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Abstract

Abstractive related work generation has at-
tracted increasing attention in generating co-
herent related work that helps readers grasp
the current research. However, most existing
models ignore the inherent causality during re-
lated work generation, leading to spurious cor-
relations which downgrade the models’ genera-
tion quality and generalizability. In this study,
we argue that causal intervention can address
such limitations and improve the quality and
coherence of generated related work. To this
end, we propose a novel Causal Intervention
Module for Related Work Generation (CaM) to
effectively capture causalities in the generation
process. Specifically, we first model the rela-
tions among the sentence order, document (ref-
erence) correlations, and transitional content in
related work generation using a causal graph.
Then, to implement causal interventions and
mitigate the negative impact of spurious corre-
lations, we use do-calculus to derive ordinary
conditional probabilities and identify causal
effects through CaM. Finally, we subtly fuse
CaM with Transformer to obtain an end-to-end
related work generation framework. Extensive
experiments on two real-world datasets show
that CaM can effectively promote the model to
learn causal relations and thus produce related
work of higher quality and coherence.

1 Introduction

A comprehensive related work usually covers abun-
dant reference papers, which costs authors plenty of
time in reading and summarization and even forces
authors to pursue ever-updating advanced work (Hu
and Wan, 2014). Fortunately, the task of related
work generation emerged and attracted increasing
attention from the community of text summariza-
tion and content analysis in recent years (Chen
et al., 2021, 2022). Related work generation can
be considered as a variant of the multi-document

∗ The authors contribute equally to this work.
† Corresponding author.

summarization task (Li and Ouyang, 2022). Dis-
tinct from multi-document summarization, related
work generation entails comparison after the sum-
marization of a set of references and needs to sort
out the similarities and differences between these
references (Agarwal et al., 2011).

Recently, various abstractive text generation
methods have been proposed to generate related
work based on the abstracts of references. For ex-
ample, Xing et al. (2020a) used the context of cita-
tion and the abstract of each cited paper as the input
to generate related work. Ge et al. (2021) encoded
the citation network and used it as external knowl-
edge to generate related work. Chen et al. (2022)
proposed a target-aware related work generator that
captures the relations between reference papers and
the target paper through a target-centered attention
mechanism. Equipped with well-designed encod-
ing strategies, external knowledge, or novel train-
ing techniques, these studies have made promising
progress in generating coherent related work.

However, those models are inclined to explore
and exploit spurious correlations, such as high-
frequency word/phrase patterns, writing habits, or
presentation skills, to build superficial shortcuts
between reference papers and the related work of
the target paper. Such spurious correlations may
harm the quality of the generated related work, es-
pecially when distribution shift exists between the
testing set and training set. This is because spuri-
ous correlations are different from genuine causal
relations. They often do not intrinsically contribute
to the related work generation and easily cause the
robustness problem and impair the models’ gener-
alizability (Arjovsky et al., 2019).

Figure 1 illustrates the difference between
causality and spurious correlation. The phrases
"for example" and "later" are often used to bridge
two sentences in related work. Their usage may be
attributed to writers’ presentation habits about or-
ganizing sentence orders or the reference document
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Figure 1: An illustration of the effect difference be-
tween causality (solid arrows) and spurious correlations
(dashed arrows) in related work generation.

relations corresponding to the sentences. Ideally,
a related work generation model is expected to
learn the reference relation and distinguish it from
the writing habits. However, previous generation
models easily capture the superficial habitual sen-
tence organization (a spurious correlation) instead
of learning complex causal reference relations, es-
pecially when the habitual patterns frequently oc-
cur in the training set. In this case, the transitional
phrases generated mainly based on writing habits
are likely to be unsuitable and subsequently af-
fect the content generation of related work during
testing when the training and testing sets are not
distributed uniformly.

Fortunately, causal intervention can effectively
remove spurious correlations and focus on causal
relations by intervening in the learning process. It
not only observes the impact of the sentence order
and document relation on generating transitional
content, but also probes the impact of each possi-
ble order on the whole generation of related work,
thereby removing the spurious correlations (Pearl,
2009a). Accordingly, causal intervention serving
as an effective solution allows causal relations to
exert a greater impact and instruct the model to
produce the correct content.

