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Abstract

Existing data-to-text generation datasets are
mostly limited to English. To address this lack
of data, we create Table-to-Text in African
languages (TATA), the first large multilingual
table-to-text dataset with a focus on African
languages. We created TATA by transcrib-
ing figures and accompanying text in bilin-
gual reports by the Demographic and Health
Surveys Program, followed by professional
translation to make the dataset fully paral-
lel. TATA includes 8,700 examples in nine
languages including four African languages
(Hausa, Igbo, Swahili, and Yorub4) and a zero-
shot test language (Russian). We additionally
release screenshots of the original figures for
future research on multilingual multi-modal
approaches. Through an in-depth human eval-
vation, we show that TATA is challenging
for current models and that less than half the
outputs from an mT5-XXL-based model are
understandable and attributable to the source
data. We further demonstrate that existing met-
rics perform poorly for TATA and introduce
learned metrics that achieve a high correlation
with human judgments. Our results highlight
a) the need for validating metrics; and b) the
importance of domain-specific metrics.!

1 Introduction

Generating text based on structured data is a classic
natural language generation (NLG) problem that
still poses significant challenges to current models.
Despite the recent increase in work focusing on
creating multilingual and cross-lingual resources
for NLP (Nekoto et al., 2020; Ponti et al., 2020;
Ruder et al., 2021), data-to-text datasets are mostly
limited to English and a small number of other lan-
guages. Data-to-text generation presents important
opportunities in multilingual settings, e.g., the ex-
pansion of widely used knowledge sources, such
*Work done while at Google.

'"We release all data at
google-research/url-nlp.

https://github.com/
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"The malaria prevalence among children has
decreased by 15% between 2010 and 2015.

Figure 1: An example from TATA, which demonstrates
many of the reasoning challenges it poses.

as Wikipedia to under-represented languages (Le-
bret et al., 2016). Data-to-text tasks are also an
effective testbed to assess reasoning capabilities of
models (Suadaa et al., 2021).

However, creating challenging, high-quality
datasets for NLG is difficult. Datasets frequently
suffer from outputs that are not attributable to the
inputs or are unnatural, and overly simple tasks fail
to identify model limitations (Parikh et al., 2020;
Thomson et al., 2020; Yuan et al., 2021). To pro-
vide a high-quality dataset for multilingual data-
to-text generation, we introduce Table-to-Text in
African languages (TATA). TATA contains mul-
tiple references for each example, which require
selecting important content, reasoning over multi-
ple cells, and realizing it in the respective language
(see Fig. 1). The dataset is parallel and covers nine
languages, eight of which are spoken in Africa:
Arabic, English, French, Hausa, Igbo, Portuguese,
Swabhili, Yorubd, and Russian.> We create TATA

The languages were selected based on the availability of
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by transcribing® and translating charts and their
descriptions in informational reports by the De-
mographic and Health Surveys (DHS) Program,
which publishes population, health, and nutrition
data through more than 400 surveys in over 90
countries in PDF format.

In an analysis of TATA using professional an-
notators, we find that over 75% of collected sen-
tences require reasoning over and comparing mul-
tiple cells, which makes the dataset challenging
for current models. Even our best baseline model
generates attributable language less than half of the
time, i.e., over half of model outputs are not faith-
ful to the source. Moreover, we demonstrate that
popular automatic metrics achieve very low corre-
lations with human judgments and are thus unreli-
able. To mitigate this issue, we train our own met-
rics on human annotations, which we call STATA,
and we use them to investigate the cross-lingual
transfer properties of monolingually trained mod-
els. This setup identifies Swabhili as the best transfer
language whereas traditional metrics would have
falsely indicated other languages.

Overall, our experiments highlight that a) met-
rics need to always be validated in how they are
used; and b) that domain-specific metrics may be
necessary. Consequently, as our field increasingly
relies on trained metrics, e.g., reward models for
RLHF (Christiano et al., 2017), we must ensure
that metrics are appropriate for the chosen task.

2 Background and Related Work

Data-to-Text Generation Generating natural
language grounded in structured (tabular) data
is an NLG problem with a long history (Reiter
and Dale, 1997). The setup has many applica-
tions ranging from virtual assistants (Arun et al.,
2020; Mehri et al., 2022) to the generation of news
articles (Washington Post, 2020) or weather re-
ports (Sripada et al., 2004). To study the problem
in academic settings, there are two commonly in-
vestigated tasks: (1) generate a (short) text that uses
all and only the information provided in the input;
paraTdatapublished by the Demographic and Health Sur-
veys (DHS) Program (https://dhsprogram.com/). Arabic,
Hausa, Igbo, Swabhili, and Yorub4 are spoken in the coun-
tries where the DHS conducts its surveys. These surveys are
published alongside the colonial language spoken in these
countries: English, French, and Portuguese. Russian was
selected as an unseen test language.

3We use the terms transcribe and transcription as a short-
hand for the process where the images of charts and diagrams

(info-graphics) and their descriptions are manually converted
by human annotators into spreadsheet tabular representations.

