve the current state-of-the-art
model SNCSE over seven STS tasks and achieve
new state-of-the-art results. Multiple initializations
and varied training corpora confirmed the robust-
ness of our HiCL method.

Our contributions are summarized below:

• To the best of our knowledge, we are the first to
explore the relationship between local and global
representation for contrastive learning in NLP.

• We theoretically demonstrate that the encoding
efficiency of our proposed method is much faster
than prior contrastive training paradigms.

• We empirically verify that the proposed training
paradigm enhances the performance of current
state-of-the-art methods for sentence embeddings
on seven STS tasks.

2 Preliminaries: Contrastive Learning

In this paper, we primarily follow SimCLR’s frame-
work (Chen et al., 2020a) as our basic contrastive
framework and describe it below. The general train-
ing objective of contrastive learning (Oord et al.,
2018) is to distinguish similar pairs from dissimi-
lar pairs, where similar pairs are constructed using
pre-defined data augmentation techniques and dis-
similar pairs are other examples in the same batch.
Specifically, for an arbitrary example xi in a batch
B, the InfoNCE loss Lg brings the representation
hi closer to positive instance representation h+i and
away from negative ones h−j∈B\i. If hi, h+i , h

−
j∈B\i

are the representation vectors from the encoder, τ
is a temperature scale factor (set to 0.05 following
SimCSE), and sim(u, v) = uT v/∥u∥∥v∥ denotes
the cosine similarity, Lg is computed as:

Lg = − log
esim(hi,h

+
i )/τ

esim(hi,h
+
i )/τ +

∑
j∈B\i

esim(hi,hj)/τ
,

(1)
Benefiting from human-defined data augmenta-

tions, it can generate numerous positive and neg-
ative examples for training without the need for
explicit supervision, which is arguably the key rea-
son why self-supervised learning can be effective.

Positive instance Designing effective data aug-
mentations to generate positive examples is a key
challenge in contrastive learning. Various methods
such as back-translation, span sampling, word dele-
tion, reordering, and synonym substitution have
been explored for language understanding tasks
in prior works such as CERT (Fang et al., 2020),
DeCLUTR (Giorgi et al., 2021), and CLEAR (Wu
et al., 2020). Different from previous approaches
that augment data at the discrete text level, Sim-
CSE (Gao et al., 2021b) first applied dropout (Sri-
vastava et al., 2014) twice to obtain two intermedi-
ate representations for a positive pair. Specifically,
given a Transformers model, Eθ (parameterized by
θ), (Vaswani et al., 2017) and a training instance
xi, hi = Eθ,p(xi) and h+i = Eθ,p+(xi) are the pos-
itive pair that can be used in Eq. 1, where p and
p+ are different dropout masks. This method has
been shown to significantly improve sentence em-
bedding performance on seven STS tasks, making
it a standard comparison method in this field.

Negative instance Negative instance selection
is another important aspect of contrastive learn-
ing. SimCLR simply uses all other examples in the
same batch as negatives. However, in DCLR (Zhou
et al., 2022), around half of in-batch negatives
were similar to SimCSE’s training corpus (with
a cosine similarity above 0.7). To address this is-
sue, SNCSE (Wang et al., 2022) introduced the
use of negated sentences as “soft” negative sam-
ples (e.g., by adding not to the original sentence).
Additionally, instead of using the [CLS] token’s
vector representation, SNCSE incorporates a man-
ually designed prompt: “The sentence of xi means
[MASK]” and takes the [MASK] token’s vector to
represent the full sentence xi. This approach has
been shown to improve performance compared to
using the [CLS] token’s vector. In this paper, we
compare against SNCSE as another key baseline,
not only because it is the current state-of-the-art
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Figure 1: The overview of the HiCL framework with local contrastive and global contrastive objective.

on evaluation tasks, but also because it effectively
combines contrastive learning with techniques like
prompt tuning (Gao et al., 2021a; Wu et al., 2022c).

Momentum Contrast The momentum contrast
framework differs from SimCLR by expanding the
negative pool through the inclusion of recent in-
stances, effectively increasing the batch size with-
out causing out-of-memory issues. ESimCSE (Wu
et al., 2022b) proposes a repetition operation to
generate positive instances and utilizes momentum
contrast to update the model. We include it as a
baseline for comparison to assess the ability of our
model to adapt to momentum contrast.

3 Hierarchical Contrastive Learning

3.1 Overview

Figure 1 shows an overview of HiCL. Our primary
goal is to incorporate additional underlying (local)
information in traditional, unsupervised text con-
trastive learning. Two objectives are combined to
achieve this goal.

Given a set of sequences
{seq1, seq2, . . . , seqn} in a batch B, we slice each
seqi into segments {segi,1, segi,2, . . . , segi,li}
of slicing length L, where n is the batch size,
and li = 1 + ⌊(|seqi| − 1)/L⌋ is the number of

segments that can be sliced in seqi. The slicing is
performed using a queue rule: every consecutive
L tokens (with no overlap) group as one segment,
and the remaining tokens with length no greater
than L form a separate segment. In other words,
|segi,j | = L,∀j ∈ [1, li); |segi,li | ∈ [1, L]; and
seqi = concat[segi,1, . . . , segi,li ].

Unlike traditional contrastive learning, which en-
codes the input sequence seqi directly, we encode
each sub-sequence segi,j using the same encoder
and obtain its representation: hi,j = Eθ(segi,j),
where Eθ is a Transformer (Vaswani et al., 2017),
parameterized by θ. We aggregate the hi,j rep-
resentations to obtain the whole sequence repre-
sentation hi by weighted average pooling, where
the weight of each segment segi,j is proportional
to its length |segi,j |: hi =

∑
j hi,j × wi,j , where

wi,j =
|segi,j |∑
k |segi,k| . In Section 5.1, we explore other

pooling methods, such as unweighted average pool-
ing, and find that weighted pooling is the most
effective. According to Table 2, most (99.696%)
input instances can be divided into three or fewer
segments. Therefore, we do not add an extra trans-
former layer to get the sequence representation
from these segments, as they are relatively short.