Accordingly, to address the aforementioned gaps
in existing work for related work generation, we
propose a novel Causal Intervention Module for
Related Work Generation (CaM), which effectively
removes spurious correlations by performing the
causal intervention. Specifically, we first model the
relations among sentence order, document relation,
and transitional content in related work generation
and identify the confounder that raises spurious
correlations (see Figure 2). Then, we implement
causal intervention that consists of three compo-

nents: 1) Primitive Intervention cuts off the connec-
tion that induces spurious correlations in the causal
graph by leveraging do-calculus and backdoor cri-
terion (Pearl, 2009a), 2) Context-aware Remapping
smoothens the distribution of intervened embed-
dings and injects contextual information, and 3)
Optimal Intensity Learning learns the best intensity
of overall intervention by controlling the output
from different parts. Finally, we strategically fuse
CaM with Transformer (Vaswani et al., 2017) to de-
liver an end-to-end causal related work generation
model. Our main contributions are as follows:

• To the best of our knowledge, this work is the
first attempt to introduce causality theory into the
related work generation task.

• We propose a novel Causal Intervention Module
for Related Work Generation (CaM) which uti-
lizes causal intervention to mitigate the impact
of spurious correlations. CaM is subtly fused
with Transformer to derive an end-to-end causal
related work generation model, enabling the prop-
agation of intervened information.

• Extensive experiments on two real-world bench-
mark datasets demonstrate that our proposed
model can generate related works of high qual-
ity and verify the effectiveness and rationality of
bringing causality theory into the related work
generation task.

2 Problem Formulation

Given a set of reference papers D = {r1, ..., r|D|},
we assume the ground truth related work Y =
(w1, w2, ..., wM ), where ri = (wi

1, w
i
2, ..., w

i
|ri|)

denotes a single cited paper, wi
j is the j-th word

in ri, and wj is the j-th word in related work Y .
Generally, the related work generation task can
be formulated as generating a related work sec-
tion Ŷ = (ŵ1, ŵ2, ..., ŵM̂ ) based on the reference
input D and minimizing the difference between
Y and Ŷ . Considering that the abstract section
is usually well-drafted to provide a concise paper
summarization (Hu and Wan, 2014), we use the
abstract section to represent each reference paper.

3 Methodology

We first analyze the causalities in related work gen-
eration, identify the confounder that raises spurious
correlations, and use a causal graph to model these
relations. Then, we implement CaM to enhance the
quality of related work through causal intervention.
Finally, we describe how CaM, as an intervention
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Figure 2: Causal graph G for related work generation.
By applying do-calculus, path c → x is cut off and the
impact of spurious correlation c → x → y is mitigated.

module, is integrated with Transformer to inter-
vene in the entire generation process. The overall
structure of our model is shown in Figure 3.

3.1 Causal Modeling for Related Work
Generation

We believe that three aspects play significant roles
in related work generation for better depicting the
relations between different references, namely, sen-
tence order c, document relation x, and transitional
content y (illustrated in Figure 2). In many cases,
sentence order is independent of the specified con-
tent and directly establishes relations with transi-
tional content. For example, we tend to use "firstly"
at the beginning and "finally" at the end while com-
posing a paragraph, regardless of what exactly is in
between. This relation corresponds to path c → y,
and it should be preserved as a writing experience
or habit. Meanwhile, there is a lot of transitional
content that portrays the relations between referred
papers based on the actual content, at this time,
models need to analyze and use these relations.
The corresponding path is x → y.

Though ideally, sentence order and document re-
lation can instruct the generation of transitional con-
tent based on practical writing needs, deep learning
models are usually unable to trade off the influence
of these two aspects correctly but prioritize sen-
tence order. This can be attributed to the fact that
sentence order information is easily accessible and
learnable. In Figure 2, such relation corresponds
to c → x → y. In this case, sentence order c is the
confounder that raises a spurious correlation with
transitional content y. Although performing well
on the training set, once a data distribution shift ex-
ists between the test set and training set where the
test set focuses more on document relations, the
transitional content instructed by sentence order
can be quite unreliable. To mitigate the impact of
the spurious correlation, we need to cut off the path
c → x, enabling the model to generate transitional
content based on the correct and reliable causality

of both c → y and x → y.

