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Abstract

The widespread existence of wrongly labeled
instances is a challenge to distantly supervised
relation extraction. Most of the previous works
are trained in a bag-level setting to alleviate
such noise. However, sentence-level training
better utilizes the information than bag-level
training, as long as combined with effective
noise alleviation. In this work, we propose
a novel Transitive Instance Weighting mecha-
nism integrated with the self-distilled BERT
backbone, utilizing information in the inter-
mediate outputs to generate dynamic instance
weights for denoised sentence-level training.
By down-weighting wrongly labeled instances
and discounting the weights of easy-to-fit ones,
our method can effectively tackle wrongly la-
beled instances and prevent overfitting. Exper-
iments on both held-out and manual datasets
indicate that our method achieves state-of-the-
art performance and consistent improvements
over the baselines.

1 Introduction

Distantly Supervised Relation Extraction (DSRE)
(Mintz et al., 2009) is designed to automatically
annotate the sentences mentioning the entity pairs,
which enables a significant way of constructing
large-scale datasets. However, distant supervision
(DS) works under an unrealistic assumption that
all sentences mentioning the same entity pair ex-
press the same relation. This introduces many noisy
(wrongly labeled) instances into the dataset. To
tackle this challenge, previous works mostly adopt
the bag-level setting as shown at the top of Figure 1,
where the vector representations of sentences are
aggregated as the bag-level representation using
multi-instance learning (MIL) (Riedel et al., 2010),
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and the prediction is thus produced from the bag
representation. The optimization is conducted at
the bag level to minimize the loss of bag prediction.
Only a small subset of previous works leverage
the sentence-level setting (Zhang et al., 2019b; Liu
et al., 2020a) as in the bottom of Figure 1, where
the sentence-level predictions are produced and
then aggregated into the bag prediction. In fact,
sentence-level training can directly optimize the
loss from each sentence, enabling higher informa-
tion utilization than bag-level training. However,
sentence-level training is vulnerable to the noise
brought by DS, which limits its application. There-
fore, sentence-level training should be combined
with effective noise-alleviation mechanisms to im-
prove its robustness.
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Figure 1: The bag-level and sentence-level pipelines of
DSRE.

The mainstream encoders of DSRE models
are Piecewise Convolutional Neural Network
(PCNN) (Zeng et al., 2015) and Recurrent Neu-
ral Network (RNN) (Zhou et al., 2016; Liu et al.,
2018) over the years. It is reasonable for most pre-
vious works to take the simple encoder as a black
box and only utilize its final output during train-
ing and inference. However, as large models like
BERT (Devlin et al., 2019) become popular in re-
cent years, the information within the outputs from
their intermediate layers is a non-trivial source of
knowledge but is rarely discussed in DSRE. In this
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work, we apply self-distillation to extract interme-
diate information as output probabilities and utilize
them to denoise from wrong labels. Furthermore,
we use soft target selection and set up transitive
knowledge passing among the students to alleviate
the effects of noisy target probabilities from the
teacher.

The instances in DSRE can be roughly divided
into easy, hard and noisy ones. Both easy and hard
instances are correctly labeled but the model learns
from hard instances slower (Huang et al., 2021).
Noisy instances have wrong labels and can be fur-
ther divided into False Positives (FPs) and False
Negatives (FNs). FPs are instances with NA rela-
tion but are wrongly labeled as non-NA relations by
DS, while FNs are non-NA instances wrongly la-
beled as NA. We hope to avoid learning from noisy
instances since they contain misleading informa-
tion. Moreover, we also need to avoid overfitting
to easy instances to improve the learning of deeper
knowledge.

To tackle the above challenges, we propose
a novel Transitive Instance Weighting (TIW)
mechanism for denoised sentence-level training
in DSRE. Firstly, we apply self-distillation to di-
rectly reuse the knowledge of the teacher model for
further denoising in students and set up a transitive
way to share knowledge among students. Secondly,
we leverage the TIW mechanism to generate robust
instance weights to reduce noise and overfitting dur-
ing distillation. TIW considers two factors in the
generation of instance weights: Uncertainty (Liu
et al., 2020b) for overfitting prevention and gen-
eral Consistency for noise reduction. The gen-
eral Consistency we proposed reflects the learning
difficulty of the instance and provides guidance
both in selecting soft targets of distillation and
in weighting instances. Lastly, the generated in-
stance weights directly multiply the sentence-level
losses to dynamically and globally enhance the
training in the sentence-level setting. The experi-
ments on both held-out and manual datasets show
that our approach boosts the student’s performance
to achieve state-of-the-art results and consistent im-
provements over the teacher. We also provide an
ablation study to explore the effects of the mod-
ules. In addition, we analyse the errors and provide
additional experimental results in the Appendix.

