
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 2433–2445
December 6-10, 2023 ©2023 Association for Computational Linguistics

Meta-Learning of Prompt Generation for Lightweight Prompt Engineering
on Language-Model-as-a-Service

Hyeonmin Ha1 Jihye Lee2 Wookje Han3 Byung-Gon Chun1,2

1FriendliAI 2Seoul National University 3Columbia University
hyeonmin.ha@friendli.ai {mmodestaa, bgchun}@snu.ac.kr

wookje.han@columbia.edu

Abstract

Recently, many companies have been provid-
ing the capabilities of large language models as
services. These Language-Model-as-a-Service
(LMaaS) offerings support a variety of user
tasks through in-context learning from prompts,
which include instructions and demonstrations
of the task. However, for users, manually craft-
ing prompts or running automatic prompt tun-
ing methods themselves can be demanding.
Despite these challenges, LMaaS providers
do not offer automatic prompt engineering
methods as part of their services. One of
the major obstacles to deploying them on an
LMaaS is the heavy computational costs as-
sociated with automatic prompt engineering
methods. These methods are typically designed
to iterate through tens of thousands of exam-
ples, which impose unaffordable overheads for
LMaaS providers. In this paper, we introduce
MetaL-Prompt, a novel lightweight automatic
prompt generation method for LMaaS. MetaL-
Prompt meta-trains a prompt generation model
(PGM) to enable robust learning by the lan-
guage model from the contexts created by the
generated prompts (i.e., in-context learning).
Thanks to our meta-learning approach, a PGM
can generate prompts for unseen tasks with-
out requiring additional training for those spe-
cific tasks. Furthermore, the PGM can gen-
erate prompts with a single forward pass, sig-
nificantly reducing computational costs com-
pared to previous methods. We evaluate MetaL-
Prompt on a range of unseen tasks and find that
it improves performance by up to 19.4% in
terms of mean F1 score on QA datasets com-
pared to the state-of-the-art baseline P-tuning,
with limited computational cost.

1 Introduction

Many companies have recently succeeded to train
large-scale language models (LMs), and have pro-
vided these models’ capabilities as services (Ope-
nAI, 2020; Cohere, 2021; AI21Labs, 2021; An-
thropic, 2023). To support diverse user tasks, such

Language Model

Prompt Generation
Model

Prompt A Prompt B

(b) Examples

User A

User B
(c) Requests

(a
) M

et
a-

le
ar

ni
ng

LMaaS

Each LM Each task Each request

Figure 1: A workflow of MetaL-Prompt on LMaaS.

Language-Model-as-a-Services (LMaaSs) leverage
in-context learning, where a model learns the task
from a prompt (i.e., demonstration examples or a
natural language instruction) provided by the user.
While in-context learning has shown remarkable
performances and flexibility on various natural lan-
guage processing (NLP) tasks, it still suffers from
unstable performances (Lu et al., 2022; Perez et al.,
2021; Zhao et al., 2021), which motivates research
on automatic prompting methods.

One of the major automatic prompt tuning
methods is gradient-based prompt tuning (Liu
et al., 2021; Lester et al., 2021; Li and Liang,
2021), which updates a parameterized prompt
with gradients. On the other hand, gradient-free
prompt tuning tackles the problem without leverag-
ing gradients. Some gradient-free methods gen-
erate prompts with pre-trained LMs (Honovich
et al., 2022; Zhou et al., 2022) or task-specific
reinforcement learning (RL) agents (Deng et al.,
2022), while others tune prompts using evolution-
ary search (Sun et al., 2022b,a). Even though such
methods have shown outstanding performances,
these methods typically require too heavy compu-
tation costs to be deployed on LMaaSs.

2433

In this paper, we present MetaL-Prompt, a novel
and lightweight prompt engineering method that
leverages meta-learning for prompt generation.
MetaL-Prompt effectively trains a prompt genera-
tion model (PGM), which is based on an LM, to
facilitate robust learning of an LM from the con-
texts (referred to as in-context learning) created
by the generated prompts (Section 3.1). The key
advantage of our meta-learning approach is that it
enables the PGM to generate prompts for an exten-
sive range of unseen tasks without requiring addi-
tional task-specific training of the model. We also
propose trainable padding (Section 3.2) to further
enhance prompt generation efficiency by reducing
the multi-pass generation process to a single for-
ward pass. As a result, MetaL-Prompt significantly
reduces the computational cost compared to pre-
vious methods that typically involve thousands of
forward or backward passes. Prompts generated
by the PGM also can be additionally tuned with
gradient-based prompt tuning for further improved
prompt qualities if such computation costs are al-
lowed.

In order to utilize MetaL-Prompt for an LMaaS,
the model provider initiates the process by training
a PGM using our meta-learning algorithm in the
offline stage (Figure 1 (a)). Once the service is
operational, the trained PGM is employed to gen-
erate appropriate prompts from few-shot examples
provided by a user, without the need for additional
training (Figure 1 (b)). The generated prompt is
then saved and consistently reused to fulfill any sub-
sequent user requests for the same task (Figure 1
(c)).

In addition, we delve into the generation of
continuous prompts (Section 3.3), which are real-
valued vectors similar to word embeddings, in
addition to the conventional discrete prompts ex-
pressed in natural language. Despite the proven
effectiveness of continuous prompts in gradient-
based prompt tuning (Lester et al., 2021; Liu et al.,
2021; Li and Liang, 2021; Sun et al., 2022a), prior
prompt generation methods (Honovich et al., 2022;
Zhou et al., 2022; Deng et al., 2022) have not yet ex-
plored their potential. We compare three different
approaches to continuous prompt generation and
one approach to discrete prompt generation using
PGMs. Through empirical analysis, we demon-
strate that continuous prompts yield superior per-
formance compared to discrete prompts, thanks to
their enhanced expressiveness.