(2) generate a description of only (but not all) the
information in the input. Corpora targeting the first
typically have short inputs, for example key-value
attributes describing a restaurant (Novikova et al.,
2017) or subject-verb-predicate triples (Gardent
et al., 2017a,b). Datasets in the second category
include ones with the goal to generate Wikipedia
texts (Lebret et al., 2016; Parikh et al., 2020) and
sport commentary (Wiseman et al., 2017; Thomson
et al., 2020; Puduppully and Lapata, 2021)

TATA deals with generating text based on infor-
mation in charts, following the second task setup.
This task has a long history, starting with work by
Fasciano and Lapalme (1996), Mittal et al. (1998)
and Demir et al. (2012), among others, who built
modular chart captioning systems. But there are
only a limited number of mainly English datasets
to evaluate current models. These include Chart-
to-Text (Obeid and Hoque, 2020; Kantharaj et al.,
2022) consisting of charts from Statista paired with
crowdsourced summaries and SciCap (Hsu et al.,
2021), which contains figures and captions auto-
matically extracted from scientific papers.

Dealing with Noisy Data While creating more
challenging datasets is necessary to keep up with
modeling advances, their creation process can in-
troduce noise. Noise in simpler datasets can of-
ten be detected and filtered out through regular
expressions (Reed et al., 2018), as done by Dusek
et al. (2019) for the E2E dataset (Novikova et al.,
2017). However, the larger output space in com-
plex datasets requires more involved approaches
and researchers have thus devised strategies to en-
sure that references are of sufficient quality. For
example, ToTTo (Parikh et al., 2020) used an an-
notation scheme in which annotators were asked
to remove non-attributed information from crawled
text. SynthBio (Yuan et al., 2021) followed a sim-
ilar strategy but started with text generated by a
large language model (Thoppilan et al., 2022). The
downside of involving crowdworkers in the lan-
guage generation steps is that outputs can be un-
naturally phrased compared to naturally occurring
descriptions; studies on translationese in machine
translation (Tirkkonen-Condit, 2002; Bizzoni et al.,
2020) highlight potential negative effects on the fi-
nal model and its evaluation (Graham et al., 2020).
Our approach aims to mitigate these issues by tran-
scribing naturally occurring descriptions.
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Multilingual Generation At present, there exist
only few data-to-text datasets that cover languages
beyond English (Gardent et al., 2017b; Kanerva
et al., 2019; Dusek and Jurcicek, 2019). None of
these datasets offers parallel data in two or more
languages.* In contrast, TATA supports eight fully
parallel languages focusing on African languages,
and Russian as an additional zero-shot language.
Each source info-graphic covers at least two of
these languages; we provide data for the remain-
ing languages using professional translations, lead-
ing to a fully parallel corpus while minimizing the
drawbacks of only relying on translated texts.
Existing datasets available in African languages
mainly focus on classic NLP applications such as
machine translation (Nekoto et al., 2020) and sum-
marization (Varab and Schluter, 2021). among oth-
ers. TATA enables data-to-text generation as a new
task for these languages and—due to its parallel
nature—also supports the development of MT mod-
els that generalize to new domains and multi-modal
settings (Adelani et al., 2022). In addition, due
to the focus on surveys in African countries, the
topics and entities in TATA are distinctly Africa-
centric. This is in contrast to other African lan-
guage datasets where Western-centric entities are
over-represented (Faisal et al., 2022).

3 TATA

3.1 Desiderata and Overview

Our goal was to construct a challenging data-to-text
dataset based on naturally occurring data i) that is
not included in pretraining datasets and ii) which
contains (preferably multiple) references that can
be attributed to the input.

To fulfill these desiderata, TATA bridges the two
communicative goals of data-to-text generation: i)
It has medium-length inputs with a large output
space, which allows studying content selection;
and ii) it restricts generation to a single sentence at
atime. The data is created through transcriptions of
info-graphics and their descriptions found in PDF
files, which ensures high quality references while
avoiding training data overlap issues. Since each
example can be described in multiple sentences,
we select examples with the most sentences as test
examples, assuming that they cover a larger share
of the potential output space.

*An exception is the English-German RotoWire subset
created for a shared task (Hayashi et al., 2019).

Ownership of House and Land
Percent of women and men age 15-49 who:

M Women Men

40 1

18 15

Own land
alone or jointly

Own a home
alone or jointly

Title Ownership of House and Land
Unit of Measure Percent of women and men age 15-49 who:

Women Men
Own a home alone or jointly 18 40
Own land alone or jointly 15 34

Linearized Form: Ownership of House and Land | Percent
of women and men age 15-49 who: | (Women, Own a home
alone or jointly, 18) (Men, Own a home alone or jointly, 40)
(Women, Own land alone or jointly, 15) (Men, Own land
alone or jointly, 34)

References

1. Only 18% of women own a house, either alone or jointly,
and only 15% own land.

2. In comparison, men are more than twice as likely to own a
home alone or jointly (40%).

3. Men are also more than twice as likely to own land alone
or jointly (34%).

Figure 2: An example of the process from infographic
to linearized input. Each table value is encoded into a
triple of (Column, Row, Value). The goal of the model
is to generate text similar to the references below.

