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Abstract

Most current Event Extraction (EE) methods
focus on the high-resource scenario, which re-
quires a large amount of annotated data and
can hardly be applied to low-resource domains.
To address EE more effectively with lim-
ited resources, we propose the Demonstration-
enhanced Schema-guided Generation (De-
moSG) model, which benefits low-resource
EE from two aspects: Firstly, we propose the
demonstration-based learning paradigm for EE
to fully use the annotated data, which trans-
forms them into demonstrations to illustrate the
extraction process and help the model learn ef-
fectively. Secondly, we formulate EE as a natu-
ral language generation task guided by schema-
based prompts, thereby leveraging label seman-
tics and promoting knowledge transfer in low-
resource scenarios. We conduct extensive ex-
periments under in-domain and domain adapta-
tion low-resource settings on three datasets, and
study the robustness of DemoSG. The results
show that DemoSG significantly outperforms
current methods in low-resource scenarios.

1 Introduction

Event Extraction (EE) aims to extract event records
from unstructured texts, which typically include
a trigger indicating the occurrence of the event
and multiple arguments of pre-defined roles (Dod-
dington et al., 2004a; Ahn, 2006). For instance,
the text shown in Figure 1 describes two records
corresponding to the Transport and Meet events, re-
spectively. The Transport record is triggered by the
word "arrived" and consists of 3 arguments:"Kelly",
"Beijing", and "Seoul". Similarly, the Meet record
is triggered by "brief " and has two arguments:
"Kelly" and "Yoon". EE plays a crucial role in
natural language processing as it provides valuable
information for various downstream tasks, includ-
ing knowledge graph construction (Zhang et al.,
2020) and question answering (Han et al., 2021).
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Figure 1: A simplified EE example from the dataset
ACE05-E, and the insight of proposed DemoSG. Event
triggers, arguments, and roles are highlighted in colors.

Most studies on EE primarily focus on the high-
resource scenario (Nguyen et al., 2016; Yan et al.,
2019; Cui et al., 2020; Du and Cardie, 2020a; Ram-
poni et al., 2020; Huang and Peng, 2021), which
requires a large amount of annotated training data
to attain satisfactory performance. However, event
annotation is a costly and labor-intensive process,
rendering these methods challenging to apply in
domains with limited annotated data. Thus, there
is a growing need to explore EE in low-resource
scenarios characterized by a scarcity of training
examples, which has garnered recent attention.

Lu et al. (2021) models EE as a unified sequence-
to-structure generation, facilitating knowledge shar-
ing between the Event Detection and Argument Ex-
traction subtasks. Building upon Lu et al. (2021),
Lu et al. (2022) introduces various pre-training
strategies on large-scale datasets to enhance struc-
ture generation and improve low-resource EE per-
formance. Hsu et al. (2022) incorporates sup-
plementary information by manually designing a
prompt for each event type, encompassing event
descriptions and role relations. However, despite
their effectiveness, existing methods exhibit cer-
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tain inadequacies: 1) Sequence-to-structure Gen-
eration ignores the gap between the downstream
structure generation and pre-training natural lan-
guage generation. 2) Large-scale pre-training needs
a lot of computational resources and excess corpus.
3) Manual design of delicate prompts still demands
considerable human effort, and the performance of
EE is sensitive to prompt design.

In this paper, to tackle EE more effectively with
limited resources, we propose the Demonstration-
enhanced Schema-guided Generation (DemoSG)
model, benefiting from two aspects: 1) Improving
the efficiency of using annotated data. 2) Enhanc-
ing the knowledge transfer across different events.

To make full use of annotated training data, we
consider them not only as signals for supervising
model learning, but also as task demonstrations
to illustrate the extraction process to the model.
Specifically, as shown in Figure 1, DemoSG se-
lects a suitable training example for each event,
transforms it into a demonstration in the natural
language style, and incorporates the demonstration
along with the input text to enhance the extraction.
We refer to this paradigm as demonstration-based
learning for EE, which draws inspiration from the
in-context learning of the GPT series (Ouyang et al.,
2022). To identify appropriate instances for demon-
strating, we devise several selecting strategies that
can be categorized into two groups: 1) Demo-
oriented selection, which aims to choose examples
with the best demonstrating features. 2) Instance-
oriented retrieval, which aims to find the examples
that are most semantically similar to the input sen-
tence. With the enhancement of demonstrations,
DemoSG can better understand the EE process and
learn effectively with only a few training examples.

To further enhance the knowledge transfer capa-
bility and improve the effectiveness of demonstra-
tions, we leverage label semantic information by
formulating EE to a seq2seq generation task guided
by schema-based prompts. In detail, DemoSG cre-
ates a prompt formally similar to the demonstra-
tions for each event, which incorporates the event
type and roles specified in the event schema. Then,
the prompt and demo-enhanced sentence are fed to-
gether into the pre-trained language model (PLM)
to generate a natural sentence describing the event
records. Finally, DemoSG employs a rule-based de-
coding algorithm to decode records from the gener-
ated sentences. The schema-guided sequence gen-
eration of DemoSG promotes knowledge transfer in

multiple ways: Firstly, leveraging label semantics
facilitates the extraction and knowledge transfer
across different events. For instance, the semantic
of the "Destination" role hints that its argument is
typically a place, and the similarity between "At-
tacker" and "Adjudicator" makes it easy to transfer
argument extraction knowledge among them, for
they both indicate to humans. Secondly, natural lan-
guage generation is consistent with the pre-training
task of PLM, eliminating the need for excessive
pre-training of structural generation methods (Lu
et al., 2021, 2022). Furthermore, unlike classifica-
tion methods constrained by predefined categories,
DemoSG is more flexible and can readily adapt
to new events through their demonstrations with-
out further fine-tuning, which is referred to as the
parameter-agnostic domain adaptation capability.