To the best of our knowledge, MetaL-Prompt
stands as the pioneering approach that employs
meta-learning for prompt generation utilizing few-
shot examples. While FLIPPED (Ye et al., 2023)
also employs meta-training for prompt generation,
it is tailored for a new inference method that selects
the label most likely to generate a pre-defined task
instruction. FLIPPED’s model scores alignment
between a single data instance and a pre-defined
task instruction, and it is not explicitly designed to
generate prompts from few-shot examples. Other
related approaches such as P-tuning v2 (Liu et al.,
2022), MPT (Wang et al., 2023), and MetaPrompt-
ing (Hou et al., 2022b) also leverage meta-learning
or multi-task learning for effective prompt engi-
neering. However, their focus lies in learning im-
proved initialization for gradient-based prompt tun-
ing rather than the direct generation of prompts.

We evaluate MetaL-Prompt in diverse meta-
learning settings where there is no overlap be-
tween training datasets and test datasets (i.e., un-
seen tasks). On QA datasets, MetaL-Prompt shows
up to 19.4% gain in mean F1 score compared to
the state-of-the-art prompt engineering methods,
P-tuning, when only generated prompts without
demonstrations are given for in-context learning.

2 Background and Related Work

Language Model as a Service As large-scale
language models (LMs) show astonishing per-
formances across different tasks, several compa-
nies train such models and provide them as ser-
vices (OpenAI, 2020; Cohere, 2021; AI21Labs,
2021; Anthropic, 2023) — which is often called
Language-Model-as-a-Service (LMaaS) (Sun et al.,
2022b). On an LMaaS, a user sends an input text
to the service via the API, then she can obtain cor-
responding outputs from the LM.

One of the most popular methods to adapt the
LM to a user’s task on LMaaS is in-context learn-
ing, where a prompt — a (natural language) task
instruction or/and demonstration examples for the
task — is given to help the LM understand the
task. Manual prompt tuning was initially studied
to support in-context learning. However, manually
crafted prompts require extensive human efforts
to devise and sometimes show unstable and unac-
countable behavior.

Automatic Prompt Tuning To resolve the
problems, recent studies suggest techniques to au-
tomatically search for optimal prompts. One of the

2434

Method # of examples

P-tuning (Liu et al., 2021) 56,000
SoftPrompt (Lester et al., 2021) 960,000
RLPrompt (Deng et al., 2022) 96,000 – 192,000
TEMPERA (Zhang et al., 2022) 65,536
MetaPrompting (Hou et al., 2022b) 240
APE (Zhou et al., 2022) 12,800
BBTv2 (Sun et al., 2022a) 256,000
Clip-Tuning (Chai et al., 2022) 16,000 – 32,000
BDPL (Diao et al., 2023) 32,000 – 128,000
Prefix-tuning (Li and Liang, 2021) 626,590

MetaL-Prompt (ours) 16

Table 1: Number of examples that each prompt tuning
method is required to process for each task in the exper-
iments of the original papers.

widely used approaches is a gradient-based method,
which keeps updating prompt tokens or parame-
terized prompt embeddings leveraging gradients
(Liu et al., 2021, 2022; Lester et al., 2021; Li and
Liang, 2021; Shin et al., 2020; Hou et al., 2022b).
P-tuning v2 (Liu et al., 2022), MPT (Wang et al.,
2023), and MetaPrompting (Hou et al., 2022b) pro-
posed methods to search for better initialization
of the gradient-based prompt tuning using multi-
task learning or meta-learning. The other line of
work is a gradient-free method, which generates
prompts using pre-trained LMs (Hou et al., 2022a;
Honovich et al., 2022; Zhou et al., 2022), trains
RL agents to generate prompts (Deng et al., 2022;
Zhang et al., 2022), uses search-based optimiza-
tion (Prasad et al., 2022; Sun et al., 2022b,a; Chai
et al., 2022) or uses a gradient estimator (Diao et al.,
2023).

Automatic Prompt Tuning on LMaaSs
Even though automatic prompt tuning methods
have proven to be effective, their adoption in
Language-Model-as-a-Services (LMaaS) is cur-
rently lacking. While users can attempt to cre-
ate prompts by running gradient-free prompt tun-
ing methods using the provided LMaaS APIs, this
approach poses challenges, particularly for non-
experts who may find it difficult to deploy and exe-
cute such methods in their private environments.

The primary obstacle to integrating both
gradient-based and gradient-free prompt tuning
methods into LMaaS lies in their substantial com-
putational costs. In Table 1, we present the number
of examples (often tens of thousands) that an LM
needs to process in order to optimize a prompt for
each task using various prompt engineering meth-
ods. In cases where the original papers present

few-shot settings, we report the costs given 16 ex-
amples. Otherwise, we provide the actual costs
as demonstrated in the papers’ experiments. Con-
sidering the vast number of users that an LMaaS
serves, each with unique tasks, processing such a
large number of examples for a single task becomes
excessively burdensome. This highlights the need
for a lightweight prompt tuning method specifically
tailored for LMaaS.

Note that MetaPrompting and MetaL-Prompt
(ours) require meta-learning, which is a preliminary
process for prompt engineering and is conducted
once and not for each task. Since the meta-learning
processes introduce constant costs independent of
the number of users, we do not count the meta-
learning processes as the costs in Table 1 which
demonstrate the costs and the scalability of the
baselines with respect to the number of users.

3 MetaL-Prompt

To address the challenges associated with auto-
matic prompt tuning in LMaaS, we introduce
MetaL-Prompt, a meta-learning approach for a
lightweight prompt generation. In this approach,
we meta-train a prompt generation model (PGM)
(Section 3.1), which is initialized with a target lan-
guage model (LM), with the objective of generating
prompts that enhance the LM’s contextual learning
capabilities. We refer to this training process as
meta-learning because the PGM learns generation
of prompts that effectively induce meaningful con-
texts for the target LM to learn from (i.e., learning-
to-learn). We also propose the use of trainable
padding (Section 3.2) to alleviate the overhead of
the prompt generation process, which requires mul-
tiple forward passes, during the meta-learning. Ad-
ditionally, we explore various types of prompts that
PGMs can generate, as discussed in Section 3.3,
which have not been explored in previous prompt
generation methods.