To use HiCL with SNCSE, we slice the input se-
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quence in the same way, but add the prompt to each
segment instead of the entire sequence. We also
apply the same method to the negated sentences.

3.2 Training Objectives
Local contrastive Previous studies have high-
lighted the benefits of local contrastive learning for
unsupervised models (Wu et al., 2020; Giorgi et al.,
2021). By enabling the model to focus on short sen-
tences, local contrastive learning allows the model
to better match the sentence length distribution, as
longer sentences are less common. Building on the
work of Gao et al. (2021b), we use dropout as a min-
imum data augmentation technique. We feed each
segment segi,j twice to the encoder using different
dropout masks p and p+. This results in positive
pairs hi,j = Eθ,p(segi,j) and h+i,j = Eθ,p+(segi,j)
for loss computation. As mentioned in Section 1,
defining negatives for segments can be challenging.
Using segments from the same sequence as neg-
atives carries the risk of introducing correlations,
but treating them as positive pairs is not ideal ei-
ther. We chose not to use segments from the same
sequence as either positive or negative pairs and we
will show that this approach is better than the other
alternatives in Section 5.2. Hence, for segment
segi,j , we only consider as negatives, segments
from other sequences {segk,∗, k ∈ {B \ i}}. The
local contrastive Ll is formalized as:

Ll = − log
esim(hi,j ,h

+
i,j)/τ

esim(hi,j ,h
+
i,j)/τ +

∑
k ̸=i

esim(hi,j ,hk,∗)/τ

(2)

Global contrastive The global contrastive ob-
jective is the same as that used by most baselines,
which tries to pull a sequence’s representation hi
closer to its positive h+i while keeping it away from
in-batch negatives h−j∈B\i, as defined by the global
contrastive loss Lg in Eq. 1.

Overall objective The overall objective is a
combination of local and global contrastive loss,
L = αLl + (1 − α)Lg, where weight α ∈
{0.01, 0.05, 0.15} is tuned for backbone models.
Our adoption of a hybrid loss, with a lower weight-
ing assigned to the local contrastive objective, is
motivated by the potential influence of the hard
truncation process applied to the sequences. This
process can result in information loss and atypical
sentence beginnings that may undermine the effec-
tiveness of the local contrastive loss. Meanwhile, a

standalone global contrastive loss is equally inad-
equate, as it omits local observation. We conduct
an analysis in Section 5.4 to discuss the intricate
relationship between two objectives.

3.3 Encoding Time Complexity Analysis

According to our slicing rule, all front segments
segi,j<li in sequence seqi have length L and the
last segment segi,li has length |segi,li | ∈ [1, L].
Hence, the encoding time complexity for HiCL is
O(L2× (li− 1)+ |segli |2), while the conventional
methods take:

O(|seqi|2) = O((L× (li − 1) + |segli |)2)
> (li − 1)×O(L2(li − 1) + |segli |2)

which is (li−1) times more than that for HiCL. The
longer the training corpus, the higher the benefit
using HiCL. This suggests that our approach has
a variety of use cases, particularly in pre-training,
due to its efficient encoding process.

The practical training time is detailed in Ap-
pendix A.1. In short, we are faster than baselines
when maintaining the same sequence truncation
size 512. For example, SimCSE-RoBERTalarge
takes 354.5 minutes for training, while our method
only costs 152 minutes.

4 Experiment

4.1 Experimental Setup

Evaluation tasks Following prior works (Gao
et al., 2021b; Wang et al., 2022), we mainly eval-
uate on seven standard semantic textual similar-
ity datasets: STS12–16 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS Benchmark (Cer et al.,
2017), and SICK-Relatedness (Marelli et al., 2014).
When evaluating using the SentEval tookit2, we
adopt SimCSE’s evaluation setting without any
additional regressor and use Spearman’s correla-
tion as the evaluation matrix. Each method cal-
culates the similarity, ranging from 0 to 5, be-
tween sentence pairs in the datasets. In our ablation
study, we extend our evaluation to encompass two
lengthy datasets (i.e., Yelp (Zhang et al., 2015)
and IMDB (Maas et al., 2011)) and seven trans-
fer tasks (Conneau and Kiela, 2018). Due to space
consideration, we have provided detailed results for
the seven transfer learning tasks in Appendix A.2.

2https://github.com/facebookresearch/SentEval
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Table 1: Main results of various contrastive learning methods on seven semantic textual similarity (STS) datasets.
Each method is evaluated on full test sets by Spearman’s correlation, “all” setting. Bold marks the best result among
all competing methods under the same backbone model.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-BERTbase 66.92 78.44 71.15 79.50 77.71 75.50 68.76 74.00
+ HiCL 69.04 80.68 72.71 80.39 78.68 76.96 70.35 75.54↑
ESimCSE-BERTbase 70.95 82.76 76.52 83.18 80.03 80.15 71.07 77.81
+ HiCL 70.05 83.18 76.51 82.97 80.31 80.02 72.53 77.94↑
SNCSE-BERTbase 70.15 84.36 76.86 83.21 80.16 81.09 75.04 78.70
+ HiCL 70.57 84.51 76.92 82.97 79.91 80.68 74.61 78.60