3.2 Data Collection

We extract tables from charts in 71 PDF reports
published between 1990 and 2021 by the Demo-
graphic and Health Surveys Program®, a USAID-
funded program to collect and disseminate nation-
ally representative data on fertility, family planning,
maternal and child health, gender, and nutrition.
The reports and included info-graphics are pub-
lished in English and commonly a second language
(Portuguese, French, Arabic, Yoruba, Igbo, Hausa,
and Swabhili). 22 of the selected documents were
only available in English, while 49 were bilingual,
and the number of charts per document ranged
from two to 97. A team of paid annotators tran-
scribed the info-graphics into tables, in addition to
extracting sentences referencing each chart in the

5ht’cps: //dhsprogram.com/
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# Transcribed / Input Lengths /

Language # Translated Output Lengths Fl
Arabic 1577711 952468 /25149 0.23
English 903/0  369+16/13414 0.16
French 88/778  470422/167+6 0.18
Hausa 62/804  424499/160+5 0.20
Igbo 32/834 455402/ 17245 0.24
Portuguese 23 /833 453490/ 17446 0.18
Swahili 68/800  438420/15445 0.19
Yoruba 25/841  662430/280+10 0.31

Table 1: An overview of the TATA training data, in-
cluding the number of transcribed/translated examples,
input/output lengths based on the mT5 tokenizer (with
95% confidence interval), and Table F1 metric (§4.3).
Since each language has the same tables, we can see
that the tokenizer favors English since it has the short-
est input lengths, while being the least compatible with
Arabic and Yoruba.

surrounding text.> Due to this process, the data in
TATA is virtually unseen by pre-trained models, as
confirmed in Section 4.

During the annotation, we also collected the fol-
lowing metadata: table ID (order of appearance
in the report), page number (in the PDF), table ti-
tle, unit of measure, and chart type (vertical bar
chart, horizontal bar chart, map chart, pie chart,
table, line chart, other). Each example additionally
includes a screenshot of the original info-graphic.
The extracted tables were then translated from En-
glish by professional translators to all eight lan-
guages, maintaining the table format. Each exam-
ple includes a marker that indicates whether it was
transcribed or translated. The final dataset com-
prises 8,479 tables across all languages.

To maximize the amount of usable data, we did
not filter examples that lack associated sentences,
and we also included examples in which the tran-
scriptions do not include any values in the table
(e.g., from bar charts without value labels). These
examples were assigned to the training set and we
explore in Section 4 how to use them during train-
ing. Figure 2 provides an example of the data.’

3.3 Data Splits

The same table across languages is always in the
same split to prevent train-test leakage. In addi-

®Each annotator went through 23 rounds of training dur-
ing which the authors provided feedback on 558 transcribed
tables for correctness. Annotators relied on document paral-
lelism to extract content for the languages they do not speak
(and were familiar with the relevant orthographic system). We
release all annotation instructions alongside the data.

"More examples shown in Appendix A.

tion to filtering examples without transcribed table
values, we ensure that every example of the de-
velopment and test splits has at least 3 references.
From the examples that fulfilled these criteria, we
sampled 100 tables for both development and test
for a total of 800 examples each. A manual review
process excluded a few tables in each set, resulting
in a training set of 6,962 tables, a development set
of 752 tables, and a test set of 763 tables.

Zero-Shot Russian We further transcribed En-
glish/Russian bilingual documents (210 tables) fol-
lowing the same procedure described above.® In-
stead of translating, we treat Russian as a zero-shot
language with a separate test set, selecting 100 ta-
bles with at least one reference.

3.4 Linearization

To apply neural text-to-text models to data-to-text
tasks, the input data needs to be represented as
a string. Nan et al. (2021) demonstrated in their
DART dataset that a sequence of triplet representa-
tions (column name, row name, value) for each cell
is effective in representing tabular data.” However,
tables in TATA have between zero and two column
and row headers while DART assumes homoge-
neously formatted tables with exactly one header.
We thus additionally adopt the strategy taken by
ToTTo (Parikh et al., 2020) and concatenate all rel-
evant headers within the triplet entry, introducing
special formats for examples without one of these
headers. Similar to ToTTo, we append the table
representation to the title and the unit of measure
to arrive at the final representation, an example of
which we show in Figure 2.

To identify the headers across the different table
formats, we rely on a heuristic approach informed
by our transcription instructions: we assume that
the first n rows in the left-most column are empty
if the first n rows are column headers (i.e., one in
Figure 2). We apply the same process to identify
row headers. If the top-left corner is not empty, we
assume that the table has one row header but no col-
umn header; this frequently happens when the unit
of measure already provides sufficient information.
Our released data includes both the unmodified
and the linearized representation, which we use

8We selected Russian due to the number of available PDFs
in the same format. We additionally considered Turkish, but
found only four usable tables.

*While prior work (e.g. Wiseman et al., 2017) used a simi-
lar representation, DART was the first larger study on how to
represent tables.
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throughout our experiments.