The overall workflow of an LMaaS with MetaL-
Prompt is depicted in Figure 1. Initially, the model
provider trains a PGM using MetaL-Prompt (Fig-
ure 1 (a)). Importantly, this training process does
not impact the ongoing service as the training oc-
curs prior to the service initiation. During the ser-
vice, when a user provides a set of few-shot exam-
ples for the user’s specific task, the prompt gen-
eration model generates a prompt based on these
few-shot examples (Figure 1 (b)). This generated
prompt is then saved and associated with the user’s

2435

Head

Trainable Padding (§ 3.2)

Prompt
(§ 3.3)

Attention & MLP

Prompt Generation Model (§ 3.1) LM

Initialize

Attention & MLP

Layer

Figure 2: An illustration of meta-learning of a prompt
generation model.

future requests. Finally, when the user submits a
request pertaining to the task, the prompt is com-
posed to the query, and the composed input is fed
into the LM to generate the response (Figure 1 (c)).

MetaL-Prompt offers significant advancements
over prior works in two key aspects: prompt qual-
ity and computation cost for prompt generation.
The prompts that MetaL-Prompt generate empir-
ically demonstrate more accurate or comparable
prediction quality compared to prompts crafted
by previous gradient-based or gradient-free ap-
proaches (Liu et al., 2021; Lester et al., 2021; Sun
et al., 2022a; Deng et al., 2022), given limited com-
putation budgets. In terms of computational ef-
ficiency, MetaL-Prompt surpasses previous meth-
ods by requiring only a single forward pass for
prompt generation, as explained in Section 3.2.
This streamlined approach is highly productive,
especially when contrasted with prior approaches
that necessitate an extensive number of forward
or backward passes to tune or generate a prompt
for a single task, as discussed in section 2. The
reduction in computation cost achieved by MetaL-
Prompt significantly enhances its practicality and
efficiency with LMaaS.

3.1 Prompt generation model (PGM)

MetaL-Prompt employs meta-training to train a
prompt generation model (PGM), enabling the cre-
ation of prompts that enhance in-context learning
of the target language model (LM) across diverse
tasks. The objective function utilized by MetaL-
Prompt, as depicted in Figure 2, can be expressed

as follows:

θ∗
P =argmax

θP

∑

i

p(yi|fθP (XP
i), XL

i , xi;θL)

(1)

where θL and θP are the parameters of the
LM and the PGM respectively, yi is the ex-
pected answer for the input text xi, and
XP

i = {xPi,0, yPi,0, xPi,1, yPi,1, ...} and XL
i =

{xLi,0, yLi,0, xLi,1, yLi,1, ...} are concatenations of ex-
amples. XP and XL consist of examples from
various NLP tasks. The prompt generation pro-
cess fθP can be realized in different ways, and
one straightforward example is choosing the most
probable next tokens using probabilities predicted
by the PGM. Further details regarding the prompt
generation process will be discussed in-depth in
Section 3.3.

The parameter θP is initialized with a target LM
to leverage its existing understanding of various
NLP tasks. In essence, MetaL-Prompt employs
Equation 1 to adapt the LM and obtain a PGM. For
this adaptation process, we utilize LoRA (Hu et al.,
2022), a parameter-efficient fine-tuning method,
instead of full-parameter fine-tuning. Note that
the original LM is frozen and only PGM is tuned
during the meta-learning.

During the service phase following meta-
learning, when a user provides a set of few-shot ex-
amples, MetaL-Prompt divides them into two sub-
sets: XP and XL. The PGM utilizes XP to gener-
ate an appropriate prompt. This generated prompt
is then combined with the additional demonstration
examples XL, and the composed input is used to
process future user requests. It is important to note
that XL can be an empty set. In such cases, only
the prompt and the input from the user’s request
are fed to the LM. This configuration enables the
fastest inference speed due to the shorter sequence
lengths.

A prompt generated by the PGM can be directly
utilized for LM prompting. However, for cases
where additional computational cost is acceptable,
we can enhance the prompt by applying gradient-
based prompt tuning methods (Lester et al., 2021;
Liu et al., 2021; Li and Liang, 2021; Shin et al.,
2020). In this scenario, the generated prompt serves
as an initialization of gradient-based prompt tuning.
We observe that this additional tuning process can
further improve the performance of the prompt.

2436

3.2 Trainable padding

Generative language models, such as GPT-
3 (Brown et al., 2020), typically predict one token
at a time within a given context, necessitating n
forward passes to generate n tokens. This multi-
pass generation process can not only introduce in-
efficiencies in existing serving systems (Yu et al.,
2022) but also cause extra overheads to train PGMs
with the objective outlined in Equation 1, which
also includes generation processes.

We tackle this challenge by proposing trainable
padding, which is inspired by special tokens of re-
cent LMs and gradient-based prompt tuning (Lester
et al., 2021; Liu et al., 2021). As depicted in Fig-
ure 2, MetaL-Prompt appends trainable embed-
dings to the given examples Xp, which are then
fed to the PGM as part of the input. This enables
the PGM to generate multiple prompt tokens si-
multaneously by leveraging the hidden states cor-
responding to each padding position. Additionally,
we reparameterize the trainable padding similar
to other prompt tuning methods (Liu et al., 2021;
Li and Liang, 2021; Liu et al., 2022; Hou et al.,
2022b), specifically employing LSTMs following
the methodology of P-tuning (Liu et al., 2021).

