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Abstract
To alleviate the data scarcity problem in End-
to-end speech translation (ST), pre-training on
data for speech recognition and machine trans-
lation is considered as an important technique.
However, the modality gap between speech and
text prevents the ST model from efficiently in-
heriting knowledge from the pre-trained mod-
els. In this work, we propose AdaTranS for
end-to-end ST. It adapts the speech features
with a new shrinking mechanism to mitigate
the length mismatch between speech and text
features by predicting word boundaries. Experi-
ments on the MUST-C dataset demonstrate that
AdaTranS achieves better performance than the
other shrinking-based methods, with higher in-
ference speed and lower memory usage. Fur-
ther experiments also show that AdaTranS can
be equipped with additional alignment losses
to further improve performance.

1 Introduction

End-to-end speech translation (ST), which directly
translates source speech into text in another lan-
guage, has achieved remarkable progress in recent
years (Berard et al., 2016; Duong et al., 2016; Weiss
et al., 2017; Berard et al., 2018; Xu et al., 2021;
Ye et al., 2022). Compared to the conventional
cascaded systems (Ney, 1999; Mathias and Byrne,
2006), the end-to-end models are believed to have
the advantages of low latency and less error propa-
gation. A well-trained end-to-end model typically
needs a large amount of training data. However,
the available direct speech-translation corpora are
very limited (Di Gangi et al., 2019). Given the
fact that data used for automatic speech recogni-
tion (ASR) and machine translation (MT) are much
richer, the paradigm of “pre-training on ASR and
MT data and then fine-tuning on ST” becomes one
of the approaches to alleviate the data scarcity prob-
lem (Bansal et al., 2019; Xu et al., 2021).

It has been shown that decoupling the ST en-
coder into acoustic and semantic encoders is ben-

eficial to learn desired features (Liu et al., 2020;
Zeng et al., 2021). Initializing the two encoders
by pre-trained ASR and MT encoders, respectively,
can significantly boost the performance (Xu et al.,
2021). However, the modality gap between speech
and text might prevent the ST models from effec-
tively inheriting the pre-trained knowledge (Xu
et al., 2021).

The modality gap between speech and text can
be summarized as two dimensions. First, the length
gap – the speech features are usually much longer
than their corresponding texts (Chorowski et al.,
2015; Liu et al., 2020). Second is the representa-
tion space gap. Directly fine-tuning MT parameters
(semantic encoder and decoder) with speech fea-
tures as inputs, which learned independently, would
result in sub-optimal performance. Previous work
has explored and proposed several alignment objec-
tives to address the second gap, e.g., Cross-modal
Adaption (Liu et al., 2020), Cross-Attentive Reg-
ularization (Tang et al., 2021a) and Cross-modal
Contrastive Learning (Ye et al., 2022).

A shrinking mechanism is usually used to ad-
dress the length gap. Some leverage Continuous
Integrate-and-Fire (CIF) (Dong and Xu, 2020) to
shrink the long speech features (Dong et al., 2022;
Chang and Lee, 2022), but they mostly work on
simultaneous ST and need extra efforts to perform
better shrinking. Others mainly depend on the CTC
greedy path (Liu et al., 2020; Gaido et al., 2021),
which might introduce extra inference cost and lead
to sub-optimal shrinking results. AdaTranS uses a
new shrinking mechanism called boundary-based
shrinking, which achieves higher performance.

Through extensive experiments on the MUST-
C (Di Gangi et al., 2019) dataset, we show that Ada-
TranS is superior to other shrinking-based methods
with a faster inference speed or lower memory us-
age. Further equipped with alignment objectives,
AdaTranS shows competitive performance com-
pared to the state-of-the-art models.

2353



Acoustic Encoder

Semantic 

Encoder

DecoderShrink

CTC 

Module

CTC Loss ST Loss

Boundary 

Predictor

Source Speech Target Text

Softmax

Pred Loss

Guide

Figure 1: AdaTranS Architecture, where the blue mod-
ules are initialized with the ASR model and the orange
modules are initialized with the MT model. The CTC
module (dotted) can be removed during inference.