Our contributions are summarized as follows:

e We are the first to denoise sentence-level
DSRE with dynamic instance weights and har-

ness intermediate knowledge to improve noise
resistance and information utilization.

* We propose a novel Transitive Instance
Weighting mechanism with multiple func-
tions, including noise alleviation, overfitting
prevention, soft target selection and transitive
knowledge passing.

* Experiment and analysis show that our
method achieves state-of-the-art performance
with good generalization and robustness.

2 Related Work

Distant supervision (DS) for relation extrac-
tion (Mintz et al., 2009) enables automatic an-
notation of large-scale datasets, but its strong as-
sumption introduces a large number of wrongly
labeled instances. Following Riedel et al. (2010),
various multi-instance learning methods are pro-
posed to denoise from noisy instances, and they
broadly fall into two categories: instance selec-
tion (Zeng et al., 2015; Qin et al., 2018; Feng
et al., 2018) and instance attention (Lin et al., 2016;
Yuan et al., 2019b,a; Ye and Ling, 2019). Apart
from multi-instance learning, many of the previous
works try to improve the effectiveness of training.
Liu et al. (2017) and Shang et al. (2020) try to
convert wrongly labeled instances to useful infor-
mation through relabeling. Huang and Du (2019)
proposes collaborative curriculum learning for de-
noising. Hao et al. (2021) adopts adversarial train-
ing to filter noisy instances in the dataset. Nayak
et al. (2021) designs a self-ensemble framework
to filter noisy instances despite information loss.
Li et al. (2022) proposes a hierarchical contrastive
learning framework to reduce the effect of noise.
Rathore et al. (2022) constructs a passage from the
bags to generate a summary for classification. Nev-
ertheless, the above approaches are trained with
bag-level loss, leading to lower utilization of infor-
mation. In our work, we adopt sentence-level train-
ing to directly utilize sentence-level information
and effectively tackle noise and overfitting using
dynamic instance weights.

Knowledge distillation (Hinton et al., 2015) is
an effective way to improve model generalization,
though it has difficulty in transferring knowledge
effectively (Stanton et al., 2021). By sharing some
parameters between teacher and students, self-
distillation (Zhang et al., 2019a) improves knowl-
edge transfer from teacher to student. Liu et al.
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(2020b) applies self-distillation on BERT (Devlin
et al., 2019) to improve inference efficiency. How-
ever, in our work, we apply self-distillation as the
tool to extract intermediate knowledge for denois-
ing and further reduce the noise from the teacher
with transitive information passing among the stu-
dents.

There are some epoch-level techniques to detect
noisy instances like Swayamdipta et al. (2020) and
Huang et al. (2021). But in sentence-level DSRE
which is highly noisy and contains bias from the
entity mentions (Peng et al., 2020), larger mod-
els like BERT can overfit noisy instances faster,
even before an epoch ends. Therefore, we adopt a
dynamic instance weighting mechanism which is
more suitable for DSRE.

3 Methodology

3.1 Overview

DSRE aims to predict the relations between an en-
tity pair given a bag of sentences mentioning them.
Previous works mostly aggregate sentence repre-
sentations into bag representations before being
optimized using bag-level loss. However, useful
information may be diluted or mixed during aggre-
gation. Instead, our model is directly trained on the
sentence level to preserve more information.

Our model is illustrated in Figure 2. The back-
bone is the BERT encoder on the left, with a teacher
classifier on the top. Each student shares a sub-
encoder with the teacher and uses a new classi-
fier for prediction. Firstly, the encoder and the
teacher classifier are fine-tuned on the dataset to
establish background knowledge. Then, we freeze
the encoder and train the student classifiers, in
which knowledge distillation and Transitive In-
stance Weighting (TIW) are applied to reduce
noise and overfitting. TIW computes the instance
weights based on three sources of knowledge: the
teacher’s output p’, the outputs of the student i it-
self p; and the previous peer p;_,. It first selects
a more consistent soft target pﬁg between p’ and
p;_ based on the probabilities of making the same
predictions as them (i.e. Consistency), which are
denoted as ¢! and ¢f respectively. Then the possible
false negative instances are filtered according to the
predictions p{_; from the previous peer. Finally,
the instance weights w; are computed as the mul-
tiplication of Uncertainty u; (normalized entropy)
and the general Consistency c; with the soft tar-
get. The details of TIW are given in Algorithm 1,

where re2id(r) is a function that maps the relation
class r to its id for generating the one-hot label.
The instance weights directly multiply with the in-
stance losses to dynamically regulate the roles of
instances in optimization (Equation 6). This im-
proves training by globally down-weighting the
instances leading to extra noise and overfitting.