Our contributions can be summarized as follows:
1) We propose a demonstration-based learn-

ing paradigm for EE, which automatically creates
demonstrations to help understand EE process and
learn effectively with only a few training examples.

2) We formulate EE to a schema-guided natural
language generation, which leverages the semantic
information of event labels and promotes knowl-
edge transfer in low-resource scenarios.

3) We conduct extensive experiments under var-
ious low-resource settings on three datasets and
study the robustness of DemoSG. The results show
that DemoSG significantly outperforms previous
methods in low-resource scenarios.

2 Methodology

In this section, we first elucidate some preliminary
concepts of low-resource EE in Section 2.1. Next,
we present the proposed Demonstration-enhanced
Schema-guided Generation model in Section 2.2.
Lastly, we provide details regarding the training
and inference processes in Section 2.3.

2.1 Low-resource Event Extraction

Given a tokenized input sentence X = {xi}|X|
i=1, the

event extraction task aims to extract a set of event
records R = {Rj}|R|

j=1, where Rj contains a trigger

Tj and several arguments Aj = {Ajk}|Aj |
k=1 . Each

Tj or Ajk corresponds to an event type Ej or event
role Ojk predefined in the schema S . This paper
considers two types of low-resource EE scenarios:

In-domain low-resource scenario focuses on
the challenge that the amount of training examples
is quite limited. Considering the complete train-
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Figure 2: The overall architecture of DemoSG. The left shows the demonstration selection process, while the right
presents the demonstration-enhanced record generation framework. Different events are distinguished using colors.

ing dataset Dh = {(Xi,Ri)}|Dh|
i=1 with the schema

Sh and a subset Dl with Sl ⊂ Sh, the objective
is to fully use the limited data and train a high-
performance model on Dl when |Dl| ≪ |Dh|. The
in-domain low-resource scenario poses challenges
to the data utilization efficiency of EE models.

Domain adaptation scenario pertains to the
situation where the target domain lacks examples
but a large number of source domain examples are
available. Given two subsets Dsrc and Dtgt, where
Ssrc ∩ Stgt = ⊘ and |Dtgt| ≪ |Dsrc| , our objec-
tive is to initially pre-train a source-domain model
on Dsrc, then achieve high performance on target
domain subset Dtgt. Domain adaptation enables
the low-resource domain to leverage the knowledge
acquired from the well-studied domain, requiring a
strong knowledge transfer capability of EE models.

2.2 Demonstration-enhanced Schema-guided
Generation for Event Extraction

We propose an end-to-end model DemoSG,
which leverages demonstration-based learning and
schema-guided generation to address the aforemen-
tioned low-resource scenarios. As Figure 2 shows,
DemoSG initially constructs the task demonstration
and prompt for each event type, and then employs a
sequence-to-sequence network to generate natural
sentences that describe the event records.

2.2.1 Unified Sequence Representation of
Event Record

To model EE as a sequence-to-sequence generation
task, we design a unified representation template
to transform event records to unambiguous natural

sentences that include event triggers, arguments,
and their corresponding event roles.

In detail, given a record R with a trigger T and
several arguments A = {Ai}|A|

i=1, where each Ai

corresponds to the role Oi, DemoSG transfers R
to a sequence Y = {yj}|Y |

j=1 that is designed as
"Event trigger is T . O1 is A1 . O2 is A2...". Those
roles without any arguments are followed by the
padding token "None". For example, the Transport
record in Figure 2 is represented as "Event trig-
ger is arrived. Artifact is Kelly. Origin is Beijing.
Destination is Seoul. Vehicle is None...". We also
consider the following special situations: Multiple
records of the same event type can be expressed by
concatenating respective sequence representations.
Multiple arguments corresponding to the same role
will be merged together via "&", such as "Artifact
is Kelly & Yoon". Since DemoSG extracts each
type of events separately, event type is no longer
required for record representations, which relieves
the pressure of model prediction.

2.2.2 Event Demonstration Construction

To effectively use the limited training examples,
we not only treat them as traditional supervised
learning signal, but also transform them to event
demonstrations which can bring additional infor-
mation and help understand the extraction process.