2 Proposed Model: AdaTranS

2.1 Problem Formulation

An ST corpus is denoted as DST = {(x, z,y)},
containing triples of speech, transcription and trans-
lation. Here x = (x1, x2, ..., xTx) is a sequence of
speech features or waves as speech input, while
z = (z1, z2, ..., zTz) and y = (y1, y2, ..., yTy) are
the corresponding transcription in source language
and translation in target language, respectively. Tx,
Tz , and Ty are the lengths of speech, transcrip-
tion and translation, respectively, where usually
Tx ≫ Tz and Tx ≫ Ty.

2.2 Architecture

AdaTranS decouples the ST encoder into an acous-
tic encoder and a semantic encoder. To bridge the
modality gap between speech and text, an adaptor
is usually needed before the semantic encoder. We
choose the shrinking operation (Liu et al., 2020;
Zeng et al., 2021) as our adaptor, where the long
speech sequences are shrunk to the similar lengths
as the transcription based on designed mechanisms
(details will be introduced in the next subsection).
The shrunk representations are sent to the semantic
encoder and ST decoder for output:

LST = −
∑

|DST |

Ty∑

t=1

log p(yt|y<t,x) (1)

To incorporate extra ASR and MT data, we use
the pre-trained ASR encoder to initialize the ST
acoustic encoder, and the pre-trained MT encoder
and decoder to initialize the ST semantic encoder
and decoder, respectively. Both pre-trained models
are first trained with extra ASR (or MT) data and
then fine-tuned with the in-domain data (the ASR
part or MT part in the ST corpus). Figure 1 displays
our architecture as well as the training process.

2.3 Boundary-based Shrinking Mechanism

Previous shrinking mechanisms (Liu et al., 2020;
Zeng et al., 2021) mostly depend on a CTC mod-
ule (Graves et al., 2006) to produce token-label
probabilities for each frame in the speech represen-
tations. Then, a word boundary is recognized if
the labeled tokens of two consecutive frames are
different. There are two main drawbacks to such
CTC-based methods. First, the word boundaries
are indirectly estimated and potentially affected by
error propagation from the token label predictions
which are usually greedily estimated by the argmax
operation on the CTC output probabilities. Second,
the token labels are from a large source vocabulary
resulting in extra parameters and computation cost
in the CTC module during inference.

We introduce a boundary-based shrinking mech-
anism to address the two drawbacks. A boundary
predictor is used to directly predict the probability
of each speech representation being a boundary,
which is then used for weighted shrinking. Since
the boundary labels on the speech representations
are unknown during training, we introduce signals
from the CTC module to guide the training of the
boundary predictor. The CTC module will be dis-
carded during inference. Below shows the details.

CTC module. We first briefly introduce the CTC
module. It predicts a path π = (π1, π2, ..., πTx),
where Tx is the length of hidden states after the
acoustic encoder. And πt ∈ V ∪ {ϕ} can be either
a token in the source vocabulary V or the blank
symbol ϕ. By removing blank symbols and con-
secutively repeated labels, denoted as an operation
B, we can map the CTC path to the corresponding
transcription. A CTC loss is defined as the proba-
bility of all possible paths that can be mapped to
the ground-truth transcription z:

LCTC = −
∑

|DST |

∑

π∈B−1(z)

log p(π|x) (2)

CTC-guided Boundary Predictor. We propose
to use a boundary predictor to replace the CTC
module, which has a similar architecture but with
only three labels. The three labels are <BK> (blank
label), <BD> (boundary label) and <OT> (others),
respectively. However, the ground-truth labels for
training the predictor are unknown. Therefore, we
introduce soft training signals based on the output
probabilities of the CTC module. Specifically, the
ground-truth probabilities of each frame t to be
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Figure 2: An example of CTC probabilities (we assume
there are three tokens in vocabulary for simplification),
together with the corresponding boundary predictor soft
signals and ground labels. We will get different bound-
ary detection results based on their label probabilities
(the solid and dotted lines). CTC argmax path predicts
the wrong boundaries and we can get correct boundaries
if we set the threshold θ as 0.5 in boundary predictor.

labeled as the three labels are defined as:

p′t(<BK>) = p(πt = ϕ)

p′t(<BD>) =
∑

i ̸=ϕ
p(πt = i)p(πt+1 ̸= i)

p′t(<OT>) = 1− p′t(<BK>)− p′t(<BD>)

(3)

Then, the objective for the boundary predictor1 is:

LPred = −
∑

|DST |

T ′
x∑

t=1

∑

i∈∆
p′t(i) log pt(i) (4)

where ∆ = {<BK>,<BD>,<OT>}. The CTC
module is only used in the training process and
can be discarded during inference. Since the num-
ber of labels in the predictor is significantly smaller
than the size of the source vocabulary, the time and
computation costs introduced by the predictor are
negligible. Figure 2 shows an example to elaborate
the advantage of such a predictor.