3.5 Dataset Analysis

Table 1 provides an analysis of the training split of
our data. The data in each language is comprised of
transcriptions of 435 vertical bar charts, 173 map
charts, 137 horizontal bar charts, 97 line charts, 48
pie charts, 5 tables, and 9 charts marked as “other”.
On average, a table has 11416 cells (not count-
ing column and row headers), with a minimum of
one and a maximum of 378 cells. Due to varying
tokenizer support across languages, the lineariza-
tion lengths of inputs and even the output lengths
have a very high variance. To ensure that targets
in the dataset are unseen, we measured the frac-
tion of TATA reference sentences that overlap with
mC4 (Xue et al., 2021) at the level of 15-grams as
1.5/1.7% (dev/test).'® This validates that our data
collection approach produced novel evaluation data
that is unlikely to have been memorized by large
language models (Carlini et al., 2022).

4 [Experiments

4.1 Setup

We study models trained on TATA in three settings:
monolingual, cross-lingual and multilingual. We
train monolingual models on the subset of the data
for each language (8 models) and evaluate each
model on the test set of the same language. The
cross-lingual setup uses these models and evaluates
them also on all other languages. The multilingual
setup trains a single model on the full training data.
If a training example has multiple references, we
treat each reference as a separate training exam-
ple.!! In the multilingual setup, we compare differ-
ent strategies for dealing with incomplete data:'?

Missing References To handle examples with
missing references, i.e., examples for which no
verbalizations were available to transcribe, we com-
pare two strategies. First, we simply do not train on
these examples (SKIP NO REFERENCES). Second,
we use a tagging approach suggested by Filippova
(2020) where we append a “0” to the input for ex-
amples without a reference and learn to predict an

1%For comparison, the estimate for relevant languages in the
widely used Universal Dependencies 2.10 treebanks (De Marn-
effe et al., 2021) with mC4 is 45% (averaged over Arabic,
English, French, Portuguese, Russian and Yoruba4).

""For hyperparameters, see Appendix B.

2These strategies can also be applied to the monolingual
settings, but we omit such experiments for brevity and focus
on the highest-performing (multilingual) setting.

empty string. For examples with references, we
append “1”. We then append “1” to all dev and test
inputs (TAGGED).

Missing Table Values Since inputs from tables
with missing values will necessarily have non-
attributable outputs, we investigate two mitigation
strategies. To remain compatible with the results
from the above experiment, we base both cases on
the TAGGED setup. First, we filter all examples
where tables have no values (SKIP NO VALUES).
We also take a stricter approach and filter refer-
ences whose content has no overlap with the con-
tent of the table based on our Table F1 metric (see
Section 4.3), denoted as SKIP NO OVERLAP.

4.2 Models

We evaluate the following multilingual models.

Multilingual TS (mT5; Xue et al., 2021) is a
multilingual encoder-decoder text-to-text model
trained on Common Crawl data in 101 languages.
To assess the impact of model scale, we evaluate it
in both its small (mT5gp,,11; 300M parameters) and
XXL (mT5xx; 13B parameters) configurations.

SSA-mTS5 As African languages are under-
represented in mT5’s pre-training data, we addition-
ally evaluate a model that was pre-trained on more
data in Sub-Saharan African (SSA) languages. The
model was trained using the same hyper-parameters
as mT5, using mC4 (Xue et al., 2021) and addi-
tional automatically mined data in around 250 SSA
languages (Caswell et al., 2020). We only use the
small configuration (mT5ggA; 300M parameters)
for this model.

4.3 Evaluation

Human Evaluation Automatic metrics are
untested for many of our languages and the setting
of TATA, and outputs may still be correct with-
out matching references (Gehrmann et al., 2022).
Our main evaluation is thus through having expert
human annotators judge model outputs in a direct-
assessment setup where they have access to the
input table. We evaluate one (randomly sampled)
reference and three model outputs for every devel-
opment and test example. Model outputs are from
multilingually trained models. We report results on
the test set, while we use the annotations of the de-
velopment set to create an automatic metric.'> All
evaluation annotators are fluent in the respective

3Both sets will be publicly released.
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languages and were instructed in English.'*

To maximize annotation coverage, outputs were
only evaluated one-way and we are thus unable to
provide inter-annotator agreement numbers. How-
ever, all instructions were refined through multiple
piloting and resolution rounds together with the
annotators to ensure high quality. Moreover, in a
comparison with internal gold ratings created by
the dataset authors, the annotators achieve an F1-
Score of 0.9 and 0.91 for references and model
outputs, thus closely tracking the “correct” ratings.

Each sentence is annotated for a series of up
to four questions that implement a task-specific
variant of Attribution to Identifiable Sources (AIS;
Rashkin et al., 2021) and enquire about understand-
ability, attributability, required reasoning, and cell
coverage (see Appendix D for details).

Automatic Evaluation We investigate multiple
automatic metrics and use the human annotations
to assess whether they are trustworthy indicators
of model quality to make a final recommenda-
tion which metric to use. (1) Reference-Based:
We assess {P,R,F}-score variants of ROUGE-
{1,2,L} (Lin, 2004) as n-gram based metric, CHRF
(Popovi¢, 2015) with a maximum n-gram order
of 6 and 8 = 2 as character-based metric, and
BLEURT-20 (Sellam et al., 2020; Pu et al., 2021)
as learned metric. We compute the score between
the candidate and each reference and take the
maximum score for each table. (2) Reference-
less (Quality Estimation): We define TABLE F1,
which compares a candidate and the input table.
We create a set of tokens contained in the union
of all cells in the table, including headers (R),
and the set of tokens in a candidate output (C).
From there, we can calculate the token-level preci-
sion (RN C/C), recall (RN C/R), and Fl-score.
This can be seen as a very simple, but language-
agnostic variant of the English information match-
ing system by Wiseman et al. (2017). (3) Source
and Reference-Based: We use PARENT (Dhin-
gra et al., 2019), which considers references and an
input table. As it assumes only a single level of hier-
archy for column and row headers, we concatenate
all available headers, and collect PARENT-R/P/F.