SimCSE-BERTlarge 70.17 83.27 72.82 82.53 77.05 78.25 66.01 75.73
+ HiCL 70.99 85.29 75.62 83.56 79.40 79.91 74.13 78.41↑
ESimCSE-BERTlarge 71.43 83.91 75.88 83.84 78.86 79.74 73.59 78.18
+ HiCL 72.40 85.42 77.29 84.59 79.78 80.72 74.28 79.21↑
SNCSE-BERTlarge 72.03 86.80 78.48 85.27 80.65 82.20 74.40 79.98
+ HiCL 72.40 86.78 78.50 85.52 80.85 82.09 75.13 80.18↑
SimCSE-RoBERTabase 69.47 82.12 73.96 82.48 81.11 81.06 69.45 77.09
+ HiCL 69.36 81.77 73.75 82.58 81.03 81.06 69.58 77.02
ESimCSE-RoBERTabase 69.03 80.73 73.35 81.26 81.25 80.26 68.11 76.28
+ HiCL 69.98 81.31 74.39 82.87 81.43 80.74 69.09 77.12↑
SNCSE-RoBERTabase 70.50 83.70 76.55 84.09 81.89 81.73 74.11 78.94
+ HiCL 71.01 83.70 76.08 84.06 81.89 82.07 73.54 78.91

SimCSE-RoBERTalarge 71.41 83.90 76.50 85.07 82.10 82.75 71.17 78.99
+ HiCL 72.36 84.08 76.35 85.07 82.49 82.95 71.40 79.24↑
ESimCSE-RoBERTalarge 70.92 83.25 75.62 81.91 80.16 81.73 72.03 77.95
+ HiCL 73.06 84.44 76.56 84.59 81.42 83.61 71.49 79.31↑
SNCSE-RoBERTalarge 73.65 86.45 79.23 86.60 82.45 83.95 77.12 81.35
+ HiCL 73.74 86.19 79.76 86.70 83.20 84.52 78.45 81.79↑

Implementing competing methods We re-train
three previous state-of-the-art unsupervised sen-
tence embedding methods on STS tasks – Sim-
CSE (Gao et al., 2021b), ESimCSE (Wu et al.,
2022b), and SNCSE (Wang et al., 2022) – with
our novel training paradigm, HiCL. We employ
the official implementations of these models and
adhere to the unsupervised setting utilized by Sim-
CSE. This involves training the models on a dataset
comprising 1 million English Wikipedia sentences
for a single epoch. More detailed information can
be found in Appendix A.3. We also carefully tune
the weight α of local contrastive along with the
learning rate in Appendix A.4.

4.2 Main Results

Table 1 presents the results of adding HiCL to
various baselines on the seven STS tasks. We
observe that (i) HiCL consistently improves the
performance of baselines in the large model set-
ting. Specifically, HiCL improves the average
scores by +0.25%, +1.36%, and +0.44% on the
RoBERTalarge variants of SimCSE, ESimCSE,

and SNCSE baselines, respectively. (ii) HiCL
with SNCSE-RoBERTalarge as the backbone has
achieved a new state-of-the-art score of 81.79. It is
worth mentioning that SNCSE originally reported
a score of 81.77 based on full precision (fp32),
but we achieved a better result with half precision
(fp16). (iii) HiCL enhances the performance across
nine backbone models, yet marginally underper-
forms (≤ 0.1) on three models employing the -base
architecture.

All prior studies in the field have followed a com-
mon practice of employing the same random seed
for a single run to ensure fair comparisons. We
have rigorously adhered to this convention when
presenting our findings in Table 1. However, to
further assess the robustness of our method, we
have extended our investigation by conducting mul-
tiple runs with varying random seeds. As shown
in Table 15, we generally observe consistency be-
tween the multi-run results and the one-run results.
The nine backbone models on which HiCL demon-
strated superior performance under the default ran-
dom seed continue to be outperformed by HiCL.
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Input Length [0, 32] (32, 64] (64, 96]
Proportion 76.031% 21.869% 1.796%

Input Length (96, 128] (128, 256] (256, 512]
Proportion 0.225% 0.075% 0.004%

Table 2: The input length distribution of training corpus.
Special tokens [CLS] and [SEP] counted.

5 Intrinsic Study and Discussion

5.1 Local Information Aggregation
Forming the representation for the entire sequence
from segment representations is crucial to our task.
We experiment with both weighted average pool-
ing (weighted by the number of tokens in each seg-
ment) and unweighted average pooling. Since most
sequences are divided into three or fewer segments
(as shown in Table 2), we did not include an addi-
tional layer (either DNN or Transformer) to model
relationships with ≤ 3 inputs. Therefore, we opted
to not consider aggregating through a deep neural
layer, even though this approach might work in
scenarios where the training sequences are longer.
Results in Table 3 indicate that under three differ-
ent backbones, weighted pooling is a better strategy
for extracting the global representation from local
segments.

Backbone Pooling SICK-R

SimCSE-RoBERTalarge unweighted 73.91
weighted 75.24

ESimCSE-RoBERTalarge unweighted 73.13
weighted 74.37

SNCSE-RoBERTalarge unweighted 79.97
weighted 80.86

Table 3: Development set results of SICK-R (Spear-
man’s correlation) for different pooling matrices.

5.2 Relationships between Segments from
Same Sequence

When optimizing the local contrastive objective,
an alternative approach is to follow the traditional
training paradigm, which treats all other segments
as negatives. However, since different parts of a
sequence might describe the same thing, segments
from the same sequence could be more similar com-
pared to a random segment. As a result, establish-
ing the relationship between segments from the
same sequence presents a challenge. We explore

with three different versions: 1) considering them
as positive pairs, 2) treating them as negative pairs,
and 3) categorizing them as neither positive nor
negative pairs. The results in Table 4 of SimCSE
and SNCSE indicate that the optimal approach is
to treat them as neither positive nor negative - a
conclusion that aligns with our expectations.

An outlier to this trend is observed in the re-
sults for ESimCSE. We postulate that this anomaly
arises due to ESimCSE’s use of token duplication
to create positive examples, which increases the
similarity of segments within the same sequence.
Consequently, this outcome is not entirely unex-
pected. Given that ESimCSE’s case is special, we
believe that, in general, it is most appropriate to
label them as neither positive nor negative.