3.3 Prompt design

In this section, we discuss four prompt designs —
Discrete, Weighted Sum, Hidden State, and Prefix —
and their generation using a PGM. While existing
prompt generation methods have primarily focused
on discrete prompts in natural language, we extend
our investigation to include real-valued prompts
(i.e., continuous prompts) as previous prompt tun-
ing methods (Liu et al., 2021; Li and Liang, 2021;
Sun et al., 2022a) have demonstrated their effec-
tiveness.

Discrete is a prompt that consists of the most
probable natural language tokens predicted by
a PGM. To train the PGM for Discrete, we
adopt Gumbel-Softmax reparameterization with
discretization (“Straight-through" trick).

Weighted Sum is a continuous prompt obtained
by multiplying the token probability predicted by
a PGM with the word embeddings of a target LM.
It represents the probability-weighted sum of the
word embeddings.

Hidden State directly uses the input hidden
states of the head layer in a PGM as a continu-
ous prompt. As word embedding layers and head
layers typically share the same parameters in recent

LMs, the input hidden states from the head layer
have the same representations as the word embed-
dings. This makes them valid inputs (i.e., prompts)
for the LM.

Prefix adds a prompt before the keys and val-
ues of transformers (Li and Liang, 2021), rather
than prepends it to the inputs like the others. As
depicted in Figure 2, we extract the keys and values
of self-attention layers from each layer of a PGM at
the position of the trainable padding, and prepend
them to the keys and values of a target LM in the
corresponding layers. Prefix demonstrates the best
performance among all (Section 5.5), and there-
fore, we utilize Prefix in the following experiments
(section 5).

4 Experimental setup

In this section, we present the setup of our experi-
ments, which includes datasets, training and evalu-
ation details, baselines, and models.

4.1 Dataset

We conduct experiments to evaluate the perfor-
mance of MetaL-Prompt using the combination
of CrossFIT (Ye et al., 2021) and UNIFIED
QA (Khashabi et al., 2020), which consists of 142
diverse datasets. Specifically, we adopt three differ-
ent task settings from MetaICL (Min et al., 2022),
cls → cls, HR → LR, and QA → QA. Each
setting defines two disjoint sets — meta-learning
datasets and evaluation datasets — and brief expla-
nations of the settings are as follows.

Classification to classification (cls → cls):
Both the meta-learning datasets and the evaluation
datasets encompass classification tasks.

QA to QA (QA → QA): Both the meta-
learning datasets and the evaluation datasets consist
of Question-Answering (QA) tasks.

High Resource → Low Resource (HR → LR):
In this particular setting, each meta-learning dataset
comprises over 10,000 training examples, while
each evaluation dataset consists of fewer than
10,000 examples.

4.2 Evaluation

We use Macro-F1, which is a better measure than
accuracy on imbalanced datasets, as our evaluation
metric and report the mean scores obtained from
four distinct runs. For each run, MetaL-Prompt
and the baselines are given a different set of 16
examples sampled from the training split of the

2437

evaluation dataset for prompt generation or tuning.
MetaL-Prompt trains only a single PGM for all of
the runs, but the PGM generates unique prompts
for each run by leveraging distinct example sets.
Furthermore, we explore the impact of varying ex-
ample sizes and provide the corresponding results.
Here, nP denotes the number of examples used
for prompt generation, and nL represents the num-
ber of examples utilized for in-context learning
demonstrations in addition to the tuned or gener-
ated prompts.

4.3 Training

MetaL-Prompt trains a PGM on the meta-learning
datasets of each setting. Subsequently, for eval-
uation, the trained PGM is employed to generate
prompts from nP examples of the unseen evalu-
ation datasets. As we mentioned in Section 3.1,
the generated prompts can be further tuned with
SGD as the previous gradient-based tuning meth-
ods. If not specified, we do not adopt the additional
tuning.

As described in Section 3.1, MetaL-Prompt con-
catenates examples to form XP

i for prompt genera-
tion and XL

i for inference, respectively. If not men-
tioned, we use the same nP and nL with the evalua-
tion settings to construct XP

i and XL
i for alignment

between the training and evaluation settings. More
details for the training of MetaL-Prompt and the
baselines are described in Appendix A and Ap-
pendix B.

4.4 Baselines

We compare MetaL-Prompt against five different
prompt tuning baselines — P-tuning (Liu et al.,
2021), SoftPrompt (Lester et al., 2021), Prefix-
tuning (Li and Liang, 2021), RLPrompt (Deng
et al., 2022), and BBTv2 (Sun et al., 2022a). To
assess the effectiveness of the baselines on LMaaS,
we evaluate their performance under constrained
cost settings, roughly 10 epochs of forward and
backward passes. When MetaL-Prompt adopts the
further tuning of the generated prompts, we run
9 epochs of the tuning to meet the computation
budget, considering the prompt generation costs.
More details regarding the computation costs can
be found in Appendix B.2.

4.5 Models

To evaluate MetaL-Prompt and the baselines, we
employ autoregressive LMs: GPT2-Large (762M

parameters), GPT2-XL (1.5B parameters) (Rad-
ford et al., 2019), and Llama2 (7B parameters).
The motivation behind the model choice is that au-
toregressive models are widely utilized for LMaaS,
such as OpenAI API. However, MetaL-Prompt is
not limited to such models. It can support other
LMs such as sequence-to-sequence models as well.

5 Experimental Results

We evaluate MetaL-Prompt on the setup presented
in section 4. We first show the performance of
MetaL-Prompt when the generated or tuned prompt
is solely provided without additional demonstra-
tions (Section 5.1). We also provide experimental
computation costs to prove MetaL-Prompt’s cost-
efficiency in (Section 5.2). Then, we explore a
trade-off between the number of examples used for
in-context learning demonstrations for LMs and
those for prompt generation (Section 5.3). We ad-
ditionally validate whether the PGMs are capable
of generalizing to inference settings that involve
a different number of demonstrations from train-
ing settings (Section 5.4). Finally, we compare the
performances of prompt designs we presented in
Section 3.3 (Section 5.5).