For all metrics that require tokenization
(ROUGE, TABLE F1, PARENT), we tokenize
references, model outputs, and table contents using
the mT5 tokenizer and vocabulary.

“Instructions are available in Appendix J.

Setting nU-U-U+A Reasoning  # Cells
Reference [l M 040/075 8.0~
mT5¢. N | 003/078 6950
mT5ss, M | 003/077 6851
mT5xx;, R B 034/077 79

Table 2: Results from the human evaluation aggregated
over all languages. Left is the distribution of not under-
standable (nU; red), understandable (U; grey), and un-
derstandable and attributable (U+A; green). Right, we
show the fraction of examples marked as demonstrat-
ing reasoning compared to all examples and as fraction
of U+A examples. The rightmost column shows how
many cells were reasoned over (with standard devia-
tion). The references and the XXL model both achieve
high U+A rates of 0.53 and 0.44 respectively. Note
that only one reference was evaluated per example. Sur-
prisingly, the reasoning extent is very similar across all
models if we focus on only good outputs.

STATA As additional metrics, we fine-tune
mT5xxr, on the human assessments of model out-
puts and references in the development set. To do
s0, we construct the metric training data by treating
all understandable + attributable examples as posi-
tives and all others as negative examples. We adapt
mTS5 into a regression-metric by applying a RMSE
loss between the logits of a special classification
token and the label which is either O or 1. During
inference, we force-decode the classification token
and extract its probability. '3

We denote this metric Statistical Assessment of
Table-to-Text in African languages, or STATA. We
train three STATA variants that follow the setups
of the previously introduced automatic metrics: as
quality estimation model that predicts a score based
on the table input and the model output without
references (QF), with references (QE-Ref), and as
a traditional reference-based metric (Ref).

5 Results

5.1 Human Evaluation

The human evaluation results in Table 2 show that
only 44% of annotated samples from mT5xxt,
were rated as both understandable and attributable
to the input. This means that TATA still poses
large challenges to models, especially small mod-
els, since even the best model fails 56% of the time
and the smaller models most of the time are not

More details are in Appendix C.
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Correlation with U+A

BLEURT-20 0.12
ROUGE-1 P/R/F 0.07/0.09/0.11
ROUGE-2 P/R/F 0.12/0.11/0.13
ROUGE-L P/R/F 0.08/0.11/0.13

TABLE P/R/F 0.02/0.06/0.05
CHRF 0.16
STATA QE 0.66
STATA QE+REF 0.61
STATA REF 0.53

Table 3: Pearson Correlations between metrics and the
U+A human ratings.

understandable. This finding is consistent across
all languages (see Appendix E).

Our annotated references perform better across
these quality categories, mostly failing the attribu-
tion test when the transcribed sentences include
unclear referential expressions or additional infor-
mation not found in the infographic (see references
2 and 3 in Figure 2). However, since only one of
the 3+ references was annotated, the probability
of an example having at least one high-quality ref-
erence is high. Interestingly, of the examples that
were rated as attributable, over 75% of sentences
from all models require reasoning over multiple
cells, and the number of cells a sentence describes
closely follows the number from the references.

We further performed a qualitative analysis of
50 English samples to identify whether a sentence
requires looking at the title or unit of measure of a
table. While 1/3 of references follow or make use
of the phrasing in the title, and 43% of the unit of
measure, for mT5xx7,, the numbers are 54% and
25%—staying closer to the title while relying less
on the unit of measure.

5.2 Existing Metrics are Insufficient

Following our initial hypothesis that existing met-
rics are untested and may not be suitable for TATA,
we conduct a correlation analysis between the hu-
man evaluation ratings and metric scores. Table 3
shows the result of comparing to the main desired
outcome: whether a sentence is understandable and
attributable. Existing metrics perform very poorly
at this task, with a maximum correlation of 0.16
for chrF. This confirms that comparing to a set of
references fails to detect non-understandable and
non-attributable outputs, but even the TABLE F1
metric, which is reference-agnostic falls short.'6

16Since PARENT reports aggregate scores over the entire
test corpus, we cannot compute the segment-level correlation,

This finding is intuitive as these metrics were not
designed to evaluate the correctness of reasoning.
Nevertheless, they are used to assess outputs in
recent data-to-text approaches (e.g., Mehta et al.,
2022; Yin and Wan, 2022; Anders et al., 2022),
although most point out the limitations of such au-
tomatic assessments.

Performing the correlation analysis using only
understandability as target, which is a much easier
task for a metric, leads to only slightly improved
results, with BLEURT-20 having a correlation of
0.22, while all remaining metrics are at or below
0.13. The results for the reasoning and cell count
questions are similarly poor, with maximum corre-
lations of 0.09 and 0.18 respectively.