3.2 Causal Intervention Module for Related
Work Generation

The proposed CaM contains three parts as shown in
Figure 3: Primitive Intervention performs causal
intervention and preliminarily removes the spuri-
ous correlations between sentence order and tran-
sitional content.Context-aware Remapping cap-
tures and fuses contextual information, facilitating
the smoothing of the intervened embeddings. Op-
timal Intensity Learning learns the best intensity
of holistic causal intervention.

3.2.1 Primitive Intervention
Based on the causal graph G shown in Figure 2,
we first perform the following derivation using do-
calculus and backdoor criterion.

p(y|do(x)) = ∑
c p(y|do(x), c)p(c|do(x))

=
∑

c p(y|x, c)p(c|do(x))
=

∑
c p(y|x, c)p(c)

(1)

In short, the do-calculus is a mathematical represen-
tation of an intervention, and the backdoor criterion
can help identify the causal effect of x on y (Pearl,
2009b). As a result, by taking into consideration
the effect of each possible value of sentence order
c on transitional content y, c stops affecting docu-
ment relation x when using x to estimate y, which
means path c → x is cut off (see the arrow-pointed
graph in Figure 2). Next, we will explain how to
estimate separately p(y|x, c) and p(c) using deep
learning models and finally obtain p(y|do(x)).

Let Eori ∈ RM̂×d denote the input embeddings
corresponding to M̂ -sized related work and Eitv ∈
RM̂×d denote the output embeddings of Primitive
Intervention. We first integrate the sentence order
information into the input embeddings:

e
odr(j)
i = Linear(eorii ⊕ oj), e

ori
i ∈ Eori (2)

where j = 1, ..., s, s is the total number of sen-
tences in the generated related work and e

odr(j)
i

denotes the order-enhanced embedding for the i-th
word. We take oj = (lg (j + 1), · · · , lg (j + 1))
with the same dimension as eori. The linear
layer (i.e., Linear) further projects the concate-
nated embedding to eodr with the same dimension
as eori. Accordingly, we have the estimation of
p(y|x, c) := eodr. Then, we feed the subsequence
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Figure 3: The structure of CaM fused with the Transformer in the decoder. CaM consists of three parts: Primitive
Intervention, Context-aware Remapping and Optimal Intensity Learning.

Eitv
1:i−1 to a feed-forward network to predict the sen-

tence position probability of the current decoding
word:

hi = Softmax(FFN(ReLU(
∑i−1Eitv

1:i−1)))

(3)

where each hji ∈ hi denotes the probability. Thus,
we estimate the sentence position probability of
each decoding word p(c) := h. After obtaining the
estimation of p(y|x, c) and p(c), the final embed-
ding with primitive causal intervention is achieved:

eitvi =
∑s

j=1 e
odr(j)
i × hji , h

j
i ∈ hi (4)

where eodr(j)i ×hji multiplying sentence order prob-
ability with order-enhanced embeddings is exactly
p(y|x, c)p(c) in Equation 1. Since most transitions
are rendered by start words, our CaM intervenes
only with these words, namely part of eitv ∈ Eitv

being equal to eori ∈ Eori. For simplicity, we still
use Eitv in the following.

