
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 2160–2175
December 6-10, 2023 ©2023 Association for Computational Linguistics

G-SPEED: General SParse Efficient Editing MoDel

Haoke Zhang∗, Yue Wang∗, Juntao Li†, Xiabing Zhou, Min Zhang
Soochow University

{hkzhangnlp, ywangnlp}@stu.suda.edu.cn
{ljt, zhouxiabing, minzhang}@suda.edu.cn

Abstract

Large Language Models (LLMs) have demon-
strated incredible capabilities in understand-
ing, generating, and manipulating languages.
Through human-model interactions, LLMs can
automatically understand human-issued instruc-
tions and output the expected contents, which
can significantly increase working efficiency.
In various types of real-world demands, editing-
oriented tasks account for a considerable pro-
portion, which involves an interactive process
that entails the continuous refinement of ex-
isting texts to meet specific criteria. Due to
the need for multi-round human-model inter-
action and the generation of complicated edit-
ing tasks, there is an emergent need for effi-
cient general editing models. In this paper,
we propose General SParse Efficient Editing
MoDel (G-SPEED), which can fulfill diverse
editing requirements through a single model
while maintaining low computational costs.
Specifically, we first propose a novel unsuper-
vised text editing data clustering algorithm to
deal with the data scarcity problem. Subse-
quently, we introduce a sparse editing model
architecture to mitigate the inherently limited
learning capabilities of small language mod-
els. The experimental outcomes indicate that G-
SPEED, with its 508M parameters, can surpass
LLMs equipped with 175B parameters. Our
code and model checkpoints are available at
https://github.com/Banner-Z/G-SPEED.

1 Introduction

Recently, the Natural Language Processing (NLP)
community has witnessed the rapid development of
Large Language Models (LLMs). With the help of
instruction tuning, LLMs can effectively utilize the
knowledge acquired during pre-training and have
the ability to follow user instructions (Wei et al.,
2021; Sanh et al., 2021; Mishra et al., 2022; Wang
et al., 2022; Ouyang et al., 2022; OpenAI, 2023).

∗ Equal Contribution
† Corresponding Author

Therefore, due to the powerful ability of large mod-
els as assistants, users can conveniently accomplish
a wide range of open-domain tasks by collaborat-
ing with LLMs. One particularly important applied
scenario of the LLM assistants is editing.

Editing is a crucial process in writing, requiring a
diverse range of skills to refine texts from multiple
perspectives. Consequently, there is a long-term
goal of using machines to assist in automating the
editing process. However, the inherent difficulty
of editing, coupled with the limited availability of
annotated editing data, hinders the development of
general editing models capable of meeting a wide
range of editing requirements. Therefore, before
the era of LLMs, previous works mainly focused
on developing specialized editing models tailored
to specific tasks, such as grammatical error correc-
tion (GEC) (Bryant et al., 2019), style transfer (Rao
and Tetreault, 2018), and sentence fusion (Geva
et al., 2019). Due to their specific capabilities, these
specialized editing models have limited practical
applications. Besides, although recent work has
explored the potential of LLMs as general editing
models (Faltings et al., 2021; Schick et al., 2023;
Madaan et al., 2023), the iterative nature of editing
often requires multiple interactions with models to
edit a single piece of text. Therefore, relying solely
on LLMs to meet diverse editing needs becomes
impractical and cost-prohibitive.

In this work, to develop a lightweight gen-
eral edit model that caters to various editing re-
quirements, we propose General SParse Efficient
Editing MoDel (G-SPEED). Specifically, we intro-
duce a novel unsupervised editing data clustering
method to eliminate noise and annotate the intent,
considering the limited quality of current edit intent
annotations and the presence of noisy data in the re-
vision history of Wikipedia passages. Besides, we
propose a novel sparse editing model structure to
enhance the learning capabilities of small models.
Experimental results demonstrate that G-SPEED

2160

https://github.com/Banner-Z/G-SPEED

achieves state-of-the-art performance on the EditE-
val benchmark and exhibits a strong generalization
ability to unseen tasks with limited data resources.

In conclusion, our contributions are as follows:

• In this work, we first propose G-SPEED, a
lightweight framework with a novel sparse
editing model structure, which can satisfy var-
ious editing needs;

• To deal with the limited editing data source,
we propose a novel unsupervised data cluster-
ing method, which will be released to promote
the development of editing models;

• Experimental results show that G-SPPED can
achieve state-of-the-art results on EditEval,
surpassing the best LLMs by 2.8 points on av-
erage, and have a strong generalization ability
to unseen tasks in data-limited scenarios.

2 Related work

General Text Editing Existing work on general
text editing can broadly be divided into two cate-
gories: (1) instruction-based text editing (Faltings
et al., 2021; Schick et al., 2023; Madaan et al.,
2023);(2) multi-intent editing (Du et al., 2022b;
Kim et al., 2022). Instruction-based text editing
polishes up existing texts following user instruc-
tions, which is based on LLMs (Chung et al., 2022;
Brown et al., 2020; Ouyang et al., 2022) and needs
a long time to generate and large-scale datasets
for training. Multi-intent editing uses intents to
perform diverse editing actions. Specifically, Kim
et al. (2022) improves text editing with intent span
detection. However, edit intents are defined by hu-
mans, which have high annotation costs and may
not cover all editing intents (Yang et al., 2017; An-
thonio et al., 2020; Du et al., 2022b). In this work,
we propose G-SPEED, which can handle general
text editing without the dependence on LLMs and
human-annotate editing intents.

Editing Model Editing models are efficient alter-
natives to Seq2Seq models (Sutskever et al., 2014)
when the source and target texts in the task have
a large amount of overlap, e.g., grammatical er-
ror correction (GEC) (Bryant et al., 2019), style
transfer (Rao and Tetreault, 2018), and sentence
fusion (Geva et al., 2019). Editing models learn to
predict edit operations and directly leave the correct
text unchanged, while Seq2Seq models generate
target text from scratch. LaserTagger (Malmi et al.,

2019) is a general approach that predicts edit oper-
ations by sequence labeling and then generates in-
serted words with a fixed vocabulary. Omelianchuk
et al. (2020) proposes more complete tags (such as
pluralization and capitalization) to make generation
easier and improve the GEC task. Mallinson et al.
(2020) and Mallinson et al. (2022) perform arbi-
trary content insertion via non-autoregressive and
semi-autoregressive methods, respectively. How-
ever, the current editing model is stuck on solving
a single task. Editing models do not perform well
in multi-task problems (Du et al., 2022b).

Sparse Language Model Sparse language mod-
els achieve promising results with larger model
sizes while maintaining almost the same computa-
tional costs (Jaszczur et al., 2021; Du et al., 2022a;
Fedus et al., 2022b,a). There are various routing
algorithms to determine where to send examples,
such as hash routing (Roller et al., 2021), base
layer (Lewis et al., 2021), and Multi-gate MoE (Ma
et al., 2018). Zuo et al. (2022), Gupta et al. (2022)
and Lee-Thorp and Ainslie (2022) design sparse
feed-forward layers on BERT (Devlin et al., 2019)
and make a boost on GLUE (Wang et al., 2018). In
this paper, we explore the use of sparse layers on
Editing models for General Text Editing tasks with
a BERT backbone.