The demonstration Di of event type Ei is a natu-
ral sentence containing a context part and an anno-
tation part, which is constructed by the following
steps: Firstly, DemoSG selects or retrieves an ex-
ample (Xi,Ri) from the training set Dtrain, which
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contains records of Ei. Next, DemoSG transforms
records associated with Ei to an annotation sen-
tence Yi following the record representation tem-
plate in Section 2.2.1. Note that we employ the uni-
fied record template for both demonstrations and
model predictions, promoting the cohesive interac-
tion between them. Finally, the demonstration Di

is constructed by concatenating the context part Xi

and the annotation part Yi. Given the significance
of selecting appropriate examples for construct-
ing demonstrations, we propose several selection
strategies that can be categorized into two groups:

Demonstration-oriented selection aims to pick
the examples with the best demonstrating character-
istics. Specifically, the training sample associated
with more event roles tends to contain more infor-
mation of extracting such type of events. And an
example with longer text may offer more contextual
information for extracting the same event. Based
on these considerations, we propose two selection
strategies: 1) rich-role strategy selects the exam-
ple with the highest number of associated roles for
each event. 2) rich-context strategy chooses the
example with the longest context for each event.

Instance-oriented retrieval focuses on retriev-
ing examples that are most semantically similar
to the input sentence, as the semantic similarity
may enhance the effectiveness of demonstrations.
Concretely, similar strategy involves encoding the
input sentence X and each example sentence Xi

using SBERT (Reimers and Gurevych, 2019), fol-
lowed by calculating the cosine similarity between
their [CLS] embeddings to rank Xi. Finally, sim-
ilar strategy retrieves the top-ranked example for
each event type to construct its demonstration.

2.2.3 Schema-based Prompt Construction
We design a prompt template for DemoSG to ex-
ploit the semantic information of event types and
roles base on the event schema. Given the event
schema S = {Ei,Oi}NE

i=1, where Ei is the event
type and Oi = {Oij}|Oi|

j=1 are event roles, the
prompt of Ei is designed as: "Event type is Ei.
Event trigger is <Mask>. Oi1 is <Mask>. Oi2

is <Mask>...", where <Mask> represent the mask
token of the PLM. For example, the prompt of afor-
mentioned Transport event can be constructed as
"Event type is Transport. Event trigger is <Mask>.
Artifact is <Mask>. Origin is <Mask>...". Lever-
aging the label semantic information not only helps
query relevant triggers and arguments, but also fa-
cilitates knowledge transfer across different events.

2.2.4 Enhanced Sequence-to-sequence
Generation for Event Extraction

As Figure 2 shows, DemoSG generates the record
sequence of each event type individually via a com-
mon encoder-decoder architecture enhanced by re-
spective event demonstration and prompt. Given
an input sentence X = {xj}|X|

j=1, DemoSG first

constructs event demonstration Di = {dij}|Di|
j=1

and schema-based prompt Pi = {pij}|Pi|
j=1 for the

event type Ei. Then, DemoSG concatenates Di, X
and Pi via the "<SEP>" token, and uses a Trans-
former Encoder (Vaswani et al., 2017) to obtain the
demonstration-enhanced hidden representation:

Hi = Encoder([Di;X;Pi]) (1)
Subsequently, DemoSG decodes the enhanced rep-
resentation Hi and generates event record sequence
Yi = {yij}|Yi|

j=1 token by token:
yij ,hij = Decoder([Hi;hi1, ...,hi,j−1]) (2)

where Decoder(·) represents the transformer de-
coder and hij is the decoder state at the jth step.
By iterating above generation process for all event
types {Ei}NE

i=1, DemoSG finally obtains the com-
plete record sequence set Y = {Yi}NE

i=1.

2.3 Training and Inference
Since DemoSG generates records for each event
type individually, we consider the sentences gen-
erated for annotated event types as positive exam-
ples, while the sentences generated for unannotated
event types serve as negative examples. At the train-
ing stage, we sample negative examples m times
the number of positive samples, where m is a hyper-
parameter. The following negative log-likelihood
loss function is optimized when training:

L = −
∑

DP∪DN

log p(Y |X,Dtrain,S, θ) (3)

p(Y |X,Dtrain,S) =
|Y |∏

i=1

p(yi|y<i,Dtrain,S)

(4)
where θ represents the model parameters, Dtrain

is the training set, S is the event schema, DP and
DN are the positive and sampled negative sets.

At the inference phase, DemoSG decodes event
records from the generated Y = {Yi}NE

i=1 via a rule-
based deterministic algorithm, and employs string
matching to obtain the offsets of event triggers
and arguments. Following Lu et al. (2021), when
the predicted string appears multiple times in the
sentence, we choose all matched offsets for trigger
prediction, and the matched offset that is closest to
the predicted trigger for argument extraction.
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Dataset Statistic Dev Test Train
Full(100%) 2% 5% 10% 2shot 5shot 10shot

ACE05-EN

#Sents 923 832 17,172 59 154 314 66 157 302
#Events 450 403 4,202 74 206 414 101 234 458
#Roles 605 576 4,859 84 225 442 106 247 487

ACE05-EN+

#Sents 901 676 19,216 71 176 348 66 158 300
#Events 468 424 4,419 91 232 455 100 241 448
#Roles 759 689 6,607 114 323 609 140 325 605

Table 1: Data statistics of ACE05-EN and ACE05-EN+. #Sents, #Events and #Roles indicate the sentence, event
record and role numbers. Statistics of the low-resource subsets are the average results of five different sampling.