5.1 Prompt-only In-context Learning

We present the performance of the prompts gen-
erated by MetaL-Prompt without extra demonstra-
tions for in-context learning. In this setting, all 16
examples from a task are used for prompt gener-
ation or tuning. The inputs are composed of only
the prompt and test inputs without any additional
demonstrations (nP = 16, nL = 0). This setting
is the most practical setting because it keeps the
shortest input length. Short sequence length leads
to low latency, small hidden state cache (i.e., key
and value cache of transformer-based models for
demonstrations or prompts), or low monetary cost
for users.

As demonstrated in Table 2, MetaL-Prompt ex-
hibits superior performance compared to the base-
lines, except Prefix-tuning. It achieves notable
improvements of up to 19.4% on QA tasks, sur-
passing the state-of-the-art method (i.e., P-tuning),
even with significantly lower computational costs
requiring only a single forward pass. Interestingly,
Prefix-tuning showcases exceptional efficacy in
the limited budget setting compared to other base-
lines. However, MetaL-Prompt outperforms Prefix-
tuning on QA tasks, and maintains comparable

2438

Model Setting BBT2 RLPrompt SoftP P-tuning Prefix MetaL MetaL
(+Tune)

Large cls→cls 22.43 23.13 28.53 34.01 39.71 35.62 44.63
HR→LR 24.90 - 26.62 30.56 34.33 30.12 35.46
QA→QA 24.92 - 20.66 27.14 26.52 28.94 30.61

Avg. 24.08 - 25.27 30.57 33.52 31.56 36.90

XL cls→cls 24.92 23.02 27.24 30.25 36.76 36.85 46.00
HR→LR 25.31 - 24.33 29.36 34.15 30.05 34.75
QA→QA 25.28 - 20.74 26.64 25.70 31.81 34.03

Avg. 25.17 - 24.10 28.75 32.20 32.90 38.26

Table 2: Comparison of evaluation results on the prompt-only setting between MetaL-Prompt and the baselines.
All examples are used for prompt generation or tuning, and no additional demonstration is provided for in-context
learning.

Model Setting Prefix MetaL

Llama-2 7B cls→cls 34.03 47.29

Table 3: Comparison of evaluation results on the prompt-
only setting and Llama-2 (7B) between MetaL-Prompt
and Prefix-tuning.

performance on GPT2-XL, the larger model, and
classification tasks. Notably, MetaL-Prompt bene-
fits from its advantageously low computation costs
while still delivering competitive results. In Ta-
ble 3, We additionally compare the performances of
Prefix-tuning and MetaL-Prompt on a larger model,
Llama-2 (7B parameters), using the cls → cls
setting. MetaL-Prompt outperforms our leading
baseline, Prefix-tuning, on the Llama-2.

Furthermore, as discussed in Section 3.1, we can
enable MetaL-Prompt to utilize comparable compu-
tation costs to the baselines (Section 4.4) by incor-
porating additional tuning of the generated prompts.
This variant, referred to as MetaL(+Tune), is indi-
cated in Table 2. When considering the fair compu-
tation costs, MetaL-Prompt consistently achieves
superior performance across various task settings
and models.

Lastly, it is important to highlight that the
gradient-based prompt tuning methods — Soft-
Prompt, P-tuning, and Prefix-tuning — demon-
strate diminishing performance as models increase
in size particularly on the classification tasks. We
attribute this phenomenon to the convergence speed.
Due to the smaller size of the model and the
prompts, the prompts tuned by these methods con-
verge more rapidly on the smaller model, allowing
them to reach better performance within the con-
strained computational budgets.

Conversely, MetaL-Prompt showcases its effi-

Computation costs
Method Our constrained costs Original

(Appendix B.2) (ms) (Table 1) (hrs)

Prefix 1517 26.4
SoftP 1880 50.1
P-tuning 1987 3.1
BBT2 3916 7.0
RLPrompt 19042 4.2
MetaL 76 2.11e-5 (76 ms)

Table 4: Experimental computation costs of MetaL-
Prompt and our baselines with our constrained compu-
tation budget and the original budgets.

cacy on larger models, while properly benefits from
additional gradient-based tuning. This means that
MetaL-Prompt is expected to deliver improved per-
formance on larger models, which is more prac-
tical, whereas other gradient-based methods may
encounter limitations when applied to such models.
This scalability advantage positions MetaL-Prompt
as a favorable choice for scenarios involving larger
models.

5.2 Experimental computation costs for
automatic prompt engineering methods

To demonstrate the efficiency of MetaL-Prompt
in computation costs, and provide experimental
evidences to support computation costs of our prac-
tical setting (Section 4.4 and Appendix B.2), we
measure the actual computation costs for MetaL-
Prompt and our baselines. We conduct these ex-
periments on GPT2-XL model, a single NVIDIA
A100 80GB SXM, and a randomly selected dataset,
WIKI-QA, with a batch size of 16.

We first measure the average time consumed for
each forward and backward pass. Using the aver-
age time measured for each forward and backward
pass above, we compute the actual costs required

2439

Example Splits
Method (16, 0) (12, 4)

cls→cls
P-tuning 30.25 29.87
Prefix-tuning 36.76 37.07
MetaL-Prompt 36.85 39.33

QA→QA
P-tuning 26.64 26.53
Prefix-tuning 25.70 26.17
MetaL-Prompt 31.81 30.49

Table 5: Comparison of the performances on various
distribution of examples for prompting and demonstra-
tion. We use GPT2-XL for the LM and PGMs.

to process each task. We report two costs: our
practical scenario and the settings from the original
papers (Table 1).

As described in the table, the baselines consume
up to several days in the original settings, and even
in our practical setting, they consume several sec-
onds. Considering these costs are measured in
GPT2-XL, prompt tuning on larger models such
as GPT-3 (Brown et al., 2020) requires much more
costs, and the gap between MetaL-Prompt and the
baselines will be larger.