3 Task Formulation

During text editing, the documents D undergo
modifications based on user-selected intents I like
fluency, clarity, simplification, and neutralization.
Each modification corresponds to a pair of docu-
ments (Dt−1, Dt) and an editing intent It where t
represents the number of modifications. Text edit-
ing models are tailored to modify documents based
on intent:

Dt = f(Dt−1, It), (1)

where f denotes text editing models.

4 Unsupervised Editing Data Clustering

To facilitate text editing tasks, a dataset comprising
editing intent and text pairs, both before and after
editing, is required for pre-training purposes. IT-
ERATER (Du et al., 2022b) collects text revisions
from Wikipedia, ArXiv, and Wikinews. It catego-
rizes text intents into five categories: fluency, clar-
ity, coherence, style, and meaning-changed. The
intent is then predicted using a RoBERTa-based
model (Liu et al., 2019) that takes both the original

2161

Cluster Source Target User Comment

Fluency At the end of the 1986 season, he announced that would retire
after completing the 1987 NFL season.

At the end of the 1986 season, he an-
nounced that he would retire after complet-
ing the 1987 NFL season.

Minor grammatical fix

Readability The journey to London takes approx. 53 minutes. The journey to London takes about one
hour.

’about one hour’ is
more readable than ’ap-
prox. 57 min.’

Simplification European sales were slowed when 150,000 faulty CD copies
of the album were recalled by record company EMI. Discs
sent to Germany, France, Spain, Portugal, the Netherlands and
Belgium had been affected by a mastering error. CDs started
with a 40 second live recording of a different band - Pearl Jam
- according to a fan site.

150,000 European CD copies of the album
were recalled by EMI after a mastering er-
ror was discovered.

rm unnecessary detail

Neutralization CORBA aims to bring to the table many benefits that no other
single technology brings in one package.

CORBA supports several features which
it claims that no other single technology
brings in one package.

more neutrality. Let’s
unwrap this rhetorical
language

Table 1: Representative examples in our pre-training dataset.

and revised texts as input. However, automatic
annotation performs poorly on small categories
due to the unbalanced distribution of categories,
and certain categories, such as simplification, are
not taken into account. Formulating perfect intent
categories and annotating large-scale data for pre-
training pose significant challenges.

Similar to existing work (Zhang et al., 2019;
Faltings et al., 2021), we first collect data from
the revision histories in March 1st, 2023 dump of
English Wikipedia.1 Each revision consists of an
original text, a revised text, and a user comment
that is associated with the editing intent. We ex-
tract revisions from the XML format dump and
exclude revisions that do not have user comments.
To ensure data clustering quality, we additionally
perform data cleaning based on various factors,
such as the BLUE value of the source and target, as
well as the length of comments and text. We extract
the source and target sentences using Punkt Sen-
tence Tokenizer2 and difflib3, and then we eliminate
Wikipedia markup using wikiextractor4.

To classify user comments into distinct intent
categories, we utilize k-means clustering initial-
ized with k-means++ algorithm (Arthur and Vas-
silvitskii, 2007).5 With a collection of n comment

1https://dumps.wikimedia.org/enwiki/
2https://www.nltk.org/api/nltk.tokenize.punkt.

html#module-nltk.tokenize.punkt
3https://docs.python.org/3/library/difflib.

html#module-difflib
4https://github.com/attardi/wikiextractor
5We also employ the DBSCAN algorithm (Ester et al.,

1996), which segments categories by detecting changes in data
point density and eliminates the need to specify the number of
clusters. However, due to the high and uneven density of data
points, DBSCAN struggles to segment meaningful clusters
effectively.

embeddings represented as x1, x2, ...xn, k-means
clustering aims to partition these embeddings into
k sets {S1, S2, ...Sk} so as to minimize the intra-
cluster distance:

min
S

k∑

i=1

∑

x∈Si

dist(x, µi), (2)

where dist represents the Euclidean distance, and
µi denotes the mean of embeddings within Si.

In our study, we utilize Sentence-
BERT (Reimers and Gurevych, 2019) to
generate comment embeddings, which are then
decomposed using Singular Value Decomposi-
tion (SVD). Sentence-BERT provides a more
effective representation of text semantics compared
to algorithms based on word frequency.

To discern the purpose of each cluster, we also
organize the designed prompts into clusters (such
as fixing grammar errors and improving text cohe-
sion). Based on the prompts they contained, we
then selected four clusters, namely fluency, read-
ability, simplification, and neutralization, as illus-
trated in step I of Figure 1. Table 1 presents the
data instances. Clusters that focus on information
updates, citation modifications, punctuation mod-
ifications, and other similar tasks are disregarded.
For more details, please refer to Appendix A.

5 G-SPEED

5.1 Editing Model
We decompose editing into two steps: (1) tagging,
label each word with an editing operation by se-
quence labeling; (2) generation, insert new words
into the original sentence. As shown in Figure 1,
we share the encoder parameters of tagging and

2162

https://dumps.wikimedia.org/enwiki/
https://www.nltk.org/api/nltk.tokenize.punkt.html#module-nltk.tokenize.punkt
https://www.nltk.org/api/nltk.tokenize.punkt.html#module-nltk.tokenize.punkt
https://docs.python.org/3/library/difflib.html#module-difflib
https://docs.python.org/3/library/difflib.html#module-difflib
https://github.com/attardi/wikiextractor

Step Ⅰ: Data Clustering

C1 C2

C3

C4

Step Ⅱ: Model Training

Sparse Bert Layer

Fluency Readab. Simpli. Neutral.

MoE Gate
cluster = C2

Add + Normalize

Add + Normalize

Self-Attention

N×

You made it better than before

 K R K D D D

N× Sparse Bert Layer

Embedding

Tagging Classifier

[D] made [/D] MASK MASK

Embedding

Generation Classifier

output: You improved [PAD] it

sh
ar

in
g

K = KEEP; R = REPLACE; D = DELETE;
[D] = [DELETE]; [/D] = [/DELETE]as

comment: minor tweak to
improve clarity of sentence.
cluster: C2
source: You made it better
than before
target: You improved it

Sparse Bert Layer

input:

Figure 1: The illustration of unsupervised editing data clustering and G-SPEED training. Initially, we utilize
unsupervised data clustering by leveraging user comments. Subsequently, sparse BERT layers are utilized for
training G-SPEED with multi-task data, wherein the feed-forward layer associated with the respective cluster is
activated. Text editing is divided into two distinct steps: initially predicting the operation tags and subsequently
inserting the words. The encoders for the two steps are shared. "Readab." means readability, "Simpli." denotes
simplification, and "Neutral." means neutralization.

generation so that the two modules are trained to-
gether:

L = Ltagging + λLgeneration (3)

where λ is a hyper-parameter.

Tagging Editing operations are marked at the
word level. A linear classification layer is used
to predict tags following a transformer encoder.
Training is performed using a cross-entropy loss:

Ltagging = −
|xt|∑

i

log p(yti |fcls(hti)), (4)

where yt is golden tags, i is the index of each word,
ht is the output of encoder, xt is the input text,

∣∣xt
∣∣

represents the total number of words in the text,
fcls is a classification layer to predict tags.