3 Experiments

To assess the effectiveness of DemoSG, we conduct
comprehensive experiments under in-domain low-
resource, domain adaptation, and high-resource
settings. An ablation study is applied to explore
the impact of each module and the improvement
achieved. Furthermore, we also investigate the ro-
bustness of applying demonstrations of DemoSG.

3.1 Experimental Settings

Datasets. We evaluate our method on two
widely used event extraction benchmarks: ACE05-
EN (Wadden et al., 2019) and ACE05-EN+ (Lin
et al., 2020). Both of them contain 33 event
types as well as 22 event roles, and derive from
ACE2005 (Doddington et al., 2004b)1, a dataset
that provides rich annotations of entities, relations
and events in English. The full data splits and
preprocessing steps for both benchmarks are con-
sistent with previous works (Wadden et al., 2019;
Lin et al., 2020). Additionally, we utilize the same
data sampling strategy as UIE (Lu et al., 2022) for
the low-resource settings. Detail statistics of the
datasets are shown in Table 1.

Evaluation Metrics. We utilize the same eval-
uation metrics as previous event extraction stud-
ies (Wadden et al., 2019; Lin et al., 2020; Lu et al.,
2021, 2022): 1) Trigger Classification Micro F1-
score (Trig-C): a trigger is correctly classified if its
offset and event type align with the gold labels. 2)
Argument Classification Micro F1-score (Arg-C):
an argument is correctly classified if its event type,
offset, and event role all match the golden ones.

Baselines. We compare our method with the
following baselines in low-resource scenarios:
1) OneIE (Lin et al., 2020), the current SOTA
high-resource method, which extracts globally
optimal event records using global features.
2) Text2Event (Lu et al., 2021), which integrates

1https://catalog.ldc.upenn.edu/LDC2006T06

event detection and argument extraction into a uni-
fied structure generation task. 3) UIE (Lu et al.,
2022), which improves the low-resource perfor-
mance through various pre-training strategies based
on Text2Event. 4) DEGREE (Hsu et al., 2022),
which incorporates additional information by man-
ually designing a prompt for each event type.

For the high-resource experiments, we also
compare with the following methods: 1) DY-
GIE++ (Wadden et al., 2019), which is a BERT-
based classification model that utilizes the span
graph propagation. 2) Joint3EE (Nguyen and
Nguyen, 2019), which jointly extracts entities, trig-
gers, and arguments based on the shared represen-
tations. 3) GAIL (Zhang et al., 2019), which is
a joint entity and event extraction model based
on inverse reinforcement learning. 4) EEQA (Du
and Cardie, 2020b) and MQAEE (Li et al., 2020),
which formulate event extraction as a question an-
swering problem using machine reading compre-
hension models. 5) TANL (Paolini et al., 2021),
which formulates event extraction as a translation
task between augmented natural languages.

Implementations. We employ the BART-large
pre-trained by Lewis et al. (2020) as our seq2seq
network, and optimize our model via the Adafac-
tor (Shazeer and Stern, 2018) optimizer with a
learning rate of 4e-5 and a warmup rate of 0.1.
The training batch size is set to 16, and the epoch
number for the in-domain low-resource experi-
ments is set to 90, while 45 for the domain adap-
tation and high-resource experiments of DemoSG.
Since ONEIE is not specifically designed for low-
resource scenarios, we train it for 90 epochs as
well in the in-domain setting. The negative exam-
ple sampling rate m is set to 11 after the search
from {5,7,9,11,13,15} using dev set on the high-
resource setting, and we find that m can balance
Recall and Precision scores in practice. We con-
duct experiments on the single Nvidia Tesla-V100
GPU. All experiments of baseline methods are con-
ducted based on the released code of their orig-
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Metric Models
ACE05-EN ACE05-EN+

2-shot 5-shot 10-shot AVE-S 2% 5% 10% AVE-R 2-shot 5-shot 10-shot AVE-S 2% 5% 10% AVE-R

Trig-C
F1(%)

OneIE 37.3±3.4 55.4±2.3 61.9±4.9 51.5 34.2±5.5 51.6±4.5 61.3±1.3 49.0 31.1±2.6 56.0±0.6 61.2±1.4 49.4 40.7±4.2 55.4±5.2 65.3±2.2 53.8

Text2Event 20.2±2.0 29.6±0.3 33.6±2.0 27.8 35.0±2.9 49.0±3.4 58.0±0.1 47.3 25.0±1.3 32.6±1.6 39.8±0.3 32.5 39.5±2.4 49.0±4.1 58.0±1.6 48.8

DEGREE 27.9±3.2 32.0±1.1 46.3±1.2 35.4 43.7±0.2 45.8±1.2 51.3±2.4 46.9 26.5±3.5 32.6±1.7 42.5±0.2 33.9 43.1±3.3 41.0±0.5 45.1±2.5 43.0

UIE 42.6±2.5 48.3±1.1 54.1±0.6 48.3 50.1±0.4 57.3±0.9 60.1±0.9 55.8 40.4±7.1 48.6±4.6 51.9±1.5 47.0 52.8±1.2 55.2±2.0 60.1±2.3 56.0