3.2.2 Context-aware Remapping
Two problems may exist in Primitive Intervention:
1) The lack of learnable parameters may lead to
the intervened embeddings and the original ones
being apart and obstructs the subsequent decoding
process. 2) Intervention in individual words may
damage the context along with the order-enhanced
embedding. To solve the two problems, we propose
a Context-aware Remapping mechanism. First, we
scan Eitv with a context window of fixed size nw:

Bi = WIN(Eitv)

= Eitv
i:i+nw−1

(5)

where WIN(·) returns a consecutive subsequence
of Eitv at length nw. Then, we follow the process
of Multi-head Attention Mechanism (Vaswani et al.,
2017) to update the embeddings in Bi:

Brmp
i = MultiHead(Bi, Bi, Bi)

= (ermp
i , ..., ermp

i+nw−1)
(6)

Even though all embeddings in Bi are updated,
we only keep the renewed ermp

i+(nw/2) ∈ Brmp
i as

the output, and leave the rest unchanged. Since
WIN(·) scans the entire sequence step by step, ev-
ery embedding will have the chance to update. The
output is denoted as Ermp ∈ RM̂×d.

3.2.3 Optimal Intensity Learning
There is no guarantee that causal intervention with
maximum (unaltered) intensity will improve model
performance, especially when combined with pre-
trained models (Brown et al., 2020; Lewis et al.,
2020), as the intervention may conflict with the
pre-training strategies. To guarantee performance,
we propose the Optimal Intensity Learning.

By applying Primitive Intervention and Context-
aware Remapping, we have three types of embed-
dings, Eori,Eitv, and Ermp. To figure out their
respective importance to the final output, we derive
the output intensity corresponding to each of them:

gori = σ(W ori · eori) (7)

gitv = σ(W itv · eori) (8)

grmp = σ(W rmp · eori) (9)

cori, citv, crmp = fs([g
ori, gitv, grmp]) (10)
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Statistic S2ORC Delve

Pairs # 126k/5k/5k 72k/3k/3k
source # 5.02 3.69
words/sent(doc) # 1079/45 626/26
words/sent(sum) # 148/6.69 181/7.88
vocab size # 377,431 190,381

Table 1: Statistics of the datasets

where σ(·) is the sigmoid function, fs(·) is the
softmax function. Combining cori, citv, crmp,
we can obtain the optimal intervention inten-
sity and the final word embedding set Eopm =
(eopm1 , ..., eopm

M̂
) with causal intervention:

eopm = corieori + citveitv + crmpermp (11)

3.3 Fusing CaM with Transformer
To derive an end-to-end causal generation model
and ensure that the intervened information can
be propagated, we choose to integrate CaM with
Transformer (Vaswani et al., 2017). However, un-
like the RNN-based models that generate words
recurrently (Nallapati et al., 2016), the attention
mechanism computes the embeddings of all words
in parallel, while the intervention is performed on
the sentence start words.

To tackle this challenge, we perform vocabulary
mapping on word embeddings before intervention
and compare the result with sentence start token
[CLS] to obtain Mask:

I = argmax[Linearvocab(E
ori)] (12)

Mask = δ(I, IDCLS) (13)

I contains the vocabulary index of each word. δ(·)
compares the values of the two parameters, and
returns 1 if the same, 0 otherwise. Mask indicates
whether the word is a sentence start word. There-
fore, Eopm can be calculated as:

Eopm = Eopm⊙Mask+Eori⊙(∼ Mask) (14)

The ⊙ operation multiplies each embedding with
the corresponding {0, 1} values, and ∼ denotes
the inverse operation. Note that we omit Mask
for conciseness in Section 3.2.3. Mask helps re-
store the non-sentence-start word embeddings and
preserve the intervened sentence-start ones.

As illustrated in Figure 3, we put CaM between
the Transformer layers in the decoder. The anal-
ysis of the amount and location settings will be
discussed in detail in Section 4.6. The model is

trained to minimize the cross-entropy loss between
the predicted Ŷ and the ground-truth Y , v is the
vocabulary index for wi ∈ Y :

L = −∑M̂
i log pvi (Ŷ ) (15)

4 Experiments

4.1 Datasets

Following the settings in Chen et al. (2021, 2022),
we adopt two publicly available datasets derived
from the scholar corpora S2ORC (Lo et al., 2020)
and Delve (Akujuobi and Zhang, 2017) respec-
tively to evaluate our proposed method in related
work generation. S2ORC consists of scientific pa-
pers from multiple domains, and Delve focuses on
the computer domain. The datasets are summarized
in Table 1, where the corresponding ratios of the
training/validation/test pairs are detailed 1.