5.3 Additional demonstrations with generated
prompts

Although prompt-only is the most cost-efficient set-
ting, model providers or users may be willing to
allocate expanded computation budgets for infer-
ence or larger spatial budgets (i.e., larger key/value
cache) to further increase the performance. For
such situations, we explore the effect of addi-
tional demonstrations combined with the generated
prompt. We keep the number of examples for each
task the same but vary the ratio between nP and nL.
We evaluate MetaL-Prompt and two baselines, P-
tuning (Liu et al., 2021) and Prefix-tuning (Li and
Liang, 2021), which are the most powerful base-
lines in Section 5.1, on settings where (nP , nL) is
(16, 0) and (12, 4).

Table 5 presents the results of MetaL-Prompt
and the baselines when additional demonstrations
are provided. Notably, when given these extra
demonstrations, MetaL-Prompt demonstrates fur-
ther performance improvements, particularly in the
cls→cls setting, with enhancements of up to 6.7%.
Hence, depending on tasks, a model provider may
opt to allocate a larger computation budget for in-
ference on longer sequences or allocate additional
spatial resources to cache the hidden states of the

Train Test Setting
Setting (16, 0) (12, 4) (8, 8)

cls→cls
(16, 0) 36.85 31.09 27.75
(12, 4) 32.46 39.33 39.38

QA→QA
(16, 0) 31.81 26.51 27.35
(12, 4) 23.56 30.49 31.31

Table 6: Results for transferability of the PGMs. We
evaluate the PGMs for GPT2-XL on the test settings
different from the training settings.

demonstrations, thereby enhancing performance. It
is worth mentioning that Prefix-tuning also benefits
from these budgetary allocations in both settings,
whereas P-tuning does not exhibit the same advan-
tage.

5.4 Transferability to different test settings

In the previous section, we have discussed that
MetaL-Prompt can further enhance performance
by tailoring example splits through increased com-
putation or spatial budgets. In this section, we
further explore that a PGM trained with a specific
training setting (i.e., a particular example split) is
still available in different test settings. We evaluate
two PGMs trained for GPT2-XL where (nP , nL)
is (16, 0), (12, 4). These models represent train-
ing without demonstrations and with additional
demonstrations respectively. We evaluate the mod-
els on cls→cls and QA→QA with three test set-
tings where (nP , nL) is (16, 0), (12, 4), and (8, 8).

As presented in Table 6, PGMs trained without
demonstrations (i.e., (nP , nL) = (16, 0)) does not
generalize to the other test settings. The perfor-
mance decreases when examples are provided with
an LM as demonstrations instead of solely utilized
for prompt generation. Interestingly, PGMs trained
with (nP , nL) = (12, 4), where demonstrations are
considered, show marginal or no degradation when
transferred to the other test settings with demon-
strations.

In summary, PGMs trained without demonstra-
tions can not be transferred to test settings with
demonstrations, and vice versa. From this obser-
vation, we notice that there exists a significant dis-
parity between suitable prompts that are soley used
without demonstrations and those that are paired
with demonstrations. Exploration of this gap will
be an interesting future work.

2440

Method Disc WS HS Prefix

F1 31.78 33.13 31.19 36.85

Table 7: Ablation studies on the effect of our prompt
design. We evaluate various prompt designs on GPT2-
XL and cls→cls.

5.5 Comparison between various prompt
designs

In this section, we compare performances of di-
verse prompt designs listed in Section 3.3: Discrete,
Weighted Sum (WS), Hidden State (HS), and Prefix.
Discrete is a prompt consisting of natural language
tokens, whereas Weighted Sum, Hidden State, and
Prefix represent continuous prompts, which are
real-valued prompts. We compare the designs on
cls→cls where (nP , nL) is (16, 0).

As depicted in Table 7, Prefix exhibits the best
performance among the approaches due to its abil-
ity to prepend to each layer, resulting in a larger
prompt size while maintaining the same prompt
length. This larger prompt size provides Prefix
with a richer expressiveness compared to the other
methods. Weighted Sum also demonstrates im-
proved performance, benefiting from its enhanced
expressiveness compared to the discrete prompt,
which consists of natural language tokens.

However, Hidden State displays degenerated per-
formance, even when compared to the discrete
prompts. As discussed in Section 3.3, the input
hidden states of the head layer have representations
similar to word embeddings, but they are not iden-
tical, particularly in terms of the scale of the val-
ues. This discrepancy may cause the Hidden State
prompts to deviate from the manifold of the word
embeddings. We hypothesize that the degraded per-
formance of Hidden State prompts is a result of this
discrepancy. Consequently, incorporating an addi-
tional scaler to mitigate the discrepancy is expected
to be beneficial in improving the performance of
Hidden State prompts.

6 Conclusion

In this paper, we propose MetaL-Prompt, a novel
and lightweight prompting method for LMaaS.
MetaL-Prompt meta-trains a prompt generation
model (PGM) for better in-context learning from
the generated prompt, accompanying trainable
padding for more efficient prompt generation.
Thanks to the meta-learning, the trained PGM does
not require additional training for unseen user tasks,

and it can generate a prompt with a single for-
ward pass, allowing additional tuning of the prompt.
Moreover, we explore the generation of continu-
ous prompts using a PGM, which has not yet been
discussed in the previous prompt generation stud-
ies. With the proposed designs, MetaL-Prompt
achieves performance gains over five baselines up
to 19.4% for mean F1 score on QA datasets with
less computation cost for prompt generation than
the baselines. The results support the efficiency of
MetaL-Prompt in terms of model performance and
computational cost.