DemoSGR 49.7±3.4 59.3±1.2 60.1±1.1 56.4 46.6±5.8 59.0±3.2 60.4±2.2 55.3 45.7±3.5 55.6±2.1 63.1±2.6 54.8 46.6±8.7 60.5±1.7 63.3±0.4 56.8

DemoSGC 51.4±2.3 59.7±2.0 58.8±0.9 56.6 46.6±4.8 57.6±4.1 61.7±0.9 55.3 48.6±5.3 58.2±4.3 64.0±0.7 56.9 46.8±4.5 61.3±1.6 63.0±0.9 57.0

DemoSGS 51.7±5.2 57.0±1.69 59.9±2.5 56.2 47.3±4.5 53.6±9.3 60.0±2.3 53.6 50.9±6.1 57.5±1.4 61.4±2.6 56.6 49.5±4.6 58.6±0.6 60.5±2.4 56.2

Arg-C
F1(%)

OneIE 4.6±0.3 14.2±1.9 24.2±3.4 14.3 7.3±2.0 18.4±1.4 29.6±1.9 18.4 5.6±0.7 15.2±1.1 24.2±2.0 15.0 7.9±1.4 22.4±3.2 33.6±4.3 21.3

Text2Event 11.1±1.5 18.3±2.2 22.5±1.2 17.3 14.3±2.5 24.4±0.2 32.9±3.0 23.9 14.1±1.4 20.7±1.6 26.5±0.6 20.4 17.4±1.5 28.3±0.9 35.1±2.4 26.9

DEGREE 9.8±1.0 19.5±1.8 25.0±1.2 18.1 16.7±6.7 21.6±1.9 28.2±1.0 22.2 12.1±0.9 18.2±0.9 27.0±0.4 19.1 18.8±1.8 28.1±2.3 31.4±1.5 26.1

UIE 18.1±0.9 25.8±1.7 31.6±1.1 25.2 21.1±0.7 28.2±3.4 33.1±0.7 27.5 19.3±1.6 27.9±1.5 30.6±1.1 25.9 24.4±1.6 29.1±1.8 36.0±2.0 29.8

DemoSGR 16.6±1.1 34.8±2.0 38.3±1.0 29.9 18.3±2.2 32.3±2.9 41.3±2.5 30.6 22.3±1.8 34.4±2.9 42.0±3.1 32.9 22.0±5.0 38.0±1.8 42.2±1.6 34.1

DemoSGC 22.5±3.2 35.8±1.4 36.4±2.4 31.6 15.8±3.3 31.2±5.7 37.2±2.5 28.1 23.5±4.5 34.4±2.8 41.7±0.3 33.2 24.2±1.8 38.8±0.8 42.5±2.2 35.2

DemoSGS 25.5±3.8 33.3±0.8 39.1±3.1 32.6 22.2±3.2 34.7±2.0 40.0±1.3 32.3 28.7±4.8 35.6±4.9 40.5±1.8 34.9 28.3±2.1 37.1±1.0 42.5±2.4 36.0

Table 2: Experimental results in the in-domain low-resource settings. AVE-S (hot) and AVE-R (atio) are average
performances across the few-shot and the data-limited settings, respectively. DemoSGR(ole), DemoSGC(ontext) and
DemoSGS(imilar) represent three variants of DemoSG with different demonstration selecting strategies. We report
the means and standard deviations of 5 sampling seeds to mitigate the randomness introduced by data sampling.

inal papers. Considering the influence of sam-
pling training examples in low-resource experi-
ments, we run 5 times with different sampling
seeds and report the average results as well as
standard deviations. Our code will be available
at https://github.com/GangZhao98/DemoSG.

3.2 In-domain Low-resource Scenario

To verify the effectiveness of DemoSG in in-
domain low-resource scenarios, we conduct ex-
tensive experiments in several few-shot and data-
limited settings, following Lu et al. (2022). For the
few-shot experiments, we randomly sample 2/5/10
examples per event type from the original training
set, while keeping the dev and test sets unchanged.
For the data-limited experiments, we directly sam-
ple 2%/5%/10% from the original training set for
model training. Compared with the few-shot set-
ting, the data-limited setting has unbalanced data
distributions and zero-shot situations, posing chal-
lenges to the generalization ability of EE methods.

Table 2 presents the results of in-domain low-
resource experiments. We can observe that:

1) DemoSG shows remarkable superiority over
other baselines in the in-domain low-resource sce-
narios. For argument extraction, DemoSG con-
sistently achieves improvements on few-shot and
data-limited settings compared to baseline methods.
For instance, in the 2/5/10-shot settings of ACE05-
EN and ACE05-EN+, DemoSG outperforms the
highest baseline methods by +7.4%/+10.0%/+7.5%
and +9.4%/+7.7%/+11.4% in terms of Arg-C F1,
respectively. Regarding event detection, DemoSG
also surpasses the highest baselines by +1.0% on
AVE-R of ACE05-EN+, and +5.1%/+7.5% on

AVE-S of two datasets. These results provide com-
pelling evidence for the effectiveness of our method
in low-resource event extraction.