The most basic type of editing operation is rep-
resented by the Levenshtein transition types, which
encompass KEEP, DELETE, REPLACE, and AP-
PEND. Omelianchuk et al. (2020) expands the sum
of types to 4971, 29 of which represent fundamen-
tal text transformations, and the rest are used to
insert new words. To maximize the number of tags
for reducing generation difficulties while ensuring
sufficient training data for each tag, we develop

a total of 14 tags which encompass case conver-
sion, singular and plural conversion, verb tense
conversion, as well as split operations like hyphen
splitting or merging. For automatic operation an-
notation, we utilize dynamic programming and set
the editing distance as the cost function. Detailed
information about the categories and a comparison
of various designs are provided in Appendix B.

Generation The tagging phase primarily handles
transformations that do not involve the generation
of new words. During the generation phase, our
task is to predict new words at the positions of
REPLACE, APPEND, and TRANSFORM-VERB.
We employ an efficient non-autoregressive mask
language model (MLM) similar to Mallinson et al.
(2020). As shown in Figure 1, we insert n [MASK]
tokens at each required position and subsequently
perform mask prediction on the new text.6 Any
[MASK] tokens beyond the length of the desired
tokens will be predicted as [PAD]. The MLM is
trained with a cross-entropy loss:

Lgeneration = −
|ys|∑

i

log p(ysi |fpred(hsi)), (5)

where ys is the golden results of [MASK], i is the
index of [MASK], |ys| denotes the total number of

6In our experiments, n = 4.

2163

[MASK], hs is the hidden states, and fpred is linear
layers to predict tokens in vocabulary.

To retain the maximum amount of information
from the original sentence, we retain the deleted
words and the verbs with the wrong tense. As
demonstrated in Figure 1, we enclose the deleted
words within [DELETE] and [/DELETE] tags, and
the wrong verbs within [TRANSFORM_VERB] and
[/TRANSFORM_VERB] tags.

5.2 Sparse Bert Layer

Then, we introduce an efficient and compact sparse
Bert layer for a multi-intent editing model. Fig-
ure 1 illustrates the use of four fully connected
feed-forward networks (FFN), referred to as "ex-
perts". The experts correspond to four editing in-
tents present in our training data. The experts are
activated when training data that corresponds to
their respective intents. The data point shown in the
figure is clustered as "C2" (readability) and, there-
fore, utilizes the red module. Each layer comprises
8 experts, with the tagging and generation modules
being divided due to their distinct effects. By em-
ploying this approach, we can efficiently address
multi-intent editing tasks with a single encoder:

ht = fθ(x
t, rt, zt), r ∈ [0, n) , z ∈ [0, 1] , (6)

where xt represents the input for either tagging or
generation, rt represents the index of the intent, n
is the total number of intents, zt = 0 indicates the
tagging mode and zt = 1 indicates the generation
mode, fθ represents the sparse Bert model, and ht

is the hidden states in Equation 4 and 5.
For the balance between each task and the two

modules, we sequentially train the tagging module
and the generation module of each task in units of a
batch, so that the number of training steps for each
task and each module is the same.

5.3 Additional Fine-tune

In practice, text editing tasks may not align with our
expert configuration. We employ additional fine-
tuning for specific tasks. To enhance the model’s
generalization, we copy the experts in the pre-
trained model and train targeted tasks accordingly.
Specifically, we freeze all parameters except the
experts, enabling the model to adapt flexibly to any
editing task with minimal training cost.

6 Experiments

6.1 Datasets

We conduct our evaluation using EditE-
val (Dwivedi-Yu et al., 2022), which is an
instruction-based text improvement benchmark.
The study includes six datasets and six tasks; their
details are provided below.

Fluency The primary objective of the fluency
task is to rectify grammatical and spelling errors.
The evaluation of this task utilizes ITERATER (Du
et al., 2022b) and JFLEG (Napoles et al., 2017).
ITERATER is an edit-intention annotated corpus
of iteratively revised text. We utilize the subset that
focuses on fluency. In comparison to ITERATER,
JFLEG not only corrects grammatical errors but
also makes the original text more native sounding.

Clarity and Coherence Both tasks use the corre-
sponding subsets in the test dataset of ITERATER.
The clarity task aims to enhance the formality, con-
ciseness, readability, and comprehensibility of the
text. The coherence task aims to enhance the co-
hesiveness, logical connectivity, and overall coher-
ence of the text.

Paraphrasing The purpose of the Paraphrasing
task is to rephrase sentences without a specific im-
provement goal. EditEval opts to utilize text pairs
from SemEval-2018 (Cer et al., 2017) that have
high similarity scores.

Simplification TurkCorpus (Xu et al., 2016) and
ASSET (Alva-Manchego et al., 2020) are uesed
for evaluation of this task. ASSET and TURK
contain identical test examples, but their references
are simplified in different ways.

Neutralization The process of neutralization in-
volves eliminating subjective bias in a text. For
example, in the text of "Jimi hendrix (musician), a
great musician and vocalist", the word "great" lacks
neutrality. The WNC dataset (Pryzant et al., 2020)
serves as a representative dataset for this task.

6.2 Metrics

SARI (Xu et al., 2016) measures the goodness of
words that are added, deleted, and kept. It cal-
culates the average n-gram F1 score for addition,
deletion, and retention operations. GLUE (Napoles
et al., 2015) is an additional n-gram-based metric
better suited for evaluating single sentences than
BLEU. It is applied to JFLEG and ITERATER.

2164

Cluster (size) Fine-tune Size Test Abbrev.

Fluency (140K)
W&I+LOCNESS 5K JFLEG JFL
ITERATER-V2 5K ITERATER ITR-F

Readability (180K)
ITERATER-V2 10K ITERATER ITR-L
ITERATER-V2 10K ITERATER ITR-O

ParaSCI 10K SemEval-2018 STS

Simplification (91K)
Turk 2K Turk TRK

Wikiauto 8K Asset AST

Neutralization (93K) WNC 10K WNC WNC

Table 2: Statistics of the pre-training dataset, fine-tuning
dataset, and test set. "Abbrev." denotes the abbreviation
of the test dataset. Readability corresponds to the three
tasks of clarity, coherence, and paraphrasing.

Exact Match (EM) calculates the percentage of
predictions that exactly match the reference. This
metric is the official measure used by WNC.

6.3 Baselines

Initially, we assess our models using a non-pre-
trained baseline, which employs identical fine-
tuning data and edit model structure as G-SPEED.
Then, we assess various existing LLMs using the
EditEval setup, employing prompts to enable di-
verse editing operations. Our primary compari-
son is PEER (Schick et al., 2023), a collaborative
language model trained on Wikipedia edit history
that is initialized from the LM Adapted variant of
T5 (Schick et al., 2023). Scores for 3b and 11b
parameters PEER are reported on EditEval. T0,
T0++ (Sanh et al.) and Tk-Instruct (Wang et al.,
2022) are other models that are initialized from
the LM Adapted variant of T5 and then fine-tuned
using prompts or instructions. We compare against
GPT-3 (Brown et al., 2020), OPT (Zhang et al.,
2022), InstructGPT (Ouyang et al., 2022), and
ChatGPT7 as decoder-only LLMs.