(Crer .

1 Instance Weights

1 Loss

Input Instance

Figure 2: The overall framework of our model. Dotted
arrows indicate the generation of instance weight.

3.2 Backbone

BERT (Devlin et al., 2019) is a powerful
transformer-based pretrained network with broad
applications in natural language processing. Its
intermediate layers encode a rich hierarchy of sen-
tence features, ranging from surface features, and
syntactic features, to semantic features (Jawahar
etal., 2019). However, previous BERT applications
in DSRE (Alt et al., 2019; Rao et al., 2022) only
utilize the output from the final layer, neglecting
the possibility that hierarchical intermediate infor-
mation can be useful in denoising. Therefore, we
set up the student classifiers to extract information
from the hierarchical features in the form of output
probabilities and utilize them to distinguish noisy
instances in the distillation stage.

The model takes a batch of sentences as input,
each is labeled with at least one relation. Firstly,
each input sentence is transformed into a sequence
of vector representations s by the embedding layer.
Then, BERT conducts layer-wise feature extraction
with the input s, the output of i, layer (1 <7 < n)
is described as:

hi = BERT;(s) (1)

where BE RT; refers to the subencoder containing
transformer layers from the first to the ;. The
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Algorithm 1 Transitive Instance Weighting

Input: DS label Y, teacher’s output probability p’ and students’ p* for the instance.
Output: The soft target p'9 and the instance weight w of the instance from the students.

1: Initialize w; < 1, pfg —pt
2: fori=14+1—>ndo

C; < Pj Pi
> Soft Target Selection
> False Negative Filtering

> Positive Weighting
p;? (1)logp;? (4)
logT%C

3: Compute the Consistency with teacher and peer: ¢! + p; - p!

4: if ¢t > ¢ then p? < p else p.? < p¢

5: if Y = rel2id(NA) then

6: if Y = argmaz;(pi_,(j)) then w; < 1 else w; < 0

7: else

8: Compute the Uncertainty of soft target: u; Z;ﬁl

9: Compute the general Consistency and the instance weight: ¢; p';g P w4 iy
10: end if

11: end for

encoder is fine-tuned with a simple feedforward
classifier F'F'N; on the top and we can obtain the
output of the teacher p' as in the following:

x; = [hi(p1); hi(p2)]

p' = softmax(FFNy(zy,))

2
3)

where p; and ps are the start positions of the head
entity and tail entity respectively. [a : b] indicates
the concatenation of vectors a and b. n. is the
number of classes. Similarly, the output of student
¢ can be formulated as follows:

p; = softmax(FFN;(z;)) 4)
Note that after fine-tuning, the parameters of the

teacher model including the BERT encoder stay
fixed during the process of self-distillation.

3.3 Transitive Instance Weighting

TIW incorporates multiple mechanisms to reduce
noise and overfitting. For negative (NA) instances,
TIW adopts False Negative Filtering (FNF) to
filter false negatives based on the prediction of
the previous peer p;_;. For positive (non-NA) in-
stances, TIW provides dynamic instance weights
w; generated by multiplying the Uncertainty w;
and the general Consistency c¢;. The Uncertainty
u; is computed as the normalized entropy of the
student’s soft target pfg as in Line 8 of Algorithm 1
and is applied to avoid overfitting to easy instances.
The general Consistency c; evaluates the consis-
tency between the student’s output and its soft
target pﬁg to limit the effects of wrongly-labeled
instances.
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Most previous works in knowledge distillation
directly use the teacher’s output probability as the
soft target. However, the teacher can constantly
make mistakes if trained with noisy data, as in
DSRE. Therefore, by introducing peer output p*
into distillation, TIW sets up a transitive way to
share knowledge among the students and reduces
the noise from the teacher. As in Line 4 of Al-
gorithm 1, instead of blindly following the output
from the teacher, each student ¢ (¢ > [) chooses
between the teacher p’ and the previous peer p_,
to follow. This step is referred to as Soft Target
Selection (STS) later. STS provides additional ref-
erential probability distributions for the learning
students so they can switch to a smoother target
probability when the output from the teacher is
too hard to follow. The criterion of selection is
Consistency (c! and cf), which is described as the
probability of two systems making the same pre-
dictions and is computed as the dot product of the
probability distributions from the two systems, as
in Line 3 of Algorithm 1.