4.2 Settings

In our experiments, we incorporate CaM into the
Transformer decoder (see Figure 3) and evaluate
our model using the resultant encoder-decoder ar-
chitecture. We utilize pre-trained weights from
BERT (Devlin et al., 2019) for both the encoder
and decoder of the architecture, as described in
Rothe et al. (2020) 2. Also, when CaM is removed
from the decoder in the following experiments, the
remaining Transformer model we evaluate still em-
ploys pre-trained weights.

In the Transformer architecture we use, the di-
mension of word embedding is 768, both the num-
ber of attention heads and hidden layers in the en-
coder and decoder are 12, and the intermediate size
is 3072. We implement our model with PyTorch
on NVIDIA 3080Ti GPU. The maximum reference
paper number is set to 5, i.e., |D| = 5. We select
the first 440/|D| words in each reference paper ab-
stract and concatenate them to obtain the model
input sequence. The total number of sentences in
target related work is set to 6, i.e., s = 6. We use
beam search for decoding, with a beam size of 4
and a maximum decoding step of 200. We use SGD
as the optimizer with a learning rate 1e − 3. We
use ROUGE-1, ROUGE-2, and ROUGE-L on F1
as the metrics (Lin, 2004; Jiang et al., 2022).

1https://github.com/iriscxy/relatedworkgeneration
2https://huggingface.co/docs/transformers/main/en/model_

doc/encoder-decoder#transformers.EncoderDecoderModel
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Model S2ORC Delve
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

TextRank 22.36 2.65 19.73 25.25 3.04 22.14
BertSumEXT 24.62 3.62 21.88 28.43 3.98 24.71
MGSum-ext 24.10 3.19 20.87 27.85 3.95 24.28

TransformerABS 21.65 3.64 20.43 26.89 3.92 23.64
BertSumABS 23.63 4.17 21.69 28.02 3.50 24.74
MGSum-abs 23.94 4.58 21.57 28.13 4.12 24.95

GS 23.92 4.51 22.05 28.27 4.36 25.08
T5-base 23.20 4.01 21.41 26.38 5.69 24.35

BART-base 23.36 4.13 21.08 26.96 5.33 24.42
longformer 26.00 4.96 23.20 28.05 5.20 25.65

RRG 25.46 4.93 22.97 29.10 4.94 26.29
NG-Abs 25.06 5.18 22.33 27.49 5.93 24.56

TAG 25.04 5.68 23.02 27.82 6.16 25.50
CaM (ours) 26.65 5.40 24.62 29.31 6.17 26.61

Table 2: ROUGE scores comparison between our CaM and the baselines.

4.2.1 Extractive Methods
(1) TextRank (Mihalcea and Tarau, 2004): A
graph-based text ranking model that can be used
in multi-document sentence extraction. (2) Bert-
SumEXT (Liu and Lapata, 2019): An extractive
summarization model that extends BERT by in-
serting multiple [CLS] tokens. (3) MGSum-ext
(Jin et al., 2020): A multi-granularity network that
jointly learns different semantic representations.
Abstractive Methods: (1) TransformerABS
(Vaswani et al., 2017): An abstractive summa-
rization model based on Transformer. (2) Bert-
SumABS (Liu and Lapata, 2019): An abstractive
model based on BERT with a designed two-stage
fine-tuning approach. (3) MGSum-abs (Jin et al.,
2020): A multi-granularity interaction network that
can be utilized for abstractive document summa-
rization.(4) GS (Li et al., 2020): An abstractive
summarization model that utilizes special graphs
to encode documents to capture cross-document re-
lations. (5) T5-base (Raffel et al., 2020): A text-to-
text generative language model that leverages trans-
fer learning techniques. (6) BART-base (Lewis
et al., 2020): A powerful sequence-to-sequence
model that combines the benefits of autoregressive
and denoising pretraining objectives. (7) Long-
former (Beltagy et al., 2020): A transformer-based
model that can efficiently process long-range de-
pendencies in text. (8) RGG (Chen et al., 2021):
An encoder-decoder model specifically tailored for
related work generation, which constructs and re-
fines the relation graph of reference papers. (9)
NG-Abs (Zhu et al., 2023): A BART model that
optimized jointly with the cross-entropy loss and
the proposed differentiable N-gram objectives. (10)
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Figure 4: Ablation results on S2ORC.
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Figure 5: Ablation results on Delve.