6.4 Implementation Details

We present the information of the datasets in Table
2. For additional fine-tuning, we select data from
various sources: W&I+LOCNESS (Bryant et al.,
2019), ParaSCI (Dong et al., 2021), Turk (Xu et al.,
2016), Wikiauto (Jiang et al., 2020), WNC (Pryzant
et al., 2020), and the subsets of ITERATER-
V2 (Kim et al., 2022) with intent confidence scores
higher than 0.8. Each expert has 10k data points
for fine-tuning.

For data clustering, we employ K-Means++ with
cuML (Raschka et al., 2020) toolkit, setting the
number of clusters to 10. We choose all-mpnet-

7https://chat.openai.com/

base-v28 to generate comment embeddings. We
use scikit-learn (Pedregosa et al., 2011) to employ
SVD and set the output dimension to 100.

For pre-training, we choose bert-base-cased (De-
vlin et al., 2019)9 as our backbone model with
the Huggingface Transformers (Wolf et al., 2020)
toolkit. We initialize all experts based on the cor-
responding counterparts in Bert. We use Adam
Optimizer (Kingma and Ba, 2014) and clip the
norms of gradients to 1. λ is set to 1.

During additional fine-tuning, the expert respon-
sible for the readability task is duplicated into three
instances. Each instance is utilized to train the tasks
of clarity, coherence, and paraphrasing, as shown
in Table 2. All experiments are carried out on 4
Nvidia GeForce RTX 3090 GPUs.

6.5 Main Results

The main results are presented in Table 3. The met-
rics are compared among the following: Copy the
text of source (Copy), supervised state-of-the-art
models (SotA), LLMs, and our model (G-SPEED).
The average SARI score is calculated as the mean
of each task, while the score for a specific task is
computed as the mean of the corresponding test
datasets. Out of the models with fewer than 11
billion parameters, only PEER achieves a score
more than 5 points higher than the average Copy
score. Despite their large size, models such as OPT
and GPT-3, which have 175B parameters, are un-
able to ensure satisfactory performance in general
text editing tasks. Among the LLMs, InstructGPT
performs the best, slightly greater than ChatGPT.
Additionally, PEER demonstrates favorable results
with a relatively small number of parameters.

G-SPEED surpasses the performance of LLMs
with only 508M parameters. Compared with the
best LLMs, InstructGPT and ChatGPT, G-SPEED
achieves satisfactory results on coherence and neu-
tralization tasks. G-SPEED exhibits a noticeable
gap compared to ChatGPT in fluency, paraphras-
ing, and simplification tasks. However, these ar-
eas can be significantly improved through addi-
tional fine-tuning. We compare our model with
two variants: one without the pre-training step (de-
noted as "w/o PRE.") and another without the fine-
tuning step (denoted as "w/o ADDI.") as shown
in Table 3. We find that both of these steps are
crucial for our model. The model without either

8https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

9https://huggingface.co/bert-base-cased

2165

https://chat.openai.com/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/bert-base-cased

Method Size Fluency Clarity Coherence Para. Simplification Neutral. Avg.JFL ITR-F ITR-L ITR-O STS TRK AST WNC

Copy - 26.7 / 40.5 32.3 / 86.0 29.5 / 62.9 31.3 / 77.2 21.1 26.3 20.7 31.9 / 0.0 27.8
SotA - - / 62.4 37.2 / – 46.2 / - 38.3 / - - 34.4 37.2 -/45.8 -

Tk-instruct 3B 31.8 / 39.0 32.4 / 61.6 38.4 / 58.4 33.8 / 70.4 30.2 32.8 29.9 31.3 / 0.4 32.9
T0 3B 42.0 / 38.8 24.6 / 34.9 32.6 / 30.2 22.2 / 21.6 34.3 34.4 32.3 22.3 / 0.0 29.7
T0++ 11B 34.7 / 43.2 35.3 / 75.8 37.6 / 56.5 32.7 / 59.9 28.4 32.9 28.2 29.3 / 0.3 32.3
PEER-3B 3B 55.5 / 54.3 51.4 / 84.3 32.1 / 47.1 32.1 / 59.8 28.6 32.5 30.5 53.3 / 21.6 38.5
PEER-11B 11B 55.8 / 54.3 52.1 / 85.2 32.5 / 51.3 32.7 / 62.7 28.2 32.1 29.5 54.5 / 22.8 38.8
OPT 175B 47.3 / 47.5 34.7 / 70.6 31.5 / 31.5 27.6 / 36.1 29.1 32.6 31.8 31.2 / 0.4 32.1
GPT-3 175B 50.3 / 51.8 32.1 / 56.7 33.5 / 39.7 26.9 / 36.1 27.2 33.0 30.5 31.7 / 0.6 32.0
InstructGPT 175B 61.8 / 59.3 48.8 / 82.7 35.1 / 48.4 35.9 / 60.2 42.5 38.8 38.0 35.4 / 2.2 40.4
ChatGPT - 65.6 / 61.3 45.6 / 70.4 31.5 / 30.5 33.7 / 33.5 36.9 39.7 44.6 34.1 / 0.0 39.0

G-SPEED (Ours) 508M 54.2 / 51.9 42.2 / 78.8 34.0 / 53.6 41.0 / 68.4 36.0 38.5 40.6 60.2 / 31.2 43.2
w/o PRE. 508M 48.4 / 47.1 36.6 / 77.2 34.1 / 53.3 40.2 / 70.1 33.6 39.8 40.3 57.7 / 28.8 41.4
w/o ADDI. 508M 45.6 / 46.6 43.6 / 79.3 36.9 / 53.9 36.8 / 65.5 29.4 34.4 37.1 60.1 / 30.9 40.6

Table 3: The performance of G-SPPED and all baseline models on EditEval. The best score among LLMs and
G-SPEED is Bold, and the second is Underlined. "Para." denotes paraphrasing, "Neutral." means neutralization, and
"Avg." stands for the average SARI score for each task. The first numbers for each task are SARI scores; additional
metrics are GLEU for fluency, clarity, and coherence, and EM for neutralization. "w/o PRE." means the model
fine-tuned without pre-training, and "w/o ADDI." denotes the pre-trained model without additional fine-tuning.

step performs poorly. In particular, the pre-training
step greatly improves fluency, clarity, and neutral-
ization tasks, while the fine-tuning step enhances
coherence, paraphrasing, and simplification tasks.
This can be attributed to the varying proportions of
these tasks in the history of Wikipedia editing. Fur-
thermore, our model, even without additional fine-
tuning, performs slightly better than InstructGPT
and ChatGPT, thereby confirming the effectiveness
of our training and clustering method.

6.6 Further Analysis

Expert Structure In Table 4, we present the re-
sults for two types of expert structures: (1) sparse
last encoder layer (referred to as "Last Layer"),
which often impacts the final output, and (2) sparse
feed-forward layer (referred to as "Feed Forward")
in each encoder layer. Additionally, we include the
results of a dense model (referred to as "Dense"),
where the entire encoder is shared, and differen-
tiation between different tasks occurs solely at
the linear classification layer. Our findings indi-
cate that sparse models generally outperform the
dense model, with inference times being almost
identical. Furthermore, models with sparse feed-
forward layers show slightly better performance
than those with sparse last encoder layers. Further-
more, we examine a model that shares the experts
in tagging and generation (referred to as "Sharing
T&G"), which can further reduce the model’s size.
However, this approach yields inferior performance
compared to the other models.