2) It is noteworthy that DemoSG exhibits greater
improvement in few-shot settings compared to
data-limited settings, and the extent of improve-
ment in data-limited settings increases with the
growth of available data. Specifically, for argu-
ment extraction, DemoSG achieves a +4.8%/+6.2%
improvement in AVE-R, whereas it achieves a
higher improvement of +7.4%/+9.0% in AVE-S
on the two benchmarks. Furthermore, in the
data-limited settings of the two benchmarks, De-
moSG demonstrates a +1.1%/+6.5%/+8.2% and
+3.9%/+9.7%/+6.5% increase in Arg-C F1, respec-
tively. These observations suggest that our pro-
posed demonstration-based learning may be more
effective when there is a more balanced data distri-
bution or greater availability of demonstrations.

3) All of the proposed demonstration selection
strategies achieve strong performance and possess
distinct characteristics when compared to each
other. The similar retrieving strategy excels in
tackling low-resource argument extraction, with
a 2.7%/2.0% higher AVE-S of Arg-C than rich-
role on the two benchmarks. And the rich-context
strategy tends to have better low-resource event de-
tection ability, with a 1.7%/0.8% higher AVE-R of
Trig-C than similar retriving on both benchmarks.

3.3 Domain Adaptation Scenario

To investigate the cross-domain knowledge transfer
capability of DemoSG, we perform experiments
in both the parameter-adaptive and parameter-
agnostic domain adaptation settings.
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Model
ACE05-EN ACE05-EN+

Parameter-adaptive Parameter-agnostic Parameter-adaptive Parameter-agnostic
Trig-C Arg-C Trig-C Arg-C Trig-C Arg-C Trig-C Arg-C

OneIE 83.1 58.8 - - 77.2 50.9 - -
Text2Event 77.3 61.6 12.1 9.7 79.8 59.7 22.1 20.3
DEGREE 81.0 63.4 26.9 18.1 81.2 61.4 33.9 26.3
UIE 81.4 62.9 35.2 11.2 81.3 61.7 41.2 22.5
DemoSGR 82.4† 69.2 † 45.9† 36.9† 81.4† 63.7† 44.3† 34.9†

Table 3: Performance comparison of Trig-C and Arg-C F1 scores(%) in parameter-adaptive and parameter-agnostic
domain adaptation settings. Given that OneIE is classification-based, adapting it to target domains without fine-
tuning poses a significant challenge. The marker † refers to significant test p-value < 0.05 when comparing with
DEGREE.

Model Type
ACE05-EN ACE05-EN+

Trig-C Arg-C Trig-C Arg-C
DYGIE++∗ Cls 73.6 52.5 - -
Joint3EE∗ Cls 69.8 52.1 - -
GAIL∗ Cls 72.0 52.4 - -
EEQA∗ Cls 72.4 53.3 - -
MQAEE∗ Cls 71.7 53.4 - -
TANL∗ Gen 68.4 47.6 - -
OneIE Cls 74.2 57.0 72.5 55.9
Text2Event Gen 71.9∗ 53.8∗ 70.3 53.4
DEGREE† Gen 73.3∗ 55.8∗ 70.7 55.7
UIE Gen 73.4∗ 54.8∗ 70.7 52.6
DemoSGR Gen 73.4† 56.0† 71.2† 56.8 †

Table 4: Performance comparison in the high-resource
setting. "Cls” and “Gen” stand for classification-based
and generation-based method. Results marked with
* are sourced from the original paper, and † denotes
significant test p-value < 0.05 compared with DEGREE.

Parameter-adaptive domain adaptation. Fol-
lowing Lu et al. (2021), in the parameter-adaptive
setting, we divide each dataset into a source do-
main subset src and a target domain subset tgt. The
src keeps the examples associated with the top 10
frequent event types, and the tgt keeps the sen-
tences associated with the remaining 23 event types.
For both src and tgt, we sample 80% examples for
model training and use the other 20% for evalua-
tion. After the sampling, we first pre-train a source
domain model on the src, and then fine-tune the
model parameters and evaluate on the tgt set. As
shown in Table 3, DemoSG outperforms the base-
line methods in argument extraction for the target
domain, exhibiting a +5.8%/+2.0% improvement in
Arg-C F1 on ACE05-EN/ACE05-EN+ compared to
the best-performing baselines. For event detection,
DemoSG also achieves the highest performance
on ACE05-EN+ and performs competitively with
the SOTA method ONEIE on ACE05-EN. The re-
sults suggest that DemoSG possesses strong do-
main adaptation capabilities by leveraging the label
semantic information of the event schema.