In TIW, we adopt different strategies for negative
instances and positive ones because their charac-
teristics are quite different. For negative instances,
we conduct FNF as in Lines 5-6 of Algorithm 1.
Since we have sufficient negative instances in the
dataset, it is acceptable to avoid more FNs at the
cost of slight information loss. Therefore, we as-
sign 0 weight to all the possible FNs and 1 weight
to the rest. To correctly identify FNs, we adopt a
dynamic approach that if the previous peer agrees
with distant supervision and also labels the instance
as NA, then we classify the instance as a true nega-
tive. Otherwise, we assume it to be a false negative



that the DS label is unreliable. The student follows
the peer’s view in FNF instead of the teacher’s be-
cause the teacher already overfits the noisy data
and mostly follows the DS label, though the proba-
bilities of label relations may vary.

In order to preserve more information for train-
ing, we use soft weights for the positive instances
instead of hard filtering. We call it Positive Weight-
ing (PW) and determine the instance weight w; of
student ¢ by two factors: Uncertainty u; and the
general Consistency c; with the selected soft target.

The uncertainty term is the normalized entropy
as in Liu et al. (2020b) of the chosen soft target.
It evaluates how well an instance is fitted so we
can leverage it to detect overfitted instances dy-
namically. Easy instances contain shallow features
like London, UK indicating a location/contains re-
lation, so the model fits them easily and fast. But
we do not hope the model becomes overdependent
on them and lose focus on deeper features hidden
in semantics. Therefore we discount their weights
with uncertainty to prevent overfitting.

The general Consistency c¢; of student 7 is the
Consistency between the student and the soft target.
During distillation, each student is expected to stay
consistent with its target distribution. If ¢; is high,
the student successfully follows the prediction of
the soft target, indicating that the instance is easy
to learn for the student. If ¢; is low, the student
fails to stay consistent with prior knowledge and
the instance may be noisy or very hard to learn.
The instance weight w; should take the prevention
of both noise and overfitting into consideration, so
it is empirically implemented as the multiplication
of general Consistency ¢; and Uncertainty u;, as in
Line 9 of the algorithm.

Note that during distillation, the student is
trained with both soft targets and DS labels, as
shown in Equation 6. We present the discussions
on the ¢; and losses of easy, noisy and hard in-
stances in the following.

Easy instances mostly have high c¢; and are well-
fitted by the teacher or the peer, so the optimiza-
tions using soft targets and DS labels conform with
each other.

Noisy instances are mostly underfitted and very
hard to optimize because the soft targets and DS
labels are mostly inconsistent. They have low ¢;
because the teacher and the students are not likely
to provide consistent predictions.

Hard instances are underfitted clean instances

with low c¢; at first. However, their soft targets and
DS labels are consistent, leading to steady opti-
mizations. When clean background knowledge is
established by learning from clean instances, learn-
ing from hard ones becomes easier so the ¢; values
of hard instances grow larger.

Based on the above discussions, it is safe to say
that both easy and hard instances are faster to fit
than noisy ones during distillation, indicating that
TIW is capable of reducing noise in the training set.
As for Uncertainty, its role is non-decisive. Both
hard and noisy instances tend to have high Uncer-
tainty but the hard ones have higher Consistency,
leading to larger weights than noisy ones. Easy
instances are fast to fit even with their weights dis-
counted by low Uncertainty. Therefore, applying
Uncertainty helps alleviate overfitting and does not
lead to increases in noise.

To sum up, TIW aims to tackle noise and overfit-
ting and thus can be combined with sentence-level
training, which is more demanding in both noise re-
duction and overfitting alleviation than traditional
bag-level training.

3.4 Optimization

The teacher and the peer may overfit noisy in-
stances during fine-tuning and distillation. There-
fore, we apply a dynamic temperature 7 to the soft
target in the following form:

i =141 —w) &)

where v is a hyperparameter empirically set as 3.
The idea of 7 is to further smooth the well-fitted
instances to produce softer targets.

The loss function of our model follows the gen-
eral form of knowledge distillation with the in-
stance weight w we propose:

L=> wi(aKLy(p,p’)+(1-a)CEp,Y))

i=l

(6)
where « is a hyper-parameter empirically set as 0.5.
KL,(p,q) computes the KL-divergence between
distributions p and ¢ with temperature 7 for the soft
target q. Y is the label from distant supervision and
CE(p,Y) is the cross entropy loss with one-hot
label obtained from Y.

4 Experiments

In this section, the datasets, settings and hyperpa-
rameters are specified first. Then, we present the
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performance of our model compared with previous
baselines and the teacher model. We also conduct
an ablation study to enable a deeper understanding
of the mechanisms.