Limitations

Flexibility on the number of demonstrations
As highlighted in Section 5.4, it is important to note
that a prompt generation model (PGM) trained on
a specific training setting (i.e., example split) can-
not be directly transferred to different test settings.
Consequently, when we aim to enhance prediction
quality through the inclusion of additional demon-
strations as on the cls→cls setting in Section 5.4,
we require multiple PGMs for each specific setting,
allowing for a flexible trade-off between inference
speed and prediction quality by adjusting the num-
ber of demonstrations. However, training and man-
aging multiple PGMs pose challenges for LMaaS
providers.

Prompt generation with more examples
In our experiments, the prompt generation mod-

els (PGMs) are constrained by sequence size lim-
its. Consequently, if a user provides an excessive
number of examples, the PGMs may be unable to
process such a large set if the concatenation of the
examples exceeds the sequence size limit.

However, it is worth noting that recent language
models have started to adopt longer sequence sizes,
which helps alleviate this limitation. The incorpo-
ration of longer sequence sizes enables PGMs to
handle larger sets of examples more effectively.

Additionally, we explore an iterative approach
to improving prompts by concatenating a previ-
ously generated prompt with new examples. This
concatenated context is then used as input to the
PGM to generate an enhanced prompt, allowing
the PGM to accommodate an arbitrary number of
examples by iteratively processing the example sub-
sets. This iterative approach enhances the scalabil-
ity of prompt generation, empowering PGMs to
process varying numbers of examples effectively.

2441

References
AI21Labs. 2021. Ai21 studio. https://www.ai21.

com/studio.

Anthropic. 2023. Anthropic api. https://www.
anthropic.com/product.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Hua
Wu, and Haifeng Wang. 2022. Clip-tuning: Towards
derivative-free prompt learning with a mixture of
rewards. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pages 108–117,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Cohere. 2021. Cohere api. https://cohere.com/.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369–3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li,
Yong Lin, Xiao Zhou, and Tong Zhang. 2023. Black-
box prompt learning for pre-trained language models.
Transactions on Machine Learning Research.

Nikolaus Hansen, Sibylle D. Müller, and Petros
Koumoutsakos. 2003. Reducing the time complex-
ity of the derandomized evolution strategy with co-
variance matrix adaptation (cma-es). Evolutionary
Computation, 11(1):1–18.

Nikolaus Hansen and Andreas Ostermeier. 2001. Com-
pletely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2022. Instruction induction: From few
examples to natural language task descriptions.

Bairu Hou, Joe O’Connor, Jacob Andreas, Shiyu Chang,
and Yang Zhang. 2022a. Promptboosting: Black-box
text classification with ten forward passes. arXiv
preprint arXiv:2212.09257.

Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li,
and Wanxiang Che. 2022b. MetaPrompting: Learn-
ing to learn better prompts. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 3251–3262, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

HuggingFace. 2019. Distilgpt2. https://
huggingface.co/distilgpt2.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online. Association
for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the

2442

https://www.ai21.com/studio
https://www.ai21.com/studio
https://www.anthropic.com/product
https://www.anthropic.com/product
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.findings-emnlp.8
https://aclanthology.org/2022.findings-emnlp.8
https://aclanthology.org/2022.findings-emnlp.8
https://cohere.com/
https://aclanthology.org/2022.emnlp-main.222
https://aclanthology.org/2022.emnlp-main.222
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.48550/ARXIV.2205.10782
https://doi.org/10.48550/ARXIV.2205.10782
https://aclanthology.org/2022.coling-1.287
https://aclanthology.org/2022.coling-1.287
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://huggingface.co/distilgpt2
https://huggingface.co/distilgpt2
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022. Metaicl: Learning to learn
in context. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2791–2809.

OpenAI. 2020. Openai api. https://openai.com/
api/.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. Ad-
vances in neural information processing systems,
34:11054–11070.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language mod-
els.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2 Workshop.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuanjing Huang, and Xipeng Qiu. 2022a. Bbtv2:
Towards a gradient-free future with large language
models. In Proceedings of EMNLP.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022b. Black-box tuning for
language-model-as-a-service. In International Con-
ference on Machine Learning, pages 20841–20855.
PMLR.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge-
rio Feris, Huan Sun, and Yoon Kim. 2023. Multitask
prompt tuning enables parameter-efficient transfer
learning. In The Eleventh International Conference
on Learning Representations.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
Crossfit: A few-shot learning challenge for cross-
task generalization in nlp. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7163–7189.

Seonghyeon Ye, Doyoung Kim, Joel Jang, Joongbo
Shin, and Minjoon Seo. 2023. Guess the instruction!
flipped learning makes language models stronger
zero-shot learners. In ICLR 2023 Workshop on Math-
ematical and Empirical Understanding of Founda-
tion Models.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for Transformer-Based
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538, Carlsbad, CA. USENIX
Association.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale
Schuurmans, and Joseph E Gonzalez. 2022. Tem-
pera: Test-time prompting via reinforcement learning.
arXiv preprint arXiv:2211.11890.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a.
Character-level Convolutional Networks for Text
Classification. arXiv:1509.01626 [cs].

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015b.
Character-level convolutional networks for text clas-
sification. In NIPS.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697–12706. PMLR.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. In NeurIPS 2022 Foundation Mod-
els for Decision Making Workshop.

2443

https://openai.com/api/
https://openai.com/api/
https://doi.org/10.48550/ARXIV.2203.07281
https://doi.org/10.48550/ARXIV.2203.07281
https://doi.org/10.48550/ARXIV.2203.07281
https://openreview.net/forum?id=o7JLWZ3af5
https://openreview.net/forum?id=o7JLWZ3af5
https://openreview.net/forum?id=o7JLWZ3af5
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626

Split
Setting Meta-learning Eval

cls→cls 43 20
HR→LR 61 26
QA→QA 37 22

Table 8: The number of datasets for each task setting.
There is no overlap between the meta-learning datasets
and the evaluation datasets in each setting.