Parameter-agnostic domain adaptation. Un-
like previous event extraction methods, we enhance

the generation paradigm via demonstration-based
learning, enabling DemoSG to adapt to new do-
mains and event types without further finetuning
model parameters on the target domain. Specifi-
cally, DemoSG can directly comprehend the extrac-
tion process of new event types via demonstrations
of the target domain at the inference phase. We
regard this ability as the parameter-agnostic do-
main adaptation, which can avoid the catastrophic
forgetting (Li et al., 2022) and the extra comput-
ing cost brought by the finetuning process. For the
parameter-agnostic setting, we first train a source
domain model on the src, and then directly eval-
uate on the tgt set without parameter finetuning.
As Table 3 shows, DemoSG gains a significant im-
provement in both event detection and argument
extraction on both datasets. Regarding event detec-
tion, DemoSG surpasses the highest baseline UIE
by +10.7%/+3.1% on Trig-C F1, benefiting from
its ability to comprehend target domain extraction
through demonstrations. In terms of argument ex-
traction, although DEGREE showcases strong per-
formance in the parameter-agnostic setting by in-
corporating role relation information of new event
types via manually designed prompts, DemoSG
still outperforms DEGREE on both datasets by
+18.8%/+8.6% on Arg-C F1. This outcome not
only validates the effectiveness of demonstrations
for DemoSG but also suggests that demonstration-
based learning is a more effective approach to help
comprehend the task than intricate prompts.

3.4 High-resource Scenario

To gain insights into our framework, we also evalu-
ate our method in the high-resource scenario, where
each type of training example is abundant. For the
high-resource experiments, we train all models on
the full training sets and evaluate their performance
on the original development and test sets.

According to Table 4, although designed for low-
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Model
ACE05-EN ACE05-EN+

5-shot Parameter-adaptive High-resource 5-shot Parameter-adaptive High-resource
Trig-C Arg-C Trig-C Arg-C Trig-C Arg-C Trig-C Arg-C Trig-C Arg-C Trig-C Arg-C

DemoSGR 59.3 34.8 82.4 69.2 73.4 56.0 55.6 34.4 81.4 63.7 71.2 56.8
w/o Demo -3.7 -5.5 -3.0 -0.4 -5.4 -3.5 -2.8 -3.2 -2.8 -0.8 -4.1 -1.3
w/o Schema -3.9 -5.9 -4.9 -5.4 -6.9 -5.3 -3.6 -4.3 -4.5 -1.9 -6.8 -3.8
w/o Demo & Schema -39.0 -26.5 -20.0 -18.4 -26.8 -20.2 -35.9 -21.5 -36.7 -20.2 -19.6 -13.8

Table 5: Ablation study for the key components of DemoSGR(ole) under the 5-shot, parameter-adaptive and the
high-resource settings. Trig-C and Arg-C represent Trig-C F1 score and Arg-C F1 score, respectively.

resource event extraction, our DemoSG also outper-
forms baselines by a certain margin in the argument
extraction (Arg-C) in the high-resource setting on
ACE05-EN+. In terms of the event detection (Trig-
C), DemoSG also achieves competitive results on
both benchmarks (73.4% and 71.2%). The above
results prove that DemoSG has good generaliza-
tion ability in both low-resource and high-resource
scenarios. Furthermore, we observe that generative
methods perform better than classification-based
methods in many cases under both the low-resource
and high-resource scenarios, which illustrates the
correctness and great potential of our choice to
adopt the generative event extraction framework.

3.5 Ablation Study

To examine the impact of each module of De-
moSG and the resulting improvement, we per-
form ablation experiments on three variants of De-
moSG in the few-shot, parameter-adaptive, and
high-resource settings: 1) w/o Demo, which elimi-
nates demonstrations and generates records solely
based on concatenated input text and schema-based
prompts. 2) w/o Schema, which excludes the uti-
lization of schema semantics by replacing all la-
bels with irrelevant tokens during prompt construc-
tion. 3) w/o Demo&Schema, which removes both
demonstrations and schema semantics. From Table
5 we can observe that:

1) The performance of DemoSG experiences
significant drops when removing demonstrations
in three different scenarios, particularly -5.5%/-
3.2% for Arg-C F1 in the 5-shot setting on
ACE05-EN/ACE05-EN+. This result indicates that
demonstration-based learning plays a crucial role
in our framework, especially for in-domain low-
resource event extraction.

2) Incorporating label semantic information of
the event schema is essential for DemoSG, as it
significantly influences all settings. For instance,
removing the schema semantic information results
in a noteworthy -5.4/-1.9 decrease in Arg-C F1 for
the parameter-adaptive domain adaptation setting.

3) We observe that removing both demonstra-

tions and the schema semantic information leads to
a substantial performance degradation compared to
removing only one of them, particularly -26.5%/-
21.5% for Arg-C F1 in the 5-shot setting.

4 Effectiveness and Robustness of
Demonstration-based Learning

Since demonstrations can influence the low-
resource EE performance, we design two variants
for DemoSG with different kinds of damage to
the demonstrations to explore the effectiveness and
robustness of demonstration-based learning:

1) Demonstration Perturbation. To analyze the
influence of incorrect demonstrations, we sample
40% of the demonstrations and replace the golden
triggers and arguments with random spans within
the context. Test Perturbation applies perturbation
during the inference phase only, while Train-test
Perturbation applies perturbation during both the
training and inference phases.

2) Demonstration Dropping. To investigate the
robustness of demonstration-based learning to miss-
ing demonstrations, we randomly drop 40% of the
demonstrations during the training or inference
phases. Test Drop performs dropping during the
inference phase only, while Train-test Drop applies
dropping during both training and inference.