Router Structure We compare one static routing
algorithm and two dynamic routing algorithms. (1)
Select the expert corresponding to the task (referred
to as "Task ID"). (2) Select the expert using a linear
classification layer (referred to as "Linear"), which
predicts the probabilities by softmax for each ex-
pert and multiplies the highest probability with the
output of the corresponding expert. (3) Select the
expert using a linear classification layer specific
to each task (referred to as "Task ID + Linear"),
which differs only in the number of classifiers with
"Linear".10 As shown in Table 4, the routing al-
gorithms combined with task information perform
better. We believe this is because the editing inten-
tion cannot be directly inferred from the input text.
The external knowledge about editing intentions
benefits model training. Furthermore, we employ
a "Token Level" routing algorithm in our model,
which selects the experts for each token based on
the hidden states of the token. However, this ap-
proach yields inferior performance. Selecting an
expert based on the semantics of a whole sentence
is more reasonable and efficient.

Few Shot Learning Table 5 presents the results
of few-shot learning using the G-SPEED back-
bone for general text editing tasks. We main-
tain the same settings as in the additional fine-
tuning, setting the data volume for each task at
500, 1k, 5k, and 10k, respectively. We compare the

10The router weights are initialized using a normal distribu-
tion with a mean of 0 and a standard deviation of 0.001. The
temperature of the softmax in the router is 0.7.

2166

Method Fluency Clarity Coherence Para. Simplification Neutral. Avg.JFL ITR-F ITR-L ITR-O STS TRK AST WNC

Dense 42.8 / 46.0 42.0 / 79.6 35.5 / 55.3 36.8 / 67.8 24.6 32.6 35.7 57.5 / 27.8 38.5

Last Layer
Task ID 44.8 / 47.2 42.6 / 80.4 36.1 / 53.4 36.9 / 65.6 28.3 32.7 37.1 59.1 / 28.5 39.8
Linear 43.1 / 46.2 42.5 / 79.9 36.0 / 54.0 37.7 / 67.9 26.3 34.0 37.4 58.1 / 28.0 39.4
Task ID + Linear 45.0 / 47.3 41.8 / 79.7 35.9 / 54.2 39.1 / 67.9 28.6 33.0 37.1 59.0 / 28.4 40.2

Sharing T&G 40.0 / 44.3 40.8 / 80.7 34.7 / 54.8 36.9 / 69.2 24.5 33.4 37.4 56.9 / 26.3 38.1

Feed Forward
Task ID 45.6 / 46.6 43.6 / 79.3 36.9 / 53.9 36.8 / 65.5 29.4 34.4 37.1 60.1 / 30.9 40.6

Sharing T&G 43.1 / 46.0 42.7 / 80.4 35.5 / 54.5 36.0 / 68.1 26.7 33.7 37.4 57.1 / 27.0 39.0
Linear 44.6 / 47.0 42.9 / 79.9 36.5 / 54.6 37.8 / 68.4 28.5 32.4 36.5 58.8 / 28.2 40.0

Token Level 44.2 / 46.7 41.4 / 79.1 36.1 / 54.7 35.6 / 64.0 29.6 31.9 37.6 59.3 / 29.2 39.8
Task ID + Linear 45.3 / 46.8 41.2 / 78.3 37.0 / 54.7 38.0 / 68.1 28.6 35.0 37.7 59.3 / 29.8 40.4

Token Level 45.0 / 44.4 40.2 / 77.0 36.8 / 52.4 36.5 / 65.0 28.2 34.3 37.6 59.0 / 30.4 39.8

Table 4: Comparison of various sparse layers on EditEval. The best score is Bold, and the second is Underlined.
"Linear" means a linear classifier for routing; "Task ID + Linear" denotes a classifier specific to each task; "Sharing
T&G" means using the same experts for tagging and generation model; "Token Level" indicates that experts are
activated separately for each token.

Method Train Data Size
0.5K 1K 5K 10K

G-SPEED 41.4 41.8 42.4 42.9
w/o PRE. 38.9 39.5 40.8 41.4

Table 5: Comparison of our pre-trained and non-pre-
trained models in few-shot learning. The head of the
column is the amount of training data for each task. We
report the average SARI score for each task.

model that skips the pre-training step (referred to
as "w/o PRE") with our pre-trained model. We find
that the pre-trained model outperforms the non-
pre-trained model. Furthermore, the fine-tuning
results with 500 samples are nearly equivalent
to those of the un-pre-trained model trained on
10k samples, demonstrating its generalization abil-
ity on downstream tasks. Additionally, we fine-
tune our pre-trained model on the sentence fusion
task and compare it with editing models. Follow-
ing the work of Mallinson et al. (2022), we use
the "balanced Wikipedia" subset of the DiscoFuse
dataset (Geva et al., 2019) and compare the results
with those of editing models using 4,500 (0.1%)
and 450 (0.01%) training data points. We report
the Exact Match score of G-SPEED, while the
other results are reported by Mallinson et al. (2022,
2020). In Table 6, our initial observation is that the
Seq2Seq model (BERT2BERT (Rothe et al., 2020),
T5 base (Raffel et al., 2020)) performs poorly, in-
dicating that editing models are effective on train-

Method 0.1% 0.01%

BERT2BERT(Rothe et al., 2020) 3.4 0.0
T5-base(Raffel et al., 2020) 33.8 10.8
LASERTAGGER (Malmi et al., 2019) 25.7 12.3
FELIX (Mallinson et al., 2020) 36.9 17.0
EDIT5 (Mallinson et al., 2022) 43.8 28.6
G-SPEED (Ours) 47.8 33.2

Table 6: Comparison of Seq2Seq models, single task
editing models, and G-SPEED on sentence fusion
task (Exact Match) under various data conditions.

ing data. Furthermore, fine-tuning our pre-trained
model yields significantly better performance than
other editing models, demonstrating the generaliza-
tion ability of our method on downstream tasks.

7 Conclusion

In this work, we propose the General SParse Ef-
ficient Editing MoDel (G-SPEED), a model de-
signed to fulfill diverse editing needs while ensur-
ing computational efficiency. Specifically, we first
propose a novel unsupervised clustering strategy
to obtain a large amount of multi-intent editing
data, which is collected from editing histories from
Wikipedia and can be used to conduct pre-training.
Subsequently, we propose a novel sparse editing
model architecture to improve the learning abili-
ties of small models. The experimental results on
EditEval show that, with the use of Bert-base as the
backbone model, G-SPEED can outperform LLMs
while maintaining an efficient inference speed. Ad-

2167

ditionally, we discuss different sparse structures
and show the strong generalization capability of
our method across downstream tasks.

Limitations

A limitation of unsupervised clustering is that it
cannot deal with revisions that contain more than
one editing intent. Although text editing in the
history of Wikipedia is iterative, the degree of each
modification by the user is still uncontrollable.