Backbone Positive Negative Neither

SimCSE-RoBERTalarge 73.92 74.34 75.24
ESimCSE-RoBERTalarge 76.96 74.35 74.37
SNCSE-RoBERTalarge 77.33 79.33 80.86

Table 4: Development set results of SICK-R (Spear-
man’s correlation) for processing relationship of seg-
ments from same sequence.

5.3 Optimal Slicing Length
To verify the impact of slicing length on per-
formance, we vary the slicing length from
16 to 40 for HiCL in SimCSE-RoBERTalarge
and SNCSE-RoBERTalarge settings (not counting
prompts). We were unable to process longer
lengths due to memory limitations. From the re-
sults in Figure 2, we find that using short slicing
length can negatively impact model performance.
As we showed in Section 3.3, the longer the slicing
length, the slower it is to encode the whole input se-
quence, because longer slicing lengths mean fewer
segments. Therefore, we recommend setting the
default slicing length as 32, as it provides a good
balance between performance and efficiency.

We acknowledge that using a non-fixed slicing
strategy, such as truncation by punctuation, could
potentially enhance performance. Nevertheless,
in pursuit of maximizing encoding efficiency, we
have opted for a fixed-length truncation approach,
leaving the investigation of alternative strategies to
future work.

5.4 How Hierarchical Training Helps?
One might argue that our proposed method could
benefit from the truncated portions of the training
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Table 5: Performance on seven STS tasks for methods trained on wiki-103 and 1 million English Wikipedia
sentences. Each method is evaluated on full test sets by Spearman’s correlation, “all” setting.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-RoBERTalarge 71.72 84.33 76.45 84.16 80.36 81.90 72.27 78.74
+ HiCL 72.45 84.69 76.98 84.79 81.64 82.43 71.54 79.22

Figure 2: Comparison between different slicing lengths
over three backbone models by Spearman’s correlation.

corpus - the part exceeding the length limitations
of baselines and thus, unprocessable by them. To
address this concern, we reconstruct the training
corpus in such a way that any sequence longer
than the optimal slicing length (32) is divided and
stored as several independent sequences, each of
which fits within the length limit. This allows the
baseline models to retain the same information as
HiCL. The aforementioned models are indeed us-
ing a local-only loss, given they implement con-
trastive loss on the segmented data. Table 6 shows
that HiCL continues to exceed the performance of
single segment-level contrastive learning models,
indicating its superior performance is not solely
reliant on the reduced data. The lower performance
exhibited by these models effectively emphasizes
the significance of incorporating a hybrid loss.

Method vanilla + HiCL full-

SimCSE-RoBERTalarge 78.99 79.24 78.45
SNCSE-RoBERTalarge 81.35 81.79 80.41

Table 6: Average performance of baselines trained with
full segments (abbreviated as full-) on seven STS tasks.

The intriguing insight from above observations
is that the omitted data does not improve the perfor-
mance of the baseline models; in fact, it hinders per-
formance. We hypothesize that this is due to a hard
cut by length resulting in some segments beginning
with unusual tokens, making it more difficult for
the encoder to accurately represent their meaning.

We further verify this hypothesis by doing an abla-
tion study on HiCL with various values of α in the
overall objective. Recall that our training objective
is a combination of local contrastive and global
contrastive loss. HiCL model with α = 0 is identi-
cal to the baselines, except that it incorporates the
omitted information. As shown in Table 7, train-
ing with just global contrastive loss with complete
information yields poorer results. Similarly, when
α = 1, the HiCL model focuses solely on local
contrastive loss, but also performs poorly, which
indicates that global contrastive loss is an essential
component in learning sentence representation.

α 0.0 0.01 0.05 0.15
SICK-R 75.10 75.19 75.24 74.07

α 0.3 0.5 0.95 1.0
SICK-R 73.44 74.68 74.87 74.39

Table 7: Ablation study over α on SimCSE-RoBERTa-
large at SICK-R dev set (Spearman’s correlation).

It’s crucial to clarify that our approach isn’t just
a variant of the baseline with a larger batch. As Ta-
ble 2 indicates, in 99.9% of instances, the training
data can be divided into four or fewer segments.
Comparing SimCSE-BERTbase with a batch size
quadruple that of our method (as shown in Ta-
ble 10), it’s evident that SimCSE at a batch size of
256 trails our model’s performance with a batch
size of 64 (74.00 vs. 76.35). Simply amplifying
the batch size for baselines also leads to compu-
tational issues. For example, SimCSE encounters
an "Out of Memory" error with a batch size of
1024, a problem our model, with a batch size of
256, avoids. Therefore, our approach is distinct
and offers benefits beyond merely adjusting batch
sizes.

5.5 HiCL on Longer Training Corpus
To further verify the effectiveness of HiCL, we
add a longer corpus, WikiText-103, along with the
original 1 million training data. WikiText-103 is
a dataset that contains 103 million tokens from
28,475 articles. We adopt a smaller batch size of
64 to avoid out-of-memory issue. Other training
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details followed the instructions in Section 4.1. As
shown in Table 5, HiCL shows more improvement
(+0.48%) compared to the version only trained on
short corpus (+0.25%). This indicates that HiCL
is more suitable for pre-training scenarios, particu-
larly when the training corpus is relatively long.

5.6 HiCL on Longer Test Datasets
The datasets that were widely evaluated, such as
STS12-16, STS-B, and SICK-R, primarily con-
sist of short examples. However, given our in-
terest in understanding how HiCL performs on
longer and more complex tasks, we further con-
duct evaluations on the Yelp (Zhang et al., 2015)
and IMDB (Maas et al., 2011) datasets. Table 8
provides an overview of these two datasets.