TAG (Chen et al., 2022): It takes the paper that re-
lated work belongs to as the target and employs
a target-centered attention mechanism to generate
related work.

4.3 Overall Performance

It can be found in Table 2 that abstractive models
have attracted more attention in recent years and
usually outperform extractive ones. Among the
generative models, pretrained model T5 and BART
achieve promising results in our task without ad-
ditional design. Meanwhile, Longformer, which
is good at handling long text input, also achieves
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favorable results. However, the performance of
these models is limited by the complexity of the
academic content in the dataset.

Our proposed CaM achieves the best perfor-
mance on both datasets. Due to fusing CaM with
Transformer, its large scale ensures that our model
can still effectively capture document relations
without additional modeling. Accordingly, CaM
enables the model to obviate the impact of spurious
correlations through causal intervention and pro-
motes the model to learn more robust causalities to
achieve the best performance.

4.4 Ablation Study

To analyze the contribution of the different com-
ponents of CaM, we separately control the use of
Primitive Intervention (PI), Context-aware Remap-
ping (RMP) and Optimal Intensity Learning (OPT).
Figure 4 and Figure 5 show the performance com-
parison between different variants of CaM.

First, we observe that Transformer already guar-
antees a desirable base performance. When only PI
is used, the model generally shows a slight perfor-
mance drop. PI+RMP outperforms RMP, showing
the necessity of the PI and the effectiveness of RMP.
PI+RMP+OPT achieves optimal results, indicating
that OPT can effectively exploit the information
across different representations.

4.5 Human Evaluation

inf coh suc QA

CaM 2.21 2.38 2.01 41.6
RRG 2.07 2.10 2.05 34.1
Transformer 2.11 1.97 1.92 38.3

Table 3: Human evaluation result

We evaluate the quality of related work gener-
ated by the CaM, RRG, and Transformer from
three perspectives (informativeness, coherence, and
succinctness) by randomly selecting forty samples
from S2ORC and rating the generated results by 15
PhD students. In the QA task, three PhD students
posed three questions for each sample, ensuring
that the answers existed in ground truth. Partici-
pants need to answer these questions after reading
the generated text and we use accuracy as the met-
ric. As table 3 shows, our method achieves the best
in informativeness, coherence, and the QA task.
However, succinctness is slightly lower than RRG,
probably due to the output length limit.
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Figure 6: Performance analysis on the number of CaMs
fused with Transformer.

Figure 7: Comparison between Transformer and CaM
on original and reordered samples.

4.6 Fusing Strategy Comparison

In our setting, the Transformer decoder consists of
12 layers, so there are multiple locations to fuse
a different number of CaMs. For each scenario,
CaMs are placed evenly among the Transformer
decoder layers, and one will always be placed at
the end of the entire model. The results of all cases
are shown in Figure 6. It can be observed that the
model performs best when the number of CaM is 4
both on S2ORC and Delve. With a small number of
CaMs, the model may underperform the benchmark
model and fail to achieve optimal performance due
to the lack of sufficient continuous intervention. If
there are too many CaMs, the distance between
different CaMs will be too short, leaving an insuf-
ficient learning process for the entire fused model,
and this might cause the CaMs to bring the noise.

4.7 Robustness Analysis

4.7.1 Testing with Reordered Samples
We randomly select 50 samples (15 from S2ORC
and 35 from Delve) and manually rearrange the
order of the cited papers and the order of their cor-
responding sentences in each sample.Transitional
content in related work is also removed since the
reordering damages the original logical relations.