Weighted Shrinking. For shrinking, we define
boundary frames as those with the probabilities of
the <BD> label higher than a pre-defined threshold
θ. The frames between two boundary frames are
defined as one segment, which can be aligned to
one source token. Inspired by Zeng et al. (2021),
we sum over the frames in one segment weighted
by their probabilities of being blank labels to dis-
tinguish informative and non-informative frames:

hA
t′ =

∑

t∈seg t′
hA
t

exp(µ(1− pt(<BK>)))∑
s∈seg t′ exp(µ(1− ps(<BK>)))

(5)
where µ ≥ 0 denotes the temperature for the Soft-
max Function.

1Since the training of the predictor highly depends on the
quality of the CTC output, the CTC module is also pre-trained.

Forced Training. We introduce a forced train-
ing trick to explicitly solve the length mismatch
between speech and text representations. During
training, we set the threshold θ dynamically based
on the length of z to make sure the shrunk repre-
sentations have exactly the same lengths as their
corresponding transcriptions. Specifically, we first
sort the probabilities to be <BD> of all frames in
descending order, and then select the Tz-th one as
the threshold θ.

2.4 Training Objectives

The total loss of our AdaTranS will be:

L = LST + α · LCTC + β · LPred (6)

where α, β are hyper parameters that control the
effects of different losses.

3 Experiments

3.1 Experimental Setup

Datasets. We conduct experiments on three lan-
guage pairs of MUST-C dataset (Di Gangi et al.,
2019): English-German (En–De), English-French
(En–Fr) and English-Russian (En–Ru). We use the
official data splits for train and development and
tst-COMMON for test. We use LibriSpeech (Panay-
otov et al., 2015) to pre-train the acoustic model.
OpenSubtitles20182 or WMT143 are used to pre-
train the MT model. The data statistics are listed in
Table 3 of Appendix A.

Preprocessing. We use 80D log-mel filterbanks
as speech input features and SentencePiece4 (Kudo
and Richardson, 2018) to generate subword vocab-
ulary with a size of 16000 for each language pair.
More details please refer to the Appendix B.

Model Setting. Conv-Transformer (Huang et al.,
2020) or Conformer (Gulati et al., 2020) (results
in Table 2 are achieved by AdaTranS with Con-
former, while the remaining results utilized Conv-
Transformer) is used as our acoustic encoder, both
containing 12 layers. For the semantic encoder and
ST decoder, we follow the general NMT Trans-
former settings (i.e., both contain 6 layers). Each
Transformer layer has an input embedding dimen-
sion of 512 and a feed-forward layer dimension of
2048. The whole model contains 107M (140M if

2http://opus.nlpl.eu/OpenSubtitles-v2018.php
3https://www.statmt.org/wmt14/translation-task.html
4https://github.com/google/sentencepiece

2355



Model Diff≤2 Speedup Mem BLEU
(%) Usage En-De En-Fr

No Shrink – 1.00× 1.00 26.0 36.8
Fix Shrink 36.7 1.06× 0.74 25.4 36.0
CIF-Based 70.3 1.04× 0.74 25.8 36.2
CTC-Based 80.2 0.76× 1.77 26.4 36.9

Boundary-Based
81.9 1.06× 0.78

26.7 37.4
- Forced Train 26.4 37.1

- Blank Label 26.3 36.6

Table 1: The results of shrinking-based methods and the
corresponding shrinking quality, evaluated with length
differences between the shrunk representations and tran-
scriptions. Diff≤2 means the length differences are less
than or equal to 2. The speedup and memory usage are
both tested with a batch size of 16, and we only display
the relative values for clear comparison.

use Conformer) parameters. The hyper-parameters
in Eq. 6 are set as: α = 1.0 and β = 1.0, respec-
tively. The temperature of the softmax function
in Eq. 5 (µ) is 1.0, while the threshold θ in the
boundary predictor is set to 0.4 during inference5.
Training details please refer to Appendix B.