Specifically, we test with SimCSE-BERTbase
backbone model and follow the evaluation settings
outlined in SimCSE, refraining from any further
fine-tuning on Yelp and IMDB. The results are
compelling, with our proposed method consistently
outperforming SimCSE, achieving a performance
gain of +1.97% on Yelp and +2.27% on IMDB.

Datasets #Test Length SimCSE +HiCL

Yelp 38K 132.6 70.99 72.96
IMDB 25K 228.5 60.93 63.20

Table 8: Statistics and evaluation results on Yelp and
IMDB datasets.

5.7 A Variant of HiCL
As we discussed in Section 5.2, the best approach to
treat relationships between in-sequence segments
is to consider them as neither positive nor nega-
tive. However, this would result in losing informa-
tion about them belonging to the same sequence.
To overcome this, we consider modeling the rela-
tionship between sequences and segments. Since
each segment originates from a sequence, they in-
herently contain an entailment relationship – the
sequence entails the segment. We refer to this vari-
ant as HiCLv2. Additional details are provided in
Appendix A.6.

As shown in Table 9, explicitly modeling this
sequence-segment relationship does not help the
model. We think that it is probably because this ob-
jective forces the representation of each sequence
to be closer to segments from the same sequence.
When the representation of each sequence is a
weighted average pooling of segments, it pulls seg-
ments from the same sequence closer, which is

another way of regarding them as positive. As seen
in the results in Section 5.2, treating segments from
the same sequence as positive would negatively
impact the performance of SimCSE and SNCSE
backbones. Thus, it is not surprising that HiCLv2
failed to show as much improvement as HiCL.

SimCSE-BERTlarge + HiCL + HiCLv2
Avg 75.73 78.41 76.30

SNCSE-BERTlarge + HiCL + HiCLv2
Avg 79.98 80.18 80.00

SimCSE-RoBERTalarge + HiCL + HiCLv2
Avg 78.99 79.24 79.08

SNCSE-RoBERTalarge + HiCL + HiCLv2
Avg 81.35 81.79 81.49

Table 9: Average performance of HiCLv2 over seven
STS datasets.

5.8 Baseline Reproduction

One might wonder why there are notable discrep-
ancies between our reproduced baselines and the
numbers reported in the original papers. For in-
stance, our SimCSE-BERTbase achieved a score
of 74.00, while the original paper reported 76.25.
Indeed, this difference comes from the different
hyperparameters we adopt.

Different baselines adopt various configurations
such as batch size, training precision (fp16 or fp32),
and other factors. Recognizing that these factors
significantly influence the final results, our aim is
to assess different baselines under consistent con-
ditions. To clarify, it would be misleading to eval-
uate, say, SimCSE-BERTbase with a batch size of
64 while assessing SNCSE-BERTbase with a batch
size of 256. Such discrepancies could obscure the
true reasons behind performance gaps. Therefore,
we use a unified batch size of 256 for base models
and 128 for large models.

To eliminate concerns about whether the
proposed method can still work at baseline’s
optimal hyperparameters, we reassess the
SimCSE-BERTbase model in Table 10. Regardless
of whether we use SimCSE’s optimal settings or
our uniform configuration, our method consistently
outperforms the baseline.

Lastly, we want to mention that some base-
lines actually benefit from our standardized
setup. For example, our reproduction of
SimCSE-RoBERTabase saw an increase, going
from the originally reported 76.57 to 77.09.
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Table 10: A comparison between original SimCSE and reproduced SimCSE on seven semantic textual similarity
(STS) datasets. Each method is evaluated on full test sets by Spearman’s correlation, “all” setting.

Method batch STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Original SimCSE-BERTbase 64 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

Reproduced SimCSE-BERTbase 256 66.92 78.44 71.15 79.50 77.71 75.50 68.76 74.00
+ HiCL 256 69.04 80.68 72.71 80.39 78.68 76.96 70.35 75.54↑
Reproduced SimCSE-BERTbase 64 69.17 82.02 73.41 80.54 78.36 76.60 71.96 76.01
+ HiCL 64 69.44 82.10 74.48 81.62 78.77 77.75 70.26 76.35↑

6 Related Work

Contrastive learning The recent ideas on con-
trastive learning originate from computer vision,
where data augmentation techniques such as AUG-
MIX (Hendrycks et al., 2020) and mechanisms like
end-to-end (Chen et al., 2020a), memory bank (Wu
et al., 2018), and momentum (He et al., 2020)
have been tested for computing and memory effi-
ciency. In NLP, since the success of SimCSE (Gao
et al., 2021b), considerable progress has been
made towards unsupervised sentence representa-
tion. This includes exploring text data augmen-
tation techniques such as word repetition in ES-
imCSE (Wu et al., 2022b) for positive pair gen-
eration, randomly generated Gaussian noises in
DCLR (Zhou et al., 2022), and negation of in-
put in SNCSE (Wang et al., 2022) for generating
negatives. Other approaches design auxiliary net-
works to assist contrastive objective (Chuang et al.,
2022; Wu et al., 2022a). Recently, a combination
of prompt tuning with contrastive learning has been
developed in PromptBERT (Jiang et al., 2022) and
SNCSE (Wang et al., 2022). With successful de-
sign of negative sample generation and utilization
of prompt, SNCSE resulted in the state-of-the-art
performance on the broadly-evaluated seven STS
tasks. Our novel training paradigm, HiCL, is com-
patible with previous works and can be easily inte-
grated with them. In our experiments, we re-train
SimCSE, ESimCSE, and SNCSE with HiCL, show-
ing a consistent improvement in all models.