Ethics Statement

We collect all data from publicly available sources
and test our model on public datasets. Since our
work mainly focuses on non-meaning-changing
text edits, we are able to avoid many issues involv-
ing generating harmful text. Therefore, our work
has no possibility of generating harmful informa-
tion in practical applications.

Acknowledgements

This work is supported by the National Sci-
ence Foundation of China (No. 62176174, No.
62206194) and the Natural Science Foundation of
Jiangsu Province (No. BK20220488).

References
Fernando Alva-Manchego, Louis Martin, Antoine Bor-

des, Carolina Scarton, Benoît Sagot, and Lucia Spe-
cia. 2020. Asset: A dataset for tuning and evalua-
tion of sentence simplification models with multiple
rewriting transformations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4668–4679.

Talita Anthonio, Irshad Bhat, and Michael Roth. 2020.
wikihowtoimprove: A resource and analyses on edits
in instructional texts. In Proceedings of the Twelfth
Language Resources and Evaluation Conference,
pages 5721–5729.

David Arthur and Sergei Vassilvitskii. 2007. K-
means++ the advantages of careful seeding. In Pro-
ceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 1027–1035.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Christopher Bryant, Mariano Felice, Øistein E Ander-
sen, and Ted Briscoe. 2019. The bea-2019 shared

task on grammatical error correction. In Proceed-
ings of the Fourteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
52–75.

Daniel Cer, Mona Diab, Eneko E Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017 task
1: Semantic textual similarity multilingual and cross-
lingual focused evaluation. In The 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 1–14.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Qingxiu Dong, Xiaojun Wan, and Yue Cao. 2021.
Parasci: A large scientific paraphrase dataset for
longer paraphrase generation. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 424–434.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022a.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung
Kim, Melissa Lopez, and Dongyeop Kang. 2022b.
Understanding iterative revision from human-written
text. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3573–3590.

Jane Dwivedi-Yu, Timo Schick, Zhengbao Jiang, Maria
Lomeli, Patrick Lewis, Gautier Izacard, Edouard
Grave, Sebastian Riedel, and Fabio Petroni. 2022.
Editeval: An instruction-based benchmark for text
improvements. arXiv preprint arXiv:2209.13331.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. 1996. A density-based algorithm for dis-
covering clusters in large spatial databases with noise.
In kdd, volume 96, pages 226–231.

Felix Faltings, Michel Galley, Gerold Hintz, Chris
Brockett, Chris Quirk, Jianfeng Gao, and William B
Dolan. 2021. Text editing by command. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5259–5274.

2168

William Fedus, Jeff Dean, and Barret Zoph. 2022a. A re-
view of sparse expert models in deep learning. arXiv
preprint arXiv:2209.01667.

William Fedus, Barret Zoph, and Noam Shazeer. 2022b.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232–
5270.

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. Discofuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3443–3455.

Shashank Gupta, Subhabrata Mukherjee, Krishan Sub-
udhi, Eduardo Gonzalez, Damien Jose, Ahmed H
Awadallah, and Jianfeng Gao. 2022. Sparsely acti-
vated mixture-of-experts are robust multi-task learn-
ers. arXiv preprint arXiv:2204.07689.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. 2021. Sparse is
enough in scaling transformers. Advances in Neural
Information Processing Systems, 34:9895–9907.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural crf model for
sentence alignment in text simplification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7943–7960.

Zae Myung Kim, Wanyu Du, Vipul Raheja, Dhruv Ku-
mar, and Dongyeop Kang. 2022. Improving iterative
text revision by learning where to edit from other revi-
sion tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9986–9999, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

James Lee-Thorp and Joshua Ainslie. 2022. Sparse
mixers: Combining moe and mixing to build a more
efficient bert. arXiv preprint arXiv:2205.12399.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. In In-
ternational Conference on Machine Learning, pages
6265–6274. PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan
Hong, and Ed H Chi. 2018. Modeling task relation-
ships in multi-task learning with multi-gate mixture-
of-experts. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 1930–1939.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Jonathan Mallinson, Jakub Adamek, Eric Malmi, and
Aliaksei Severyn. 2022. EdiT5: Semi-autoregressive
text editing with t5 warm-start. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 2126–2138, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and
Guillermo Garrido. 2020. Felix: Flexible text editing
through tagging and insertion. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1244–1255.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag,
realize: High-precision text editing. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5054–5065.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 588–593.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. Jfleg: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 229–234.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
Gector–grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170.

OpenAI. 2023. Introducing chatgpt.

2169

https://aclanthology.org/2022.emnlp-main.678
https://aclanthology.org/2022.emnlp-main.678
https://aclanthology.org/2022.emnlp-main.678
https://aclanthology.org/2022.findings-emnlp.156
https://aclanthology.org/2022.findings-emnlp.156
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://openai.com/blog/chatgpt

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Reid Pryzant, Richard Diehl Martinez, Nathan Dass,
Sadao Kurohashi, Dan Jurafsky, and Diyi Yang. 2020.
Automatically neutralizing subjective bias in text. In
Proceedings of the aaai conference on artificial intel-
ligence, volume 34, pages 480–489.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Sudha Rao and Joel Tetreault. 2018. Dear sir or madam,
may i introduce the gyafc dataset: Corpus, bench-
marks and metrics for formality style transfer. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 129–140.

Sebastian Raschka, Joshua Patterson, and Corey Nolet.
2020. Machine learning in python: Main develop-
ments and technology trends in data science, machine
learning, and artificial intelligence. arXiv preprint
arXiv:2002.04803.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston,
et al. 2021. Hash layers for large sparse models.
Advances in Neural Information Processing Systems,
34:17555–17566.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264–280.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
et al. Multitask prompted training enables zero-shot
task generalization. In International Conference on
Learning Representations.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Timo Schick, Jane A. Yu, Zhengbao Jiang, Fabio
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,
Christoforos Nalmpantis, Edouard Grave, and Sebas-
tian Riedel. 2023. PEER: A collaborative language
model. In The Eleventh International Conference on
Learning Representations.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085–5109.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Diyi Yang, Aaron Halfaker, Robert Kraut, and Eduard
Hovy. 2017. Identifying semantic edit intentions
from revisions in wikipedia. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2000–2010.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.

2170

https://openreview.net/forum?id=KbYevcLjnc
https://openreview.net/forum?id=KbYevcLjnc

Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xuchao Zhang, Dheeraj Rajagopal, Michael Gamon,
Sujay Kumar Jauhar, and ChangTien Lu. 2019. Mod-
eling the relationship between user comments and
edits in document revision. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5002–5011.

Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He,
Tuo Zhao, and Weizhu Chen. 2022. Moebert: from
bert to mixture-of-experts via importance-guided
adaptation. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1610–1623.