Figure 7 shows that CaM has better performance
no matter whether the samples have been reordered
or not. Regarding the reordered samples, the per-
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Figure 8: The result of migrating test set from Delve to
S2ORC (trained on Delve).

formance of Transformer decreases on all three
metrics, but CaM only decreases on ROUGE-1 and
ROUGE-2 at a much lower rate. Particularly, com-
pared to Transformer, CaM makes improvement
on ROUGE-L when tested with reordered samples.
The result indicates that CaM is able to tackle the
noise disturbance caused by reordering, and the
generated content maintains better coherence.

4.7.2 Testing with Migrated Test Set
We train the models on Delve and test them on
S2ORC, which is a challenging task and signif-
icant for robustness analysis. As expected, the
performances of all models drop, but we can still
obtain credible conclusions. Since CaM outper-
forms Transformer initially, simply comparing the
ROUGE scores after migrating the test set is not
informative. To this end, we use Relative Outper-
formance Rate (ROR) for evaluation:

ROR = (SCaM − STF)/STF (16)

SCaM and STF are the ROUGE scores of CaM
and Transformer, respectively. ROR computes the
advantage of CaM over Transformer.

Figure 8 reports that CaM outperforms Trans-
former regardless of migrating from Delve to
S2ORC for testing. In addition, comparing the
change of ROR, we observe that although migra-
tion brings performance drop, CaM not only main-
tains its advantage over Transformer but also en-
larges it. The above two experiments demonstrate
that the CaM effectively learns causalities to im-
prove model robustness.

4.8 Causality Visualization
To visualize how causal intervention works in the
generation process, we compare the related work
generated by Transformer and CaM with a case
study. Specifically, we map their cross attention

Figure 9: Visualization of the generating process within
CaM and Transformer.

corresponding to "however" and "the" to the input
content using different color shades (Figure 10) to
explore what information these two words rely on.
More details of the above two experiments can be
found in Appendix B.

We picked out the words that "however" and
"the" focused on the most and analyzed the implica-
tions of these words in the context of the input. The
results are shown in Figure 9. It can be found that
the words highlighted by CaM have their respec-
tive effects in the cited papers. When generating
"however", the model aggregates this information,
comparing the relations between the documents
and producing the correct result. However, there is
no obvious connection between the words focused
on by Transformer, hence there is no clear decision
process after combining the information, and the
generated word "the" is simply a result obtained
from learned experience and preference. Through
causality visualization, it can be observed very con-
cretely how CaM improves model performance by
conducting causal intervention.

5 Conclusions

In this paper, we propose a Causal Intervention
Module for Related Work Generation (CaM) to
capture causalities in related work generation. We
first model the relations in related work generation
using a causal graph. The proposed CaM imple-
ments causal intervention and enables the model to
capture causality. We subtly fuse CaM with Trans-
former to obtain an end-to-end model to integrate
the intervened information throughout the gener-
ation process. Extensive experiments show the
superiority of CaM and demonstrate our method’s
effectiveness.
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Limitations

Although extensive experiments have demonstrated
that CaM can effectively improve the performance
of the generation model, as mentioned above, since
the intervention occurs on the sentence start words,
it is inconclusive that CaM can bring improvement
if the generation of sentence start words is inaccu-
rate. That is, if it is to be combined with small-scale
models without any pre-trained knowledge, then
the effectiveness of the model might not be ensured.
This will also be a direction of improvement for
our future work.
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A Related Work

A.1 Related Work Generation

The related work generation task can be viewed as a
variant of the multi-document summarization task,
and its methods can be categorized as extractive or
abstractive. Most of the early studies use extractive
methods. The work of Hoang and Kan (2010) is
one of the first attempts. They propose a heuristic
approach to generate general and specific content
separately given a topic tree. Wang et al. (2020)
train the model to extract cited text spans through
a specific training set and use a greedy algorithm
to select the most suitable candidate sentences to
compose related work. Most recent studies focus
on abstractive approaches. Xing et al. (2020b) use
the citation context and the abstract of the cited
papers together as inputs to generate citation text.
Chen et al. (2021) construct a relation graph of
the cited papers during the encoding process and
update them iteratively. The relation graph is used
as an auxiliary information for decoding. The most
recent work is done by Chen et al. (2022), in which
they take the paper that related work belongs to as
the target and employ a target-centered attention
mechanism to generate informative related work.