Hierarchical training The concept of hierar-
chical training has been proposed for long-text
processing. Self-attention models like Trans-
former (Vaswani et al., 2017) are limited by their
input length, and truncation is their default method
of processing text longer than the limit, which
leads to information loss. To combat this issue,
researchers have either designed hierarchical Trans-
formers (Liu and Lapata, 2019; Nawrot et al., 2022)
or adapted long inputs to fit existing Transform-

ers (Zhang et al., 2019; Yang et al., 2020). Both
solutions divide the long sequence into smaller
parts, making full use of the whole input for in-
creased robustness compared to those using partial
information. Additionally, hierarchical training is
usually more time efficient. SBERT (Reimers and
Gurevych, 2019) employs a similar idea of hier-
archical training. Instead of following traditional
fine-tuning methods that concatenate two sentences
into one for encoding in sentence-pair downstream
tasks, SBERT found that separating the sentences
and encoding them independently can drastically
improve sentence embeddings. To our knowledge,
we are the first to apply this hierarchical training
technique to textual contrastive learning.

7 Conclusion

We introduce HiCL, the first hierarchical con-
trastive learning framework, highlighting the im-
portance of incorporating local contrastive loss into
the prior training paradigm. We delve into the op-
timal methodology for navigating the relationship
between segments from same sequence in the com-
putation of local contrastive loss. Despite the extra
time required for slicing sequences into segments,
HiCL significantly accelerates the encoding time of
traditional contrastive learning models, especially
for long input sequences. Moreover, HiCL ex-
cels in seamlessly integrating with various existing
contrastive learning frameworks, enhancing their
performance irrespective of their distinctive data
augmentation techniques or foundational architec-
tures. We employ SimCSE, ESimCSE, and SNCSE
as case studies across seven STS tasks to demon-
strate its scalability. Notably, our implementation
with the SNCSE backbone model achieves the new
state-of-the-art performance. This makes our hier-
archical contrastive learning method a promising
approach for further research in this area.
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A Appendix

A.1 Training Time

The practical training time can be complex, as the
actual encoding time does not strictly follow a
quadratic rule. However, our method demonstrates
advantages in terms of efficiency when maintain-
ing the same sequence truncation size. For exam-
ple, while SimCSE-RoBERTa-large takes approx-
imately 354.5 minutes for training, our method
achieves the same task in just 152 minutes. The ac-
celeration in time stems from two primary factors:
1) Savings in encoding time, as discussed in Sec-
tion 3.3, and 2) The capability of HiCL to handle
significantly larger batch sizes, enabling parallel
processing for further acceleration. Please note
that these advantages in efficiency are discussed
specifically in the context of training with identi-
cal information, where the same truncation size is
maintained. The original SimCSE, which adopts
a truncation size of 32, is indeed faster than our
approach as it does not need process truncated in-
formation.

Backbone BERTb BERTl Robertab Robertal

SimCSE 87.5 344.5 92.4 354.5
+ HiCL 69.4 148.4 71.8 152.0

Table 12: Training minutes for models with 512 se-
quence truncation size. b for base models, l for large
models.

A.2 Transfer Learning

We also evaluate competing methods on sev-
eral transfer tasks: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000),
MRPC (Dolan and Brockett, 2005).

A comparison between SimCSE-BERTbase (us-
ing its reported optimized hyperparameters and
without adding MLM loss) and our model can be
found in Table 11. While our approach may not
demonstrate enhancements across all tasks, it does
register improvements in 5 out of the 7 tasks, with
each exceeding a 0.4% increase. The aggregate
improvement stands at 0.39%.

A.3 Experimental setup

Different baselines utilize varying training setups,
including batch size, training precision (fp16 or
fp32), and other factors. In order to maximally en-

sure a fair comparison, we unify the training setup
across all competing methods and strictly follow
each baseline’s hyperparameter tuning process to
re-tune the optimal hyperparameters accordingly.

Specifically, we employ a batch size of 256
for base models and 128 for large models. All
base models are trained using full precision (fp32),
while large models are trained using half precision
(fp16) to mitigate potential memory issues with
certain models. It is worth noting that disparities
in performance between our re-run models and the
original baselines may arise due to our intentional
parameter adjustments to facilitate a direct compar-
ison with other baselines.

Following the procedures used by SimCSE and
SNCSE, we evaluate the model every 125 training
steps on the development set of STS-B and select
the best checkpoint for the final evaluation on the
test sets.

A.4 Hyperparameter tuning of HiCL

We first tune the weight of local contrastive α ∈
{0.01, 0.05, 0.15} along with learning rate 5e-6 for
large models and 1e-5 for base models.3 After fix-
ing an optimized α, we proceed to tune the learning
rate using the suggested values for each model, in-
cluding 5e-6 as an additional option. Specifically,
we tune the learning rate to be one of the following
values: {5e-6, 1e-5, 3e-5, 5e-5} for SimCSE mod-
els, {5e-6, 1e-5, 3e-5} for ESimCSE models, and
{5e-6, 1e-5} for SNCSE models. The optmized
hyperparameters of HiCL are listed in Table 13.

Method α lr

SimCSE-BERTbase 0.15 5e-5
SimCSE-BERTlarge 0.15 3e-5
SimCSE-RoBERTabase 0.05 1e-5
SimCSE-RoBERTalarge 0.05 5e-6

ESimCSE-BERTbase 0.01 3e-5
ESimCSE-BERTlarge 0.01 5e-6
ESimCSE-RoBERTabase 0.01 1e-5
ESimCSE-RoBERTalarge 0.01 5e-6

SNCSE-BERTbase 0.01 1e-5
SNCSE-BERTlarge 0.01 1e-5
SNCSE-RoBERTabase 0.01 1e-5
SNCSE-RoBERTalarge 0.15 5e-6

Table 13: Optimized hyperparameters of HiCL. lr: learn-
ing rate.