The dataset-specific metric STATA fares much
better. Similarly, comparing outputs to references
does not contribute to an improved correlation and
Quality Estimation is the best setup, achieving a
correlation of 0.66, which in this case is equivalent
to an AUC of 0.91. This correlation is on par with
the agreement between the raters and our internal
gold-annotations. Our experiments further showed
that it was necessary to start with a large pre-trained
model: Training in the QE setup starting from an
mTS5p,ee only achieved a correlation of 0.21, only
slightly outperforming existing metrics.

As a result of these findings, we mainly report
results with STATA in the next section (see Ap-
pendix G for results with other metrics). We report
chrF as the best performing existing metric, but
plead caution in interpreting its numbers.

5.3 Automatic Evaluation

We show the automatic evaluation results in Table
4. Similar to the findings from the human evalu-
ation, the model pre-trained on additional data in
African languages slightly outperforms the stan-
dard mT5,,,,1 model, but neither get close to the
performance of mT5xxy,, demonstrating the im-
pact of scale even for under-represented languages.
Similarly, all multilingually trained models outper-
form monolingual training. The multilingual set-
tings perform similar to each other, with SKIP NO
REFERENCES and SKIP NO OVERLAP leading to
the highest scores. While chrF correctly ranks the
XXL models above the others, but only with a very
minor margin, and it fails to distinguish between
monolingual and multilingual training setups.

but we found similarly poor performance when assessing it on
the system-level.
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Setup Model CHRF STATA QE STATA REF STATA QE+REF
SSA 0.37 0.04 0.50 0.25
MONOLINGUAL Small 0.36 0.03 0.49 0.25
XXL 0.39 0.28 0.62 0.44
SSA 0.35 0.05 0.51 0.26
SKIP NO REFERENCES  Small 0.33 0.01 0.47 0.23
XXL 0.40 0.61 0.76 0.74
SSA 0.35 0.09 0.54 0.29
TAGGED Small 0.34 0.07 0.52 0.27
XXL 0.41 0.57 0.76 0.69
SSA 0.37 0.11 0.57 0.32
+ SKIP NO VALUES Small 0.34 0.10 0.54 0.30
XXL 0.40 0.55 0.76 0.71
SSA 0.32 0.01 0.47 0.22
+ SKIP NO OVERLAP Small 0.28 0.00 0.42 0.19
XXL 0.39 0.59 0.77 0.75

Table 4: Evaluation Results. MONOLINGUAL represents the average score of the in-language performances of
separately trained monolingual models. All others are multilingually trained models and we average over their per-
language scores. SKIP NO REFERENCES omits training examples without references while TAGGED uses a binary
indicator in the input whether an output is empty. The final two variants build on TAGGED to additionally filter out
training examples where table values are missing or where a reference has no overlap with any value in the table.
For each column we bold-face the highest results (including those that are not significantly different from them).
According to STATA, the largest gains come from scaling to larger models and both SKIP NO REFERENCES and

SKIP NO OVERLAP outperform the other modalities.

Cross-lingual We show and discuss the monolin-
gual and cross-lingual performance of models us-
ing STATA QE in Appendix F. Our main observa-
tions are: i) English is far from the best source lan-
guage; ii) Swahili is the best source language, likely
due to its strong linguistic connections to other lan-
guages in our data; and iii) models perform on par
for tonal languages like Hausa and Yorub4, which
may be due to the government report data using ro-
manized orthography for Hausa, which omits tone
and vowel length information (Schuh and Yalwa,
1993) and may thus facilitate cross-lingual transfer.
In contrast, if we had relied on the cross-lingual
results using standard metrics in Appendix G and
H (for zero-shot Russian), we would have been
led to very different conclusions. For instance, the
standard metrics fail to identify the weak results of
smaller models and mistakenly present Hausa and
Yorubd as the strongest languages. This discrep-
ancy highlights the need for good metrics.

Failure Cases We observe a qualitative differ-
ence between the smaller and the large model out-
puts. The smaller models very commonly fail at
parsing the table and generate nonsensical output
like “However, the majority of women age 30-49
are twice as likely to be fed the first birth.” in the
context of ages at first birth. In addition to complete
failure, the model generates “majority” and “twice

as likely” in the same context, showing that it has
not learned the correct associations required for rea-
soning. Moreover, many of the non-understandable
examples suffer from repetitions and grammatical
mistakes as in “However, the majority of women
age 30-49 have a typical of births and the lowest
percentage of women who have a twice as high as
a typical of births.”

In contrast, the large models rarely fail at such
fundamental level and instead sometimes generate
dataset artifacts that include generalizations like
“The results show that the earlier start of family
formation is very similar to the typical pattern.”
Another issue that arises in large models are outputs
in which the reasoning is correct, but stated in a
very clumsy way, as in “Women are least likely
to own a home alone or jointly with a partner, as
compared with 34% of men”. More examples can
be found in our released human annotations.