4.1 Datasets and Settings

We use the widely used held-out dataset NYT-
10 (Riedel et al., 2010) and recent manual dataset
NYT-10m (Gao et al., 2021) for evaluation. As a
standard dataset for DSRE, NYT-10 is constructed
by aligning the relations in Freebase (Bollacker
et al., 2008) with the New York Times (NYT) cor-
pus (English). NYT-10m is a manual dataset con-
structed also from the NYT corpus, with a human-
labeled test set and a new relation ontology. For
NYT-10, we divide the dataset into five parts for
cross-validation. For NYT-10m, we use the pro-
vided validation set. The details of the datasets are
shown in Table 1.

Dataset Train (k) Test (k) Rel.
Sen. Fac. Sen. Fac.

held-out 522.6 184 1724 2.0 53

manual 4179 17.1 9.7 3.9 25

Table 1: The statistics of datasets. Sen., Fac. and Rel.
indicate the numbers of sentences, relation facts and
relation types (including NA) respectively.

In the experiments, we use the bert-base-
uncased checkpoint with about 110M parameters
for initialization as in Han et al. (2019). We apply
the AdamW (Loshchilov and Hutter, 2017) opti-
mizer during distillation. The structure of the em-
bedding layer and BERT layers follow those in the
previous works with the number of transformer lay-
ers n = 12 and hidden size d;, = 768. The batch
size is 32 and the learning rate is 2e — 5. The max-
imum length of sentences m is 128. As discussed
by Jawahar et al. (2019), the shallow layers may
not be able to encode the information needed for
the DSRE task. Therefore, TIW starts from layer /,
which is empirically set as 7.

We compare the Area Under precision-recall
Curve (AUC), micro-F1, macro-F1, precision at
top N predictions (P@N, N=100, 200, 300) and
the mean of P@N, which is denoted as P@M. Fol-
lowing the at-least-one assumption (Riedel et al.,
2010), we adopt ONE strategy (Zeng et al., 2015)
for bag-level evaluation, which takes the maximum
score for each relation to generate bag-level predic-

tions. We use the output of the last student (12) as
the output of the model.

In the Appendix, we display the results from
other students and the results using other [ settings.
We also provide detailed error analysis and extra ex-
perimental results on Wiki-20m dataset. Moreover,
we try out a different initialization of the teacher to
further explore the generalization of TIW.

4.2 Overall Performance

We compare the performance of our model against
that of the following baselines:

PCNN+ATT (Lin et al., 2016) proposes PCNN
with selective attention mechanism.

RESIDE (Vashishth et al., 2018) integrates side
information into Graph Convolution Networks to
improve relation extraction.

DISTRE (Alt et al., 2019) extends and fine-
tunes GPT on DSRE.

Intra+inter (Ye and Ling, 2019) combines intra-
bag attention with inter-bag attention to tackle the
noisy bags.

CIL (Chen et al., 2021) applies contrastive in-
stance learning to reduce noise from DS.

HiCLRE (Li et al., 2022) uses a hierarchical
contrastive learning Framework to improve DSRE.

PARE (Rathore et al., 2022) constructs a passage
from the sentence bag and use its summary for
relation extraction.

Teacher follows the implementation of Gao
et al. (2021).

Among the baselines, DISTRE, HiCLRE, CIL
and PARE use pretrained language models for ini-
tialization and the last three use the same BERT
pretrained encoder as ours. The held-out dataset
is the mainstream for DSRE evaluation, but it con-
tains wrongly-labeled test instances leading to in-
accurate evaluation. The manual dataset provides
an accurate test set but is limited by its scale in
generalization. Therefore, we use both datasets for
better evaluation.

4.2.1 Evaluation on Held-out Dataset

Table 2 show the experimental results on the held-
out dataset. We use the results reported in the pa-
pers of previous work. We also plot the precision-
recall curves as in Figure 3.

As shown in the results, our model achieves the
best AUC and Micro-F1 score among all the com-
pared methods. It is shown that direct sentence-
level training (the teacher) leads to a slight decline
in precision due to the existence of noise but still
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Model AUC Micro-F1 P@100 P@200 P@300 P@M
PCNN+ATT 33.8 40.7 75.0 72.5 65.7 71.1
RESIDE 41.5 45.7 84.0 78.5 75.6 79.4
DISTRE 42.2 48.6 68.0 67.0 65.3 66.8
Intra+inter 42.3 46.5 91.8 84.0 78.7 84.8
CIL 50.8 52.2 90.1 86.1 81.8 86.0
HiCLRE 45.3 50.5 82.0 78.5 74.0 78.2
PARE 534 54.4 85.0 85.0 82.7 84.8
Teacher 50.6 52.2 90.0 82.0 78.7 83.6
Last Student 53.9 55.3 88.0 84.0 82.7 84.9

Table 2: The performance (%) of the models on the held-out dataset. The best scores are marked as bold and the
second best scores are underlined, as in other tables of the experiments.
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Figure 3: PR curves of the models on the held-out
dataset.

achieves competitive AUC and Micro-F1 on the
test set because of its advantage in information uti-
lization. The P@N of the student are relatively
lower than bag-level baselines, but still improved
over the teacher. Compared with the teacher, the
student further alleviates noise and overfitting with
TIW, thus achieving state-of-the-art performance.