A Details and Studies on Datasets

In addition to the filtering rules discussed in Sec-
tion 4, we employ additional filtering criteria for
revisions. Firstly, we exclude revisions whose com-
ments contain any of the following terms: "tem-
plate", "image", "infobox", "pic", "link", "photo",
"comment", "http:", "https:", ".jpg", ".png", or "re-
ply". The presence of these terms suggests the
involvement of unwanted revision types, such as
image alterations and citation modifications, which
can complicate the clustering process (e.g., due to
lengthy URL links in comments). Furthermore,
we remove any links present in the source and
target texts. Additionally, we replace certain im-
portant shortcuts with their full meanings to en-
hance data clustering. For instance, we substitute
"[[WP:NPOV|POV]]" with "neutral point of view",
"[[WP:TYPO]]" with "typo", "[[WP:RS]]" with
"reliable sources", and "[[WP:SYN]]" with "syn-
thesis". This modification contributes to improved
clustering outcomes. Furthermore, we exclude re-
visions that solely pertain to number or time modi-
fications, such as updates on the real-time number
of COVID-19 cases in a specific location. More-
over, we filter out revisions in which both the com-
ments and the source texts exhibit significant sim-
ilarities. This type of overlap revision typically
corresponds to low-quality comments. Since our
extraction of source and target relies solely on doc-
ument comparison, there are instances where we
may encounter incorrect or incomplete source and
target pairs. Consequently, it becomes necessary to
conduct a basic screening of the clustered data. One
approach involves utilizing BLUE to identify and
filter out sentence pairs that do not match, thereby

minimizing the presence of inaccuracies. Addition-
ally, another filtering criterion involves considering
differences in sentence length to identify and ex-
clude incorrect simplification data.

Table 2 presents the central words and a selec-
tion of sampled comments within each cluster. A
concise description is provided for each cluster.
The clusters employed for training purposes are
clusters 1, 2, 3, and 5. The central words corre-
spond to the most frequently occurring words in
each cluster, excluding stop words, and they exhibit
a high degree of concentration within their respec-
tive clusters. Detailed information regarding the
dataset instances is presented in Table 1. Figure 2
illustrates the distribution of semantic clustering re-
sult maps in a two-dimensional space. To enhance
the visualization of clustering effects, we employed
a random subsample from the dataset and applied
the Uniform Manifold Approximation and Projec-
tion (UMAP) technique to condense the semantic
data into a two-dimensional vector representation.

We have undertaken a meticulous examination to
determine the presence of any data contamination
between our training and test datasets. Specifically,
in the evaluation benchmark, JFLEG, Turk, ASSET,
and ITERATER are manually annotated; STSB is
collected from forums and news. Only the WNC
dataset is collected from the revision history of
Wikipedia passages. However, WNC is collected
from the revisions made between 2004 and 2019,
while our dataset is collected from the revision
histories in the March 1st, 2023 dump of English
Wikipedia. For further confirmation, we first con-
catenate the source and target of each data sample
and use traversal search to filter the training sam-
ples of our pre-training datasets that have a BLUE
value of 0.9 with any data sample of WNC. How-
ever, no such data sample satisfies this requirement,
which further confirms there is no contamination.

B Details and Experiments on Tags

Similar to the approach taken in GEC-
TOR (Omelianchuk et al., 2020), our work
considers fine-grained tag design. We present
three different tag designs in Table 8, where the
tag names and meanings correspond to those used
in GECTOR. The decision to reduce the number
of tags from 34 to 14 is based on the frequency of
tag occurrence in the pre-training dataset and its
compatibility with the pre-training process. Table
9 displays the performance results of the three

2171

Cluster Center Words Comment Samples Description

0 born, father, wife, died, birth,
death

"+A little history on the Spanish Monastery"; "Source
for Jane Merriett Netterville party and year of birth";

Supplementation and modification of infor-
mation about character relationships, char-
acter information, history, etc.

1 structure, rewrote, copy-edit,
tweaks, flow, rewording, read-
ability, awkward, improve,
clarity, phrasing

"reworded for clarity"; "paragraph split, wording"; "Fix-
ing awkward sentence"; "Small sentence change to make
sentence seem more natural."; "fix awkward phrasing.";
"Made more clear and precise.";

Modification of sentence structure and
wording, improvement of readability and
clarity, and copy-edit

2 neutral, view, opinion, evi-
dence, true, point, claim

"and skepticism, the other main scientific bias"; "it was
controversial"; "1. More accurate info. 2. No proof or
source that anyone lost their savings."; "removed bias
and point of view pushing";

Neutralization, verification of evidence,
and removal of bias and confusion

3 cleanup, typos, fixing, er-
rors, density, mistakes, mis-
spelling, grammatical

"Typo fixing, replaced: anatomy anatomy 2̆192
anatomy"; "Clean up, typo fixed: the USA 2̆192 the
US"; "minor grammatical change"

Correction of grammar, typo, misspelling
and other errors

4 updating, updated, add, info "Add date with source."; "Addition of storyline info.";
"adding page and info about copyright";

Information updates and additions

5 deletion, vandalism, dupli-
cate, delete, redundant, super-
fluous

"Removing Hurrian deities, who have a separate cate-
gory down below. Inara is not Hurrian, neither is Hanna-
hanna. Also, Hebat was listed multiple times.";

Text simplification, information removal

6 units, numbers, %, = "In units where c=1, mass and energy are expressed in
the same units - e.g. in Kg."; "Mexican Navy orders 2
units."; "It’s only the second aircraft operated."

Messy statements

7 citations, cite, references, ref,
reliable

"new inline reference"; "help please - similar problem,
but the cite button has disappeared"; "Added needed
citations."

Correction and verification of references

8 capitalized, draft, plural, hy-
phen, capitalization

"Hyphenation and consistency"; "what is with the capital
letters?";

Modification of hyphenation, capitaliza-
tion, etc.

9 italicize, comma, italics, semi-
colon, dashes, colon, marks,
parenthesis

"putting in () marks to make the page better"; "changed
bold font into quotes"; "changed hyphen to colon";

Modification of punctuation and font

Table 7: The center words and comments of each cluster with a description.

2172

Sum Tags

4 (KDRA) KEEP, DELETE, REPLACE, APPEND

14 (ours) APPEND, DELETE, KEEP, MERGE_HYPHEN, REPLACE, TRANSFORM_AGREEMENT_PLURAL, TRANS-
FORM_AGREEMENT_SINGULAR, TRANSFORM_CASE_CAPITAL, TRANSFORM_CASE_CAPITAL_1,
TRANSFORM_CASE_LOWER, TRANSFORM_CASE_UPPER, TRANSFORM_CASE_UPPER_-1, TRANS-
FORM_SPLIT_HYPHEN, TRANSFORM_VERB

34 APPEND, DELETE, KEEP, MERGE_HYPHEN, MERGE_SPACE, REPLACE, TRANSFORM_AGREEMENT_PLURAL,
TRANSFORM_AGREEMENT_SINGULAR, TRANSFORM_CASE_CAPITAL, TRANSFORM_CASE_CAPITAL_1,
TRANSFORM_CASE_LOWER, TRANSFORM_CASE_UPPER, TRANSFORM_CASE_UPPER_-1, TRANS-
FORM_SPLIT_HYPHEN, TRANSFORM_VERB_VBD_VB, TRANSFORM_VERB_VBD_VBG, TRANS-
FORM_VERB_VBD_VB, TRANSFORM_VERB_VBD_VBZ, TRANSFORM_VERB_VBG_VB, TRANS-
FORM_VERB_VBG_VBD, TRANSFORM_VERB_VBG_VBN, TRANSFORM_VERB_VBG_VBZ, TRANS-
FORM_VERB_VBN_VB, TRANSFORM_VERB_VBNVBD, TRANSFORM_VERB_VBN_VBG, TRANS-
FORM_VERB_VBN_VBZ, TRANSFORM_VERB_VBZ_VB, TRANSFORM_VERB_VBZ_VBD, TRANS-
FORM_VERB_VBZ_VBG, TRANSFORM_VERB_VBZ_VBN, TRANSFORM_VERBVB_VBD, TRANS-
FORM_VERB_VB_VBG, TRANSFORM_VERB_VB_VBN, TRANSFORM_VERB_VB_VBZ

Table 8: Details of the tag sets we compared.