3We find that the results on the SICK-R development set
were more consistent with the results on the seven STS test
sets. Once an optimized checkpoint was identified through
STS dev set, we fine-tuned the hyperparameters using the
SICK-R development set.
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Table 11: Transfer task results of sentence embedding performance (evaluted as accuracy). Bold marks the best
result among competing methods under the same backbone model.

Method MR CR SUBJ MPQA SST2 TREC MRPC Avg

SimCSE-BERTbase 80.34 85.35 94.65 89.21 84.68 88.00 73.10 85.05
+ HiCL 80.76 86.39 94.61 89.02 85.17 88.60 73.68 85.46

For HiCLv2, we use the optimized values in
HiCL and only tune for β ∈ {1e-5, 3e-5, 1e-4,
3e-4}. Optimized β is shown in Table 14.

Method α β lr

SimCSE-BERTlarge 0.15 3e-4 5e-6
SNCSE-BERTlarge 0.01 3e-4 5e-6

SimCSE-RoBERTalarge 0.05 3e-5 5e-6
SNCSE-RoBERTalarge 0.15 1e-5 5e-6

Table 14: Optimized hyperparameters of HiCLv2 for
four models in Section 5.7. lr: learning rate.

A.5 Multiple Runs
In addition to the conventional practice of com-
paring models under the same random seed, we
test the generalizability of our proposed method
by using different random seeds, as presented in
Table 15. An inherent challenge is the decision
whether to retune the hyperparameters, considering
the optimized ones under one initialization may
vary under a different one. With the aim of investi-
gating whether the optimized hyperparameters can
be effectively transferred across various random
seeds, we have opted not to retune the hyperparam-
eters. 4

HiCL improves performance across the identical
nine backbone models as shown in Table 1, thereby
demonstrating its robust generalization capabili-
ties. The average scores in the multi-run setting are
uniformly lower than those in the one-run setting,
possibly due to the lack of sufficient hyperparam-
eter tuning. This lack of tuning may also result in
a reduced performance gap between HiCL and the
baseline models.

A.6 A Variant of HiCL
Sequence-segment entailment. The sequence-
segment entailment objective is designed as an al-
ternative way to model the relationship between

4We note that both SimCSE-BERT-based models exhibit a
substantial standard deviation, complicating the assessment of
the models’ performance. As a consequence, we only make
minor adjustments to the learning rate for these two models
for both baseline and HiCL method.

segments from the same sequence. Intuitively, seg-
ments from the same sequence are likely to be more
similar to each other than to a random segment.
However, this is not always the case, as segments
from the same sequence can have contrary mean-
ing. Modeling this relationship is difficult because
it has both a high degree of correlation, yet no clear
relationship between segments. To tackle this prob-
lem, we instead focus on modeling the relationship
between a sequence and its segments. This is more
straightforward, as we know that segi,j comes from
seqi, and therefore they naturally form an entail-
ment relationship. By doing this, we also retain
the information about whether two segments come
from the same sequence. Figure 3 provides an
overview of this variant framework.

We employ a third contrastive objective to model
the entailment relationship. Specifically, a segment
segi,j is entailed by sequence seqi but should not
be entailed by seqk, ∀k ̸= i. Therefore, we treat
segi,j and seqi as a positive pair, and all other
sequences in the batch as negative pairs with segi,j .
We optimize the following InfoNCE loss function:

Le = − log
esim(hi,j ,hi)/τ

esim(hi,j ,hi)/τ +
∑
k ̸=i

esim(hi,j ,hk)/τ

(3)

Overall objective of HiCLv2 The overall ob-
jective of HiCLv2 is a combination of local con-
trastive, global contrastive, and entailment loss,
given by L = αLl + βLe +(1−α− β)Lg, where
α and β are the weights.

A.7 Computing Infrastructure

All models were trained on a single 48GB memory
NVIDIA A40 GPU for one epoch, using the same
initialization, i.e., the same random seed as used
by all baselines, for one run. The server has the
following configuration: Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz x86-64 with CentOS 7
Linux operating system. PyTorch 1.7.1 is used as
the programming framework.
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Table 15: Results of various contrastive learning methods on seven semantic textual similarity (STS) datasets.
We report average results across 3 runs with different initialization. Each method is evaluated on full test sets by
Spearman’s correlation, “all” setting. Bold marks the best result among all competing methods under the same
backbone model.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE-BERTbase 67.41±1.2 79.63±2.4 72.06±2.7 79.71±2.0 77.77±1.0 75.44±2.2 69.69±1.2 74.53±1.8

+ HiCL 67.04±1.7 80.94±0.3 71.93±0.7 80.07±0.5 78.16±0.5 75.55±1.2 69.57±1.1 74.75±0.7↑
ESimCSE-BERTbase 70.07±1.9 81.95±1.8 75.35±1.9 82.85±0.6 79.44±0.8 79.66±0.7 70.93±0.3 77.18±1.1

+ HiCL 70.24±0.3 82.34±0.8 76.05±0.6 83.03±0.2 79.73±0.5 79.47±0.6 71.40±1.1 77.46±0.4↑
SNCSE-BERTbase 70.53±0.4 84.37±0.1 76.95±0.1 83.59±0.4 80.28±0.1 81.28±0.2 74.99±0.1 78.86±0.1

+ HiCL 70.87±0.3 84.48±0.2 76.84±0.2 83.21±0.2 79.61±0.3 80.87±0.3 74.85±0.2 78.67±0.1

SimCSE-BERTlarge 70.03±0.9 82.55±1.2 74.34±1.6 82.96±0.9 77.86±0.9 79.09±1.2 70.44±4.4 76.75±0.9

+ HiCL 68.38±2.4 83.03±2.2 74.04±1.4 83.10±0.9 78.22±1.0 77.89±2.0 73.99±0.3 76.95±1.4↑
ESimCSE-BERTlarge 72.25±0.9 84.77±0.8 76.69±0.8 84.38±0.6 79.40±0.6 80.36±0.7 74.37±0.7 78.89±0.7