4.2.2 Evaluation on Manual Dataset

Table 3 shows the experimental results on the man-
ual dataset. We use the original implementations
of the baselines to reproduce the results. The
precision-recall curves are plotted in Figure 4.

On the manual dataset, the bag-level methods
still perform better at P@N, however, our method
outperforms them in AUC and Micro-F1 by large
margins. It shows that previous bag-level meth-
ods may overfit easy instances, leading to the loss
of overall generalization despite higher precision
at easy instances (P@N). Also, some of the base-
lines fail in handling infrequent relation classes

Precision
o
>

o
«n

PCNN+ATT
Intra+inter
CIL

Teacher
PARE

& Student

o
IS
om e

o
W
<

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Figure 4: PR curves of the models on the manual

dataset.

(especially Intra+inter), but our model manages to
achieve both high Micro-F1 and Macro-F1. More-
over, the student improves significantly over the
teacher, especially in P@N. These results further
demonstrate the effectiveness of TIW in improving
sentence-level training.

According to Gao et al. (2021), the performance
of the model may be inconsistent if evaluated in
both the held-out and manual datasets. Good perfor-
mance on the held-out set may indicate overfitting
to the bias from DS. However, our model is robust
enough to perform well on both datasets.

4.3 Ablation Study

The ablation study is performed using the held-
out dataset. As shown in Table 4, all the modules
improve the overall performance. Detailed discus-
sions are given below:

a: removes Uncertainty and directly uses the
general Consistency as positive weight. In this case,
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Model AUC Micro-F1 Macro-F1 P@100 P@200 P@300 P@M
PCNN+ATT 57.7 57.0 21.2 91.0 88.5 88.0 89.2
Intra+inter 53.6 53.5 2.2 93.0 92.5 90.0 91.8
CIL 60.2 58.8 323 94.1 91.5 89.4 91.7
HiCLRE 61.8 62.8 34.7 85.0 84.5 83.7 84.4
PARE 62.7 60.7 36.1 97.0 95.0 95.0 95.7
Teacher 61.3 62.4 34.7 85.0 83.5 84.3 84.3
Last Student  63.9 63.8 35.2 94.0 90.5 88.0 90.8

Table 3: The performance (%) of our model and the baselines on the manual dataset.

Model AUC F1 Pe@M
Last Student 539 553 849
a: - Un 525 532 86.1
b: - STS 532 545 833
c: -PW 519 525 8438
d: - FNF 533 549 825
e: - TIW 52.1 52,6 84.6
f: Probe 50.6 52.5 80.0
g: JS div 53.6 550 839

Table 4: Ablation study of our method.

the easy instances always have the largest weights
even if they are already well-fitted. The model thus
overfits shallow features, which is indicated by the
high P@N and the decline in overall performance.

b: removes STS and follows the output probabil-
ities from the teacher all the time. In this case, the
noise from the teacher is not addressed. Fixing the
soft target also leads to the fixed Uncertainty for
each instance, causing the underfitting of some easy
instances. Therefore, the performance declines, es-
pecially P@M.

c: removes PW and all the positive instances are
treated equally, including the noisy ones. There-
fore, the model is heavily affected by noise and
FNF may be inaccurate, leading to further perfor-
mance declines. In this case, high P@M indicates
that the model overfits easy instances and loses
generalization.

d: removes FNF. The FNs only make up a small
part of the dataset, so the effects are relatively small.
However, the noise from FNs significantly reduces
P@M. We suspect that the fitting of FNs affects
that of true positives. If a false negative fn has
similar syntactic and semantic features to a true
positive tp, fitting fn is similar to fitting ¢p using
an incorrect label.

e: removes TIW totally and all the instances are
weighted as 1. The label smoothness of knowledge
distillation is able to alleviate some noise from DS,
so there are improvements in performance over
f. However, the student is still trained with much
noise and overfits easy instances, so the overall
performance declines significantly.

f: is the probing result of 12th layer using the
DS label. It shows that without effective denoising
mechanisms, simply retraining the classifier does
not help in performance.

g: we have also tried out the Jensen—Shannon
divergence (Fuglede and Topsoe, 2004), which is
a variant of KL divergence. The performance is
not as good as the dot product because it pushes
the student to output the same probability as the
teacher. However, it should be acceptable (or even
better) for the student to output a higher probability
for the target relation than the teacher.