6 Conclusion

In this paper, we introduce TATA, a table-to-text
dataset covering nine different languages with a fo-
cus on African languages and languages spoken in
Africa. TATA is the first multilingual table-to-text
dataset among many existing English-only datasets
and it is also fully parallel, enabling research into
cross-lingual transfer. We experiment with differ-
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ent monolingual and filtered and augmented multi-
lingual training strategies for various models. Our
extensive automatic and human evaluation identi-
fies multiple avenues for future improvements in
terms of understandability, attribution, and faith-
fulness of neural generation models and their met-
rics. We develop the metric STATA based on ad-
ditional data collected on the development set and
demonstrate that it has a much better agreement
with human ratings than existing metrics, which we
consider unreliable and which we show lead to mis-
leading results when analyzing transfer between
languages.

Limitations

Firstly, while we transcribed all available tables
in their language, the majority of the tables were
published in English as the first language. We use
professional translators to translate the data, which
makes it plausible that some translationese exists
in the data. Moreover, it was unavoidable to collect
reference sentences that are only partially entailed
by the source tables, as shown in Table 2. Since
our experiments show that additional filtering does
not lead to improved performance, we are releasing
the dataset as-is and encourage other researchers to
investigate better filtering strategies. Moreover, we
treat STATA QE as the main metric for the dataset,
which is agnostic to references and should thus be
more robust to the noise.

We finally note that the domain of health re-
ports includes potentially sensitive topics relating
to reproduction, violence, sickness, and death. Per-
ceived negative values could be used to amplify
stereotypes about people from the respective re-
gions or countries. We thus highlight that the in-
tended academic use of this dataset is to develop
and evaluate models that neutrally report the con-
tent of these tables but not use the outputs to make
value judgments.
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Malaria Prevalence in Children,

Percent of children age 6-59 months testing
positive for malaria by rapid diasgnostic test (RDT)
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9
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Age in months 6-59

Malaria prevalence increases with age.

9% of children under the age of 5 tested positive
for malaria according to rapid diagnostic tests.

Figure 1.1 Trends in crude birth and death rates, Egypt 2000-2013
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The downward trend was reversed in 2006,
and the rate of natural increase rose

Figure 3: Two example info-graphics and their associated descriptions. Colored rectangles indicate where informa-
tion from the text can be found in the figure. (A) The first sentence compares all numbers except the aggregate and
infers that the numbers are increasing. The second sentence does not require any reasoning, but requires the infer-
ence that 6-59 months can be stated as “‘under the age of 5”. (B) This sentence requires identifying the overall trend
and calculating the peak population increase as the difference between birth and death rate (31.9 — 6.5 = 25.5). In
addition to the values, sentences across both examples require accessing the title, unit of measure, or axis labels.

A Additional Examples

Figure 3 provides two additional examples of rea-
soning challenges in TATA.

B Details on Model Training

We train all models With a constant learning rate of
0.001 and dropout rate of 0.1 for all tasks, follow-
ing the suggestions by Xue et al. (2021). During
training, we monitor the validation loss every 25
steps for a maximum of 5,000 steps and pick the
checkpoint with minimum loss. While the XXL
model commonly converges within 100-200 steps,
the smaller models often require 2,000+ steps to
converge.

C Details on STATA

We use mT5-XXL (Xue et al., 2021) as base model
which we finetune for 2,500 steps with a batch size
of 32 using a constant learning rate of le-4. Inputs
are truncated to a maximum length of 2048. We
add the following inputs depending on the metric
type: If the metric uses the input, we use the lin-
earized representation of the example following a
tag [source]. If the metric uses the references,
we sample three of them for consistency, and add
them after [reference] tags. The output always
follows a [candidate] tag.

D Human Evaluation Details

Each sentence is annotated for a series of up to four
questions. The first two questions ask whether an-
notators agree with binary statements, implement-
ing a variant of “Attribution to Identifiable Sources”
(AIS; Rashkin et al., 2021). The first asks whether
a sentence is overall understandable by an anno-
tator, allowing minor grammatical mistakes.!” If
the answer is no, the annotation of the example is
complete. Otherwise, the task proceeds to the next
question, which asks whether all of the information
in the sentence is attributable to the table or its meta
information, i.e., whether every part of the model
output is grounded in the input. A single mistake
(e.g., number or label) means that the sentence is
not attributable, the only exception being minor
rounding deviations (e.g., “two thirds” instead of
“65%”). If the answer to the second question is no,
the task terminates; otherwise, we ask two final
questions.

The third question asks whether the generated
text requires reasoning or comparison of two or
more cells (“X has the highest Y”, or “X has more
Y than Z”’), and the last question asks annotators
to count the number of cells one has to look at to
generate the information in a given sentence.

"The exact definition we use is “A non-understandable de-
scription is not comprehensible due to significantly malformed
phrasing.”
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Figure 4: Cross-lingual zero-shot transfer performance of different monolingual models across all language pairs
using standard metrics. Each value represents an average over the traditional metrics for a model trained on one
language (rows) and evaluated on another one (columns). The final row/column represent an average. As expected,
the highest values are along the within-language diagonal, but we also observe some curious behavior for Hausa
and Yorub4 and in general large disagreements with the numbers presented in Figure 5.
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Figure 5: Cross-lingual zero-shot transfer performance of different monolingual models across all language pairs.
Each value represents the STATA QE metric for a model trained on one language (rows) and evaluated on another
one (columns). The final row/column represent an average.