We apply SacreBLEU6 for evaluation, where
case-sensitive detokenized BLEU is reported.

3.2 Experiment results

Table 1 compares different shrinking-based meth-
ods in terms of quality and efficiency (for fair com-
parison, we use the same architecture pre-trained
with the same data and add a CTC loss to all the
compared models). Besides translation quality, we
use length differences between the shrunk repre-
sentations and the corresponding transcriptions to
evaluate shrinking quality following Zeng et al.
(2021). We use inference speedup and memory
usage to evaluate efficiency.

For comparisons, the Fix-Shrink method shrinks
the speech features with a fixed rate (e.g. every 3
frames). The CIF-Based method (Dong et al., 2022)
is based on a continuous integrate-and-fire mech-
anism. The CTC-Based method (Liu et al., 2020)
shrinks features based on CTC greedy paths. As
can be seen, poor shrinking (Fix-Shrink and CIF-
based) hurts the performance, although with better
efficiency. The boundary-based shrinking used in
AdaTranS and the CTC-based method achieve bet-
ter shrinking quality, with performance improved.
However, CTC-Based method hurts the inference

5All the hyper-parameters are set through grid search based
on the performance of the development set.

6https://github.com/mjpost/sacreBLEU

Model BLEU
En-De En-Fr En-Ru

MT 34.4 44.9 21.3
Cascaded Model 28.1 37.0 17.6

JT-S-MT (Tang et al., 2021a) 26.8 37.4 –
Chimera (Han et al., 2021) 27.1 35.6 17.4
XSTNet (Ye et al., 2021) 27.1 38.0 18.5
SATE (Xu et al., 2021) 28.1 – –
STEMM (Fang et al., 2022) 28.7 37.4 17.8
ConST (Ye et al., 2022) 28.3 38.3 18.9

AdaTranS 28.7 39.2 19.3
- Boundary-based Shrink 28.1 38.8 18.8

Table 2: Comparisons with the SOTA models. The first
two rows are the results with our pre-trained MT model
and cascading pre-trained ASR and MT models.

efficiency (lower inference speed and higher mem-
ory usage) as they introduce extra computation cost
producing greedy CTC path in a large source vocab-
ulary. Our method performs the best in both shrink-
ing and translation quality with nice inference ef-
ficiency. On the other hand, we also notice that
removing forced training trick (“-Forced Train”) or
weighted-shrinking (i.e., “-Blank Label”, simply
average the frame representations rather than use
Eq. 5) will affects the translation quality, showing
the effectiveness of these two components.

Adopting Alignment Objectives. AdaTranS can
be further improved with objectives that align
speech and text representations (i.e. bridging the
representation space gap introduced in Section 1).
Table 2 shows the results of AdaTranS equipped
with Cross-modal Contrastive (Ye et al., 2022) and
knowledge distillation (KD) guided by MT, com-
pared to the models that also work on modality
alignment objectives (more complete comparisons
please refer to Appendix C). The results show that
AdaTranS achieves competitive results in all three
datasets. We also examine and show the effects
of boundary-based shrinking in such setting (“-
Boundary-base Shrink”).

Influence of the Threshold. We also examine
the threshold θ for the boundary predictor. Figure 3
shows the distribution of the predicted boundary
probability (i.e. pt(<BD>)) for each frame. We
find that the boundary predictor is confident (< 0.1
and > 0.9) in most cases. However, even though
only a small portion of predictions are in the range
of [0.1, 0.9], they significantly affect the BLEU
scores when the threshold changes (the red line
in Figure 3). The model achieves the best perfor-
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Figure 3: The distribution of probabilities for boundary
prediction, and the corresponding BLEU scores using
different values as threshold in MUST-C En-De test set.

mance when the threshold is around 0.4.

4 Related Work

Numerous techniques have been proposed to adapt
speech and text representations in order to miti-
gate the modality gap in end-to-end ST. Wang et al.
(2020) introduce noise into the text input, while
Salesky and Black (2020); Tang et al. (2021a,b)
employ phoneme sequences for text input. These
approaches reduce differences between speech and
text input by extending text representations. Con-
versely, some research aims at shrinking lengthy
speech input by presenting various shrinking strate-
gies (Salesky et al., 2019; Dong et al., 2020, 2021;
Liu et al., 2020; Gaido et al., 2021; Zeng et al.,
2021). Our work falls within this category, propos-
ing a new approach that offers enhanced effective-
ness and efficiency. Others prioritize aligning the
speech-text representation space (Liu et al., 2020;
Tang et al., 2021a; Xu et al., 2021; Ye et al., 2022;
Zhang et al., 2022; Le et al., 2023).