A.2 Causal Intervention

In recent years, causality theory has attracted in-
creasing attention in various domains. In the field
of recommendation system, Wang et al. (2022a)
use the causal graph to model multi-scenario rec-
ommendation and solve the problem of existing sys-
tems that may introduce unnecessary information
from other scenarios.Wang et al. (2022b) propose a
framework for sequential recommendation that can
perceive data biases by reweighing training data
and using inverse propensity scores(Austin, 2011).
In the field of natural language processing, Feng
et al. (2021) introduce counterfactual reasoning
into the sentiment analysis task and leverage the
knowledge of both factual and counterfactual sam-
ples. Wang and Culotta (2020) propose a method
for identifying spurious correlations in the text clas-
sification task. The method extracts the words with
the highest relevance to the category and uses an
estimator to determine whether the correlation is a
spurious correlation.

B Experiment Result for Causal
Visualization

In this section, we will give an extra analysis of the
experiments introduced in Section 4.8.

B.1 Generated Related Work Comparison
From Table 4, we can notice that CaM generates en-
riched content and its meaning is closer to ground
truth compared to Transformer. Crucially, when
pointing out the problems of previous approaches
and presenting the new ones(sentence marked in
green), CaM correctly generates "however" at the
beginning of the sentence and the entire sentence
has a more accurate expression, making the transi-
tions more seamless. But Transformer only gener-
ates a very high-frequency word "the" at the same
position. It can be perceived that in this process
Transformer is not making effective decisions, but
simply generating with preference and experience.

B.2 Visualization Result Analysis on Full Text
Figure 10 visualizes the cross attention of words
"however" and "the" in CaM and Transformer. Dif-
ferent cited papers are split with vertical lines. The
deeper blue color denotes the higher attention re-
ceived by the input source word. Judging from
the overall coloring situation, we can find that in
CaM, there is more deep blue text, as well as more
light-colored text. This means the information that
"however" focuses on is more targeted and more
important, and CaM is capable to produce correct
content by accurately capturing document relations
and avoid distractions from the confounder. In the
result of Transformer, both light and deep blue text
become less visible, and the coverage of normal
blue increases greatly, indicating that "the" focuses
on a wider range of information but lacks emphasis.
It indicates that the decision process in Transformer
is unclear and ineffective.

Detailed analysis of the exact words they focus
on and the decision process of the models is pre-
sented in Section 4.8.
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Ground Truth

Many dimension reduction techniques are proposed based on the vector forms, which are generally divided
into two parts, linear and nonlinear. The classical methods of principal component analysis and multi-
dimensional scaling are linear, since the outputs returned by these methods are related to the input patterns
by a simple linear transformation.
However, when the input patterns lie on or near a low dimensional sub of the input space, that is the
structure of the data set may be highly nonlinear, then linear methods are bound to fail. As the research for
manifold learning, several graph-based nonlinear methods have been proposed, such as locally linear em.

Transformer

Reduction methods have been proposed on the dimensional space, such are divided into two categories:
linear and nonlinear. The first method are the component analysis, the dimensional of the methods are
linear to the kernel data. The data of the input dimensional space are not linear to the large dimensional
space. The data space dimensional of the data be the nonlinear, and are not used. The graph-based non-
linear methods have been proposed. Including as the linear kernel, and entropy.

CaM

Reduction methods have been proposed on the kernel space, such are divided into two categories: linear and
nonlinear. The first approach component analysis are linear and dimensional analysis are based the kernel
of the methods. Data of the input are not represented to the low dimensional space.
However, the data are not on a low dimensional space. The data space is more nonlinear, and the methods
can not be used. The graph-based nonlinear methods have been proposed. Including as the linear entropy.

Table 4: Related work generated by CaM and Transformer. Analysis of the bolded words is in Section 4.8.

Figure 10: Raw visualization result from CaM on the word "however" and Transformer on the word "the".
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