+ HiCL 73.24±0.8 84.93±0.5 77.24±0.1 84.73±0.1 80.08±0.3 80.79±0.2 74.23±0.3 79.32±0.1↑
SNCSE-BERTlarge 71.76±0.5 86.59±0.3 78.60±0.3 85.61±0.3 80.46±0.2 82.07±0.3 75.23±0.8 80.05±0.3

+ HiCL 72.34±1.0 86.61±0.3 78.52±0.1 85.43±0.2 80.47±0.4 82.14±0.3 75.43±0.5 80.13±0.3↑
SimCSE-RoBERTabase 69.65±0.3 81.86±0.4 74.19±0.7 82.46±0.7 81.40±0.3 81.17±0.4 68.88±0.7 77.08±0.5

+ HiCL 69.02±0.6 81.94±0.4 74.05±0.5 82.66±0.6 81.62±0.7 81.20±0.6 68.87±0.7 77.05±0.5

ESimCSE-RoBERTabase 69.49±0.5 81.42±0.7 73.76±0.4 81.88±0.6 80.98±0.4 80.62±0.3 68.74±0.6 76.70±0.4

+ HiCL 69.73±0.2 81.48±0.2 74.35±0.3 82.61±0.3 81.23±0.4 80.67±0.2 68.69±0.6 76.97±0.2↑
SNCSE-RoBERTabase 70.47±0.2 83.27±0.4 76.15±0.4 84.13±0.1 81.48±0.7 81.83±0.5 73.18±0.9 78.65±0.3

+ HiCL 70.16±0.9 83.41±0.3 75.73±0.3 83.90±0.2 81.32±0.5 81.36±0.6 72.40±1.0 78.33±0.5

SimCSE-RoBERTalarge 71.13±0.8 83.33±0.5 75.69±0.3 84.04±0.5 80.74±0.5 81.97±0.4 71.13±0.3 78.29±0.2

+ HiCL 71.48±1.0 83.84±0.6 75.90±0.4 84.86±0.4 81.91±0.5 82.33±0.6 71.62±0.2 78.85±0.4↑
ESimCSE-RoBERTalarge 72.70±1.5 83.49±0.2 76.39±0.7 83.07±1.1 80.53±0.3 82.27±0.5 72.66±0.6 78.73±0.7

+ HiCL 72.46±0.7 83.74±0.6 76.29±0.4 84.56±0.0 81.20±0.2 82.89±0.6 71.58±0.7 78.98±0.4↑
SNCSE-RoBERTalarge 73.18±0.5 86.15±0.5 79.08±0.3 86.81±0.3 82.40±0.1 83.48±0.4 77.15±0.4 81.18±0.2

+ HiCL 72.99±0.7 85.74±0.6 79.07±0.7 86.45±0.2 82.77±0.4 83.70±0.7 77.84±0.5 81.22±0.5↑

Figure 3: The overview of HiCLv2 framework with local contrastive, global contrastive, and sequence-segment
entailment objective.
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Table 16: Results of various contrastive learning methods on seven semantic textual similarity (STS) datasets.
We report average results across 3 runs with different initialization. Each method is evaluated on full test sets by
Spearman’s correlation, “all” setting.

Method loss STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SimCSE+HiCL summation 71.48±1.0 83.84±0.6 75.90±0.4 84.86±0.4 81.91±0.5 82.33±0.6 71.62±0.2 78.85±0.4↑
SimCSE+HiCL averaging 71.35±0.5 83.86±0.2 75.71±0.1 84.73±0.3 82.00±0.3 82.10±0.1 71.11±0.2 78.70±0.1

ESimCSE+HiCL summation 72.46±0.7 83.74±0.6 76.29±0.4 84.56±0.0 81.20±0.2 82.89±0.6 71.58±0.7 78.98±0.4↑
ESimCSE+HiCL averaging 71.81±0.3 83.53±0.3 75.77±0.3 84.63±0.2 81.60±0.1 82.45±0.1 71.32±0.3 78.73±0.1

SNCSE+HiCL summation 72.99±0.7 85.74±0.6 79.07±0.7 86.45±0.2 82.77±0.4 83.70±0.7 77.84±0.5 81.22±0.5↑
SNCSE+HiCL averaging 72.79±0.9 86.05±0.2 79.12±0.3 86.47±0.4 83.03±0.2 83.53±0.3 77.10±0.9 81.16±0.3

A.8 Summation or Averaging in Contrasting
Negatives

In Eq. 2, we contrast a segment hi,j with seg-
ments from different sequences hk,∗ where k ̸= i,
which is more like picking the correct pair out of a
very big batch. We investigate an alternative way
which includes a weighted factor when comput-
ing similarities between hi,j and hk,∗. Specifically,∑
k ̸=i

wk × esim(hi,j ,hk,∗)/τ assumes contrasting over

a fixed small batch instead of using an extended big
batch, where wk = 1

v , v is the number of segments
that sequence k is divided into. In essence, this
design would allocate varying weights to different
segments in computation: segments derived from
shorter sequences would receive a higher weight,
while those from longer sequences would be as-
signed a lower weight. A critical query here is:
should we differentiate the importance of segments
based on their originating sequence length? To an-
swer this question, we compare this new design
(named averaging) with our previous version in
Eq. 2 (named summation).

We benchmark the averaging loss against sum-
mation using three different models: SimCSE, ES-
imCSE, and SNCSE, all on the RoBERTalarge back-
bone. To control for initialization effects, we’ve
provided results from three-run evaluations on
seven STS datasets in Table 16. It is clear that
the summation loss consistently outperforms the
averaging loss, which proves that varying the im-
portance of segments based on source length may
not yield beneficial outcomes.
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