CTC alignment’s role in enhancing ST is par-
ticularly pertinent to our research. Earlier studies
have demonstrated that integrating an additional
CTC loss for multi-task learning or pre-training
assists in ST model training (Wang et al., 2020; Xu
et al., 2021). Some also leverage CTC alignment
to shrink speech inputs (Salesky et al., 2019; Liu
et al., 2020; Gaido et al., 2021; Zeng et al., 2021).
Moreover, Le et al. (2023) and Zhang et al. (2023)
delve deeper, optimizing CTC objectives for ST.

5 Conclusion

This work proposes a new end-to-end ST model
called AdaTranS, which uses a boundary predictor
trained by signals from CTC output probabilities,
to adapt and bridge the length gap between speech
and text. Experiments show that AdaTranS per-

forms better than other shrinking-based methods,
in terms of both quality and efficiency. It can also
be further enhanced by modality alignment objec-
tives to achieve state-of-the-art results.

Limitations

Learning of the proposed boundary predictor.
The learning objective of our boundary predictor
is constructed by the soft labels from CTC objec-
tive. Since the labels are not accurate labels, it is
inevitable to introduce errors during training. How-
ever, the groundtruth labels for boundary predictor
is difficult to obtain. One alternative is to use forced
alignment tools. That also introduces other prob-
lems. First, off-the-shelf forced alignment tools
only support speech in popular languages, which
limits the use of the method to other languages.
Second, forced alignment also doesn’t guarantee
the correctness of labeling, and we still need to fur-
ther approximate the labeling results when apply-
ing them to speech features after acoustic encoder
(with 4x or 8x downsampling).

Sensitivity of the selective threshold. From Fig-
ure 3, we can find that the BLEU score is sensitive
to the threshold selection, although the boundary
predictor is confident in most cases. We leave it to
our future work to alleviate this phenomenon.
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A Data Statistics.

Table 3 shows the data statistics of the used datasets.
ST datasets are all from MUST-C, and LibriSpeech
serves as extra ASR data. MT data either comes
from OpenSubtitles2018 or WMT14 following set-
tings of previous work.

Corpus ST(Hours/#Sents) ASR(Hours) MT(#Sents)

En–De 408/234K 960 18M(OS)
En–Fr 492/280K 960 18M(WMT)
En–Ru 489/270K 960 2.5M(WMT)

Table 3: The statistics for the three language pairs. OS:
OpenSubtiles2018. WMT: WMT14.

B Implementation Details.

Data Preprocessing. We use 80D log-mel filter-
banks as speech input features, which are calcu-
lated with 25ms window size and 10ms step size
and normalized by utterance-level Cepstral Mean
and Variance Normalization (CMVN). All the texts
in ST and MT data are preprocessed in the same
way, which are case-sensitive with punctuation pre-
served. For training data, we filter out samples with
more than 3000 frames, over 256 tokens, or whose
ratios of source and target text lengths are outside
the range [2/3, 3/2]. We use SentencePiece (Kudo
and Richardson, 2018) to generate subword vocab-
ulary for each language pair. Each vocabulary is
learned on all the texts from ST and MT data and
shared across source and target languages, with a
total size of 16000.

Training Details. We train all the models using
Adam optimizer (Kingma and Ba, 2015) with a
0.002 learning rate and 10000 warm-up steps fol-
lowed by the inverse square root scheduler. Label
smoothing and dropout strategies are used, both set
to 0.1. The models are fine-tuned on 8 NVIDIA
Tesla V100 GPUs with 40000 steps, which takes
about 10 hours in average. The batch size is set
to 40000 frames per GPU. We save checkpoints
every epoch and average the last 10 checkpoints
for evaluation with a beam size of 10.

C More Analysis.

Complete Comparisons with the SOTA models.
Table 4 extends the results in Table 2 to include
the detailed settings of the compared models, in-
cluding external data used and training objectives.