The above results and discussions further demon-
strate the effectiveness of TIW designs in alleviat-
ing noise and overfitting.

5 Conclusions and Limitations

In this paper, we propose a novel Transitive In-
stance Weighting mechanism integrated with self-
distillation to denoise from sentence-level training
of DSRE. We employ the self-distilled BERT back-
bone to extract intermediate information for gen-
erating reliable instance weights. TIW combines
Consistency with Uncertainty as the tools to tackle
noisy instances and alleviate overfitting. It also
enables soft target selection and transitive knowl-
edge passing among the students to tackle the noise
from the teacher. The experiment results show
that our method improves the general resistance
to DS noise and prevents overfitting from harming
its generalization, thus can achieve state-of-the-art
performance and consistent improvements over the
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baselines on both the held-out and manual datasets.

However, our work still has some limitations.
Firstly, since our model is built on the basis of
the teacher-student network, the performance of
the student is highly affected by the teacher. If
the teacher provides too much noisy information,
our instance weighting mechanism might not work.
Secondly, in some cases, the student fails to follow
the correct predictions from the teacher, possibly
due to ambiguity, lack of information or word-level
noise. Finally, TIW may down-weight some in-
stances of infrequent relation classes due to their
difficulty, but it can be tackled by combining TIW
with other methods addressing the long-tailed dis-
tribution of relations.
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A Hyperparameter Analysis

There are two key hyperparameters in our experi-
ments, the student selected and the head layer /. In
our best model, we select the last student (12th) for
evaluation and set layer 7 as the head layer.

Comparison Between Teacher and Student

-~ Teacher -~ Teacher e

—— Student —— Student

7 8 9 10 1 12 7 8 9 10 1 12
Layer number Layer number

Figure 5: Results of the students and auxiliary classifiers
of the teacher on the held-out dataset.

As shown in Figure 5, the higher students(> 9)
improve significantly over the teacher. The last stu-
dent performs the best and the students from 9th to
11th also achieve comparable performances. Lower
layers of BERT encode shallower features and the
instance weighting in lower students is more af-
fected by noise, so the performances of 7th and
8th students show little advantage over the teacher.
With knowledge passed and noise alleviated student
by student, the performance gradually improves.

Setting AUC F1 P@M
=11 534 551 828
=10 535 549 83.6
=9 53.6 55.0 84.0
=8 53.7 55.1 847
=7 539 553 849
=6 53.8 553 848
=5 5377 55.1 84.6
=3 53,5 55.0 847
=2 535 549 84.6
=1 534 549 845

Table 5: Results of using different head layer [ settings.
The best results are marked as bold.

To study the effect of head layer [, we run exper-
iments with [ from 1 to n. In Table 5, we present
the results where [ = 7 achieves the best perfor-
mance. For [ > 7, the head layer is too close to
the top and TIW filters fewer false negatives. So
the P@M declines quickly, which is similar to the
effect of removing FNF as in Table 4. For [ < 7,
the lower layers of BERT are not able to encode
sufficient information for accurate relation extrac-
tion, so the lower students are not able to provide
reliable instance weights, leading to the transfer of
some noise among students. Though other settings
are less effective than the best, their performances
still dominate most of the baselines. The above re-
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sults show that our method is not dependent on the
empirical settings of hyperparameters and further
demonstrate the effectiveness and robustness of our
method.

B Evaluations on Wiki-20m

In order to further explore the generalization of
our method, we also experiment on the Wiki-20m
dataset (Gao et al., 2021). The details of the dataset
are shown in Table 6 and the results are shown in
Table 7.

Train (k) Test (k) Rel.
Sen. Fac. Sen.  Fac.
698.7 157.7 138.0 56.0 81

Table 6: The statistics of Wiki-20m dataset. Sen., Fac.
and Rel. indicate the numbers of sentences, relation
facts and relation types (including NA) respectively.

Model AUC Macro-F1
Intra+inter 88.7 81.1
CIL 89.7 82.6
HiCLRE 87.9 80.3
IRN (Song et al., 2023)  90.9 82.5
PARE 914 83.9
Teacher 89.7 82.8
Last Student 90.9 84.1

Table 7: The performance (%) of our model and the
baselines on the Wiki-20m dataset.

We take the best-reported results of the baselines
in Rathore et al. (2022) and Song et al. (2023). On
Wiki-20m dataset, our model still achieves state-of-
the-art performance and the improvements over the
teacher are significant. Therefore, our method can
generalize well to the Wiki-20m dataset, which has
more relation classes (81).