Tag Design Fluency Clarity Coherence Para. Simplification Neutral. Avg.JFL ITR-F ITR-L ITR-O STS TRK AST WNC

Last Layer
14tags (Ours) 45.0 / 47.3 41.8 / 79.7 35.9 / 54.2 39.1 / 67.9 28.6 33.0 37.1 59.0 / 28.4 40.2
KDRA 44.6 / 46.8 42.9 / 79.9 35.8 / 54.1 37.5 / 67.3 29.2 32.8 36.9 58.9 / 28.6 40.0
34tags 45.3 / 46.9 42.6 / 78.8 36.6 / 53.4 37.1 / 66.2 29.7 33.4 37.1 58.7 / 28.2 40.2

Feed Forward
14tags (Ours) 45.6 / 46.6 43.6 / 79.3 36.9 / 53.9 36.8 / 65.5 29.4 34.4 37.1 60.1 / 30.9 40.6
KDRA 45.9 / 47.3 41.9 / 78.5 37.0 / 54.2 36.1 / 65.4 28.6 34.4 37.1 58.9 / 29.6 40.0
34tags 45.3 / 46.6 41.1 / 78.2 36.4 / 54.0 35.5 / 64.2 30.3 34.5 37.1 59.4 / 30.9 40.1

Table 9: Comparison of the impact of different tag designs on the models.

4 2 0 2 4

0

2

4

6

8

UMAP projection of the training dataset

0

1

2

3

Figure 2: UMAP projection of the training dataset.
The four colors represent the four clusters used in pre-
training.

LaserTagger FELIX G-SPEED

33.0 33.5 43.2

Table 10: Comparison of three editing models that were
trained with the same dataset. The results in the table
are average SARI scores across multiple tasks.

tag designs on two sparse models. Notably, the
design comprising 14 tags achieves the highest
performance among all designs.

C Efficiency Comparison

As demonstrated in Table 10, G-SPEED exhibits
superior multi-tasking capabilities when contrasted
with previous editing models due to its sparse
architecture. Furthermore, as shown in Table
11, compared to fine-tuned Large Language Mod-
els (LLMs), G-SPEED boasts conspicuous advan-
tages in model size, computational speed, and per-
formance. Specifically, we use the WNC test set for
inference on a single NVIDIA GeForce RTX 3090.
We conducted fine-tuning on both T0 and LLaMa
using the identical dataset. We also adjusted the
data input format to "instruction: input," as was
performed during instruction fine-tuning. Notably,

2173

Model Model Size ↓ SARI ↑ Tokens/s ↑ Speed Up ↑

LLaMa-7B 1.00x 54.1 21.05 1.00x
T0-3B 0.43x 30.5 (-23.6) 39.46 1.87x
G-SPEED (508M) 0.07x 60.2 (+6.1) 754.33 35.84x

Table 11: Comparison between fine-tuned LLMs and G-SPEED.

Model SARI GLEU

ChatGPT 36.4 30.9
G-SPEED 36.6 48.3

Table 12: Comparison of multi-intent iterative text mod-
ification capabilities.

G-SPEED achieves a remarkable speed boost up
to 35 times faster than LLaMa-7B. Moreover, the
training costs of G-SPEED are substantially more
economical than those of LLMs.

D Iteration Study

There is currently no large test set for multi-intent
iterative editing tasks. In our study, we employed
the iterator_human_doc dataset11, which comprises
a total of 51 manually annotated instances, to assess
and contrast the iterative editing proficiency of both
ChatGPT and G-SPEED. Table 12 shows that the
two models are similar in the SARI score, but G-
SPEED retains the original text better.

We also explored multiple iterations within a sin-
gle task. As indicated in Table 13, we conducted
a comparison of our pre-trained model at various
editing depths. Our findings reveal that the flu-
ency task consistently benefits from iterative edit-
ing, whereas most tasks are more inclined toward
single-pass modifications. Table 14 presents spe-
cific instances from the JFLEG dataset, illustrating
the incremental revision process employed by the
editing model to address grammatical errors.

11https://huggingface.co/datasets/wanyu/
IteraTeR_human_doc/viewer/default/test

2174

https://huggingface.co/datasets/wanyu/IteraTeR_human_doc/viewer/default/test
https://huggingface.co/datasets/wanyu/IteraTeR_human_doc/viewer/default/test

Method Fluency Clarity Coherence Para. Simplification Neutral.
JFL ITR-F ITR-L ITR-O STS TRK AST WNC

Last Layer
depth = 1 45.0 / 47.3 41.8 / 79.7 35.9 / 54.2 39.1 / 67.9 28.6 33.0 37.1 59.0 / 28.4
depth = 2 48.7 / 49.4 42.5 / 79.1 36.1 / 53.9 37.7 / 65.7 28.6 28.4 36.0 55.5 / 12.6
depth = 3 49.5 / 49.7 42.6 / 78.7 36.1 / 54.1 37.5 / 65.6 29.1 24.6 33.2 54.7 / 12.8

Feed Forward
depth = 1 45.6 / 46.6 43.6 / 79.3 36.9 / 53.9 36.8 / 65.5 29.4 34.4 37.1 60.1 / 30.9
depth = 2 49.6 / 48.7 43.7 / 78.3 36.3 / 53.2 35.7 / 63.2 29.6 30.0 35.8 54.8 / 8.8
depth = 3 50.6 / 48.9 41.4 / 76.4 36.6 / 53.0 35.0 / 60.5 30.2 26.3 33.4 53.3 / 9.4

Table 13: Comparison of the results after multiple iterations. Bold indicates the best score in each model.

Depth Outputs
0 Bigger farming are use more chemical product and substance to feed fish .
1 Bigger farming uses more chemical product and substance to feed fish.
2 Bigger farming uses more chemical products and substances to feed fish.
3 Bigger farming uses more chemical products and substances to feed fish.
0 they did not get the ideas or any concepts about what they learn .
1 They did not get the ideas or any concepts about what they learn.
2 They did not get the ideas or any concepts about what they learned.
3 They did not get the ideas or any concepts about what they learned.
0 I larned many kind of subject , also I could make difrent types friends .
1 I studied many kind of subject, also I could make different types friends.
2 I studied many kind of subjects, also I could make different types of friends.
3 I studied many kind of subjects, also I could make different types of friends.

Table 14: The iteration cases on JFLEG. The depth of 0 refers to the source text.

2175