We also include two SOTA works based on speech-
text joint pre-training (ST Joint PT), which shows
great improvements by applying complex joint pre-
training objectives. It should be noted that it is not
in line with the focus of this work and our Ada-
TranS might also benefit from them by initializing
the modules after such joint pre-training.
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Figure 4: The attention entropy of each attention layer
for end-to-end ST baseline and our model.

Better Source-Target Alignment. We evaluate
the entropy of the cross attention from the ST base-
line (i.e. no any shrinking) and AdaTranS7. Let
αij be the attention weight for a target token yi
and a source speech feature (after shrinking) xj ,
the entropy for each target token is defined as
Ei = −∑|x|

j=1 αij logαij . We then average the
attention entropy of all target tokens in the test
set. Lower entropy means the attention mechanism
is more confident and concentrates on the source-
target alignment. Figure 4 shows the entropy of
different decoder layers. AdaTranS exhibits con-
sistently lower entropy than the ST baseline. This
means that our shrinking mechanism improves the
learning of attention distributions.

Influence of Text Input Representations. Rep-
resenting text input with phonemes helps reduce
the differences between speech and text (Tang et al.,
2021a,b). However, word representations and punc-
tuation are important for learning semantic informa-
tion, which are usually ignored when phonemes are
used in prior works. Table 5 shows the MT results
when using different text input representations, to-
gether with the ST performance that is initialized
from the corresponding MT model. We can observe
that the performance of downstream ST model is
affected by the pre-trained MT model. Therefore,
instead of following prior phoneme-level work for

7To fairly compare, we also shrink the speech features of
the ST baseline with the same boundaries detected by our
boundary predictor.
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Model External Data Training Detail BLEU
Speech ASR MT ST Joint PT Enc Align KD En-De En-Fr En-Ru

MT – – – – – – 34.4 44.9 21.3
Cascaded Model – – – – – – 28.1 37.0 17.6

STPT† (Tang et al., 2022) ! ! ! ! % % 29.2 39.7 –
SpeechUT† (Zhang et al., 2022) ! ! ! ! % % 30.1 41.4 –

JT-S-MT (Tang et al., 2021a) % ! ! % ! ! 26.8 37.4 –
Chimera (Han et al., 2021) ! % ! % ! % 27.1 35.6 17.4
XSTNet (Ye et al., 2021) ! % ! % % % 27.1 38.0 18.5
SATE (Xu et al., 2021) % ! ! % ! ! 28.1 – –
STEMM (Fang et al., 2022) ! % ! % ! % 28.7 37.4 17.8
ConST (Ye et al., 2022) ! % ! % ! % 28.3 38.3 18.9

AdaTranS % ! ! % ! ! 28.7 39.2 19.3
- Boundary-based Shrink % ! ! % ! ! 28.1 38.8 18.8

Table 4: The complete comparisons with the SOTA models, including external data used and training objectives.
“ST Joint PT” indicates speech-text joint pre-training. “Enc Align” means whether adding objectives to aligning
representations of speech and text in encoder. “KD” means whether using knowledge distillation from MT.

SPM SPM w/o Punct Phoneme

MT
1. Only MUST-C Data 30.7 28.3 28.2
2. PT with Extra Data 34.4 31.6 29.5

ST
Initialized with Model 2 26.0 25.8 25.6

Table 5: BLEU scores of different text input representa-
tions in MUST-C En-De. SPM means using the subword
units learned from a sentencepiece model, while “w/o
Punct” indicates that punctuation is removed.

pre-training the MT, in this work we use subword
units with punctuation and incorporate the shrink-
ing mechanism to mitigate the length gap.

Data Extra MT Corpus With MTL W/O MTL

En-De OS (18M) 28.7 28.3
En-Fr WMT14 (18M) 38.7 39.2
En-Ru WMT14 (2.5M) 19.0 19.3

Table 6: BLEU scores of AdaTranS with KD using MT
multi-task learning or not in different language pairs.

Influence of Multi-task Learning (MTL). Pre-
vious work usually applies multi-task learning to-
gether with MT task (adding external MT data) to
improve performance. However, our experiments
(Table 6) show that when using KD, MTL might
not be always helpful, especially with MT corpus
in different domains (OpenSutitles is in spoken lan-
guage domain like ST, but data from WMT14 is
mostly in news domain).
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