We conduct the above experiments based on De-
moSG with rich-role strategy under the 5-shot set-
ting. From Figure 3, we can observe that:

1) Incorrect demonstrations exert a detrimental
influence on the model performance. Specifically,
perturbing the demonstrations during the inference
phase leads to a reduction of -1.3%/-2.2% on Arg-
C F1 for both benchmarks. The reduction further
increases to -1.8%/-3.1% when the perturbation
is applied during both the training and inference
phases. Despite experiencing a slight performance
drop in the presence of incorrect demonstrations,
DemoSG consistently outperforms the robust base-
line UIE. The results underscore the effectiveness
of demonstration-based learning, highlighting the
influence of accurate demonstrations in helping
model understand the extraction process.
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2) The absence of demonstrations has a more
significant impact than incorrect demonstrations.
Specifically, when dropping demonstrations only
during the inference phase, there is a reduction of
-8.5%/-6.6% in Arg-C F1, resulting in DemoSG
performing worse than UIE on ACE05-EN+. We
consider that this phenomenon can be attributed
to the Exposure Bias (Schmidt, 2019) between the
training and inference phases, which also explains
why DemoSG exhibits fewer improvements in data-
limited settings. It is noteworthy that dropping
demonstrations during both the training and infer-
ence phases leads to a recovery of +3.1%/+3.6% in
Arg-C performance compared to Test Drop. These
results suggest that reducing exposure bias could
be an effective approach to enhance the robustness
of demonstration-based learning. We leave further
investigation of this topic for future studies.

5 Related Work

Low-resource Event Extraction. Most of the
previous EE methods focus on the high-resource
scenario (Nguyen et al., 2016; Yan et al., 2019;
Cui et al., 2020; Du and Cardie, 2020a; Ramponi
et al., 2020; Huang and Peng, 2021), which makes
them hardly applied to new domains where the
annotated data is limited. Thus, low-resource EE
starts to attract attention recently. Lu et al. (2021)
models EE as a unified sequence-to-structure gen-
eration, which shares the knowledge between the
Event Detection and Argument Extraction subtasks.
However, the gap between the downstream struc-
ture generation and pre-training natural language
generation has not been considered. Based on Lu
et al. (2021), Lu et al. (2022) proposes several pre-
training strategies on large-scale datasets, which
boosts the structure generation and improves the
low-resource EE performance. However, large-
scale pre-training needs a lot of computing re-
sources and excess corpus. Hsu et al. (2022) incor-
porates additional information via manually design-
ing a prompt for each event type, which contains
the description of the event and the relation of roles.
However, designing such delicate prompts still re-
quires quite a few human efforts, and the EE per-
formance is sensitive to the design. Recently, Lou
et al. (2023) proposes unified token linking opera-
tions to improve the knowledge transfer ability. We
leave the comparison to future studies since their
code and data sampling details are not available.
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Figure 3: Experiment result of the robustness study
under the 5-shot low-resource setting. DemoSG and its
variants are based on rich-role in the experiments.

Demonstration-based Learning. The idea is
originally motivated by the in-context learning
ability of the GPT3 (Brown et al., 2020), where
the model learns by only conditioning on the
demonstration without tuning. However, in-context
learning relies on the enormous size of PLMs.
To make the demonstration effective for small
PLMs, Lee et al. (2022) proposes a demonstration-
based learning framework for NER, which treats
demonstrations as additional contextual informa-
tion for the sequence tagging model during training.
Zhang et al. (2022) further studies the robustness
of demonstration-based learning in the sequence
tagging paradigm for NER. Our method differs
from these studies from: 1) Our demonstration-
enhaced paradigm is designed according to the spe-
cific characteristics of event extraction. 2) Our
generative framework enhances the flexibility of
demonstration-based learning, providing it with the
parameter-agnostic domain-adaptation capability.

6 Conclusion

In this paper, we propose the Demonstration-
enhanced Schema-guided Generation (DemoSG)
model for low-resource event extraction, which
benefits from two aspects: Firstly, we propose the
demonstration-based learning paradigm for EE to
fully use the annotated data, which transforms them
into demonstrations to illustrate the extraction pro-
cess and help the model learn effectively. Secondly,
we formulate EE as a natural language genera-
tion task guided by schema-based prompts, thereby
leveraging label semantics and promoting knowl-
edge transfer in low-resource scenarios. Extensive
experiments and analyses show that DemoSG sig-
nificantly outperforms current methods in various
low-resource and domain adaptation scenarios, and
demonstrate the effectiveness of our method.
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Limitations

In this paper, we propose the DemoSG model to
facilitate low-resource event extraction. To exploit
the additional information of demonstrations and
prompts, DemoSG generates records of each event
type individually. Though achieving significant im-
provement in low-resource scenarios, the individ-
ual generation makes DemoEE predict relatively
slower than methods that generate all records at
once (Lu et al., 2021, 2022).
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A Comparison of Model Parameters

We put the comparison of the PLMs and the amount
of model parameters of DemoSG with other low-
resource baselines in Table 6.

Model Backbone PLM Params

OneIE BERT-large 308M

DEGREE BART-large 404M

Text2Event T5-large 780M

UIE T5-large 780M

DemoSG BART-large 404M

Table 6: Comparison of model parameters.
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