A Training Details of MetaL-Prompt

MetaL-Prompt trains a PGM on the meta-learning
datasets of each setting (i.e., cls→cls, HR→LR,
and QA→QA), using up to 16,384 training exam-
ples per dataset in accordance with MetaICL (Min
et al., 2022).

These settings cover a total of 133 unique tasks,
which is significantly larger than the number of
tasks explored in previous prompt tuning meth-
ods (Sun et al., 2022a,b; Deng et al., 2022; Prasad
et al., 2022; Honovich et al., 2022; Zhou et al.,
2022). The statistics of each setting are described
in Table 8.

To train the prompt generation models (PGMs)
of MetaL-Prompt, we utilize the AdamW opti-
mizer (Loshchilov and Hutter, 2019) along with
linear learning rate decay. The learning rate is
initialized at 0.0001 for HR→LR and 0.0002 for
cls→cls and QA→QA, without employing a learn-
ing rate warmup. The training epochs for cls→cls,
HR→LR, and QA→QA are set to 10, 6, and 8,
respectively. The prompt length for MetaL-Prompt
is 20. For the additional tuning of the generated
prompts, we employ an initial learning rate of 0.02
and tune them for 9 epochs to align with the com-
putation costs associated with the gradient-based
prompt tuning baselines (Section B.2). It is impor-
tant to note that this additional tuning process is
performed on the few-shot examples utilized by the
PGM for prompt generation.

B Baselines

We evaluate five baselines and compare perfor-
mance with MetaL-Prompt. P-tuning (Liu et al.,
2021), SoftPrompt (Lester et al., 2021), and Prefix-
tuning (Li and Liang, 2021) are gradient-based
prompt tuning methods. RLPrompt (Deng et al.,
2022) trains an RL agent to generate prompts for
each task. Lastly, BBTv2 (Sun et al., 2022a) opti-
mizes prompts using evolutionary search.

B.1 Hyperparameters

In order to train the baselines, we use the hyper-
parameters listed in Table 9. For P-tuning (Liu
et al., 2021), SoftPrompt (Lester et al., 2021) and
Prefix-tuning (Li and Liang, 2021), we tune learn-
ing rates based on F1 scores of three classification
tasks — AG News (Zhang et al., 2015b), Yelp Po-
larity (Zhang et al., 2015a) and TabFact (Chen et al.,
2020) — that have the largest test splits among clas-
sification datasets, and we borrow other hyperpa-
rameters from the original paper. We set a prompt
length of 20.

To train a policy model for RLPrompt (Deng
et al., 2022), we adhere to the hyperparameters de-
scribed in the original paper. In our experiments,
we employ distilGPT-2 (HuggingFace, 2019; Sanh
et al., 2019), as a policy model for generating op-
timized prompts following the original paper. To
maintain consistency with the recommendations of
Deng et al. (2022), we set the prompt length to 5.

Given that BBTv2 (Sun et al., 2022a) leverages
the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) (Hansen and Ostermeier, 2001;
Hansen et al., 2003) during its training, we adopt all
hyperparameters for CMA-ES as outlined by Sun
et al. (2022a), with the exception of the population
size and a budget to limit the computation cost.
In line with Sun et al. (2022a), we set the prompt
length to 50.

B.2 Computation costs

In order to efficiently support Language-as-a-
Service (LMaaS) with thousands of diverse user
tasks, it is crucial to minimize the computation
costs associated with each task. Considering our
method MetaL-Prompt requires only a single for-
ward pass with trainable padding, we adjust the
number of forward and backward passes for each
baseline to ensure fair comparisons, as described
in Table 10.

For P-tuning, SoftPrompt and Prefix-tuning, we
train our baselines for 10 epochs with a batch size
of 16. It implies that, when considering one for-
ward pass for each sequence, a cumulative total of
160 forward and backward passes are needed.

In accordance with the cost limit, RLPrompt
is trained for 5 epochs. During training, RL-
Prompt updates its policy model using reward sig-
nals, which are logarithmic probabilities of multi-
ple prompts, predicted by a target language model
(LM). Specifically, each prompt is concatenated

2444

Method P-tuning SoftPrompt Prefix-tuning BBTv2 RLPrompt

Optimizer AdamW AdamW AdamW - Adam
Learning Rate 1.6e−4 4e−5 2e−4 - 5e−5
Learning Rate Schedule Linear Linear Linear - Constant
Epoch 10 10 10 240 5
Batch Size 16
Prompt Length 20 20 20 50 5

Table 9: Hyperparameters for the baselines.

Method # of forward # of backward

P-tuning 160 160
SoftPrompt 160 160
Prefix-tuning 160 160
RLPrompt 320 ×α -
BBTv2 3,880 -

Table 10: Number of forward and backward passes
for the baselines. Compared to the baselines, MetaL-
Prompt requires only a single forward pass. As this
number pertains to a single task, it will be linearly in-
creased when dealing with a wide range of user tasks
on LMaaS.

with every sequence and passed through the target
LM to obtain rewards for updating the policy model.
To calculate these rewards, we utilize 4 prompts
and a batch size of 16, requiring a minimum of 64
forward passes per epoch.

Additionally, to address the limitations of RL-
Prompt, which only supports single-token labels,
we multiply the batch size by the number of classes
to accommodate classification tasks with multi-
token labels. This implies that we need a mini-
mum of 320 forward passes, which will be further
multiplied by the number of classes (α) for each
task. It is important to note that we do not consider
backward passes of the policy model, as it solely
updates small MLP layers (Deng et al., 2022) just
before the head layer.

To assess BBTv2 in a constrained budget sce-
nario, we designate 240 forward passes per batch
for GPT2-XL and 180 forward passes for GPT2-
Large, taking into account the number of hidden
layers in each model (e.g., 48 layers for GPT2-XL)
and a selected popsize of 5. With a batch size of 16
utilized by BBTv2, this translates to a total of 3,840
forward passes for GPT2-XL and 2,880 forward
passes for GPT2-Large.

2445