C Error Analysis

For accurate analysis of the errors, we use the test
set of the manual dataset for statistical discussions.
Each positive label is considered an item. The in-
stances with multiple positive labels are considered
to have multiple items. We classify the items based
on the predictions of the teacher and student, then
count the number and percentage of each class as
in Table 8. The goal is to explore where the errors

of the student come from: a) from the teacher,
meaning that the knowledge from the teacher is
noisy and leads to the student’s errors, or b) from
the student itself, meaning that the teacher gives
correct knowledge but the student fails to follow.

Class Num. of items Percentage (%)
BC 3,044 78.07
BI 742 19.03
TISC 94 2.41
TCSI 19 0.49

Table 8: Numbers and percentages of different classes
of items. BC stands for both correct, BI stands for both
incorrect, TISC stands for teacher incorrect, student
correct and TCSI stands for teacher correct, student
incorrect.

In the results, the student achieves slightly higher
(about 2%) accuracy than the teacher and shows
high fidelity with 97.1% of all predictions being
the same as the teacher. BI represents the student’s
errors caused by the errors from the teacher. TISC
indicates the student’s corrections on the errors
from the teacher and TCSI represents the errors
from the student itself. From the results, we can
conclude that almost all (about 97.5%) of the errors
come from the teacher, and the corrections made
by the student are much more than the errors made
by the student itself. This demonstrates the effec-
tiveness of our method in reducing the occurrence
of errors and the limitation that it requires a good
teacher for good performance.

For further analysis of the student’s errors, we
inspect the 7CSI items and select some represen-
tative ones for discussions as in Figure 6. Most
of the instances with place_of _birth relation are
correctly classified and the first example should
be an easy instance in the form, yet misclassified
by the student as place_lived. We observe several
similar items and suspect that long and uncommon
names like Carl Friedrich von Weizsdcker some-
times confuse the student to make conservative
predictions, which is the more common relation
place_lived. The second example, however, con-
fuses the student with a compound noun Brooklyn
College. Brooklyn appears very often in the dataset
in the form of location, making the student believe
that Brooklyn College is a location rather than an
organization. The third example is mostly related
to ambiguity, where the word Arab may refer to
the Arab people (ethnic group) or the Arab world
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Sentence Teacher Student

Carl Friedrich von Weizs&ker was born in Kiel, Germany, on June 28, 1912. Ipeople/person/place_of_birth Ipeople/person/place_lived
Presented by Brooklyn College and the office of Borough President Marty Markowitz. /business/person/company Ipeople/person/place_lived

Furthermore, the relationship between the central government, dominated by three small A
rab tribes living along the Nile, and Darfur’s Arabs, who claim a heritage going back to th Ipeople/person/ethnicity Ipeople/person/place_of_birth
e Prophet Muhammad, is often antagonistic.

Figure 6: TCSI examples. The entities are underlined.

Model AUC Micro-F1 P@100 P@200 P@300 P@M
CIL 60.2 58.8 94.1 91.5 89.4 91.7
PARE 62.7 60.7 97.0 95.0 95.0 95.7
Teacher 61.3 62.4 85.0 83.5 84.3 84.3
Teacher! 61.7 60.6 89.0 90.0 88.7 89.2
Last Student  63.9 63.8 94.0 90.5 88.0 90.8
Last Student!  63.4 60.7 96.0 96.0 95.3 95.8

Table 9: The performance (%) of the models on the manual dataset. | indicates initialized using well-trained
encoder.

(location). The latter two examples indicate that  achieve even better performance in DSRE.
the lack of entity-related information may lead to

inconsistency between the student and the teacher.

The first example shows that the student may be

confused to lose focus on key phrases like was

born in, which may be solved by combining it with

word-level attention in the future.

D Effects of Teacher Model

In the main experiments of this paper, the teacher
model is trained in an extremely noisy environ-
ment, leaving much room for TIW to improve per-
formance. In order to explore the potential of TIW
in improving state-of-the-art methods, we initialize
the teacher model using the well-trained encoder
from CIL (Chen et al., 2021) instead of the bert-
base-uncased checkpoint. We repeat the experi-
ments on the manual dataset and the results are
shown in Table 9. In the results, the models ini-
tialized with a well-trained CIL encoder achieve
significantly higher precision and TIW further im-
proves the performance over the baselines. How-
ever, since CIL is trained in a bag-level setting, it
has lower utilization in information than the models
trained in sentence-level settings, leading to some
decline in AUC and Micro-F1. These results show
that the initialization of the teacher model has a
great impact on the performance and that TIW can
consistently improve the performance of the model
with different teachers. Hopefully, TIW can be
employed with more powerful teacher models to
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