E Detailed Human Evaluation Results

Table 8 presents the detailed human evaluation re-
sults by language. We can observe that there is
some variation between languages (e.g., All ex-
amples in Yorubd were judged as using reason-
ing), which we attribute to different understand-
ing of the instructions for annotators in different
languages. As a result, we suggest not comparing
results across languages but instead focusing on the
between-model comparison for a given language.
Focusing on this, the results are surprisingly con-
sistent. The two smaller models have extremely
low scores for the first two questions while the
XXL-sized model follows the references with a
small margin between the two. There is significant
room for improvements on the task since success
would mean being close to 1.0 for understandable

and attributable, which no model achieves.

While the references are not perfect either,
STATA does not use them in the QE setting, and
TATA is thus a fitting testbed for learning from
somewhat noisy labels. We further note that the
results for reference represent only one reference
out of the 3+ available and there is thus a high
probablity of the set of references to paint a more
accurate picture of the output space for a table.

F Cross-lingual Results with StATA

We present the monolingual and cross-lingual per-
formance of models trained on every language indi-
vidually in Figure 6. The figure shows the STATA
QE score for each training language (rows) evalu-
ated on each target language (columns), along with
averages.
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Figure 6: Cross-lingual zero-shot transfer performance
of different monolingual models across all language
pairs. Each value represents the STATA QE metric for
an XXL model trained on one language (rows) and eval-
uated on another one (columns). The final row/column
represent an average.

We make three key observations. First, it is
evident that English is far from the best source
language despite its prevalence in the pretraining
corpus. This validates our design choice to avoid
English-centric data during the collection of TATA,
and points to future work to collect data specific to
non-Western locales. Second, Swahili achieves the
highest performance across almost all transfer sce-
narios. Swahili has a substantial shared vocabulary
with English, Arabic, and Portuguese, and it is dis-
tantly related to Igbo and Yorub4. These strong lin-
guistic connections likely explain the observation.
However, Swahili even transfers well to Hausa,
which is both geographically and genetically dis-
tant from Swabhili (Chadic vs. Volta-Congo/Niger
for the others).

Finally, in cross-lingual transfer between the
other African languages, we observe some weak
effects of their geographic distribution or genetic
relationship, in line with previous findings that the
geographic location of speakers and linguistic simi-
larity between two languages are indicative of posi-
tive transfer (Ahuja et al., 2022). We would expect
positive transfer effects between Hausa, Igbo, and
Yorub4, due to their proximal geographic distribu-
tion in Western Africa, and even stronger effects
between Igbo and Yorubd, which are closer related
to each other than Hausa. But, we do not see strong
evidence for this relationship.

Additionally, while tonal languages like Hausa
and Yoruba are not well represented in pretraining
data and tokenizers (Alabi et al., 2020; Adebara
and Abdul-Mageed, 2022), the models perform on

Setup Model CHRF
SKIP NO REFERENCES  SSA 0.17
Small 0.18
XXL 0.34
TAGGED SSA 0.18
Small 0.18
XXL 0.23
+ SKIP NO VALUES SSA 0.17
Small 0.15
XXL 0.27
+ SKIP NO OVERLAP SSA 0.17
Small 0.18
XXL 0.24

Table 5: Noisy chrF test results on zero-shot transfer to
Russian for multilingually trained models.

par as for other languages with a slight edge for
Hausa. This edge could be explained by the fact
that TATA is based on government reports that
use the romanized orthography for Hausa, which
omits tone and vowel length information (Schuh
and Yalwa, 1993), and which may thus facilitate
cross-lingual transfer.

The cross-lingual peformance numbers also fur-
ther emphasize the need for good metrics. We
present an extended version of the figure using an
average of all existing metrics and with STATA in
the next section in Figures 4 and 5. If we had relied
on the existing metrics, we would have been led to
very different conclusions.

G Cross-Lingual Results with Different
Metrics

Figures 4 and 5 show the detailed cross-lingual
results when relying on standard metrics (4) com-
pared to STATA (5). For the standard metrics, we
present an average of our baseline metrics for each
(model, language) pair. The standard metrics fail
to identify the weak results of the smaller models
and mistakenly present Hausa and Yoruba as the
strongest languages.

H Zero-shot Evaluation to Russian

Since there is no training data for STATA in Rus-
sian, we leave the in-depth zero-shot evaluation in
a distant language for future work and focus on
noisy chrF numbers in Table 5. While differences
between setups were small using chrF in Table 4,
for zero-shot transfer to a new language SKIP NO
REFERENCES seems to perform best with a signifi-
cant margin.
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I Transcription Instructions

The following are the instructions that were pre-
sented to annotators during transcription. Note that
there are multiple references to spreadsheets which
record links to the external documents and to loca-
tions where annotators can enter the transcriptions.
Every step of instructions was additionally accom-
panied by screenshots we are unable to share.

I.1 Overview

You will be accessing two PDF documents with
similar content and structure. One will be in En-
glish and the other one is a version of the document
in a different language. You don’t need to know
the other language for this task, English is enough.
Starting in English, you will work from the start of
the document and find the charts, convert them into
a table using Google Sheets, extract any text that
refers to the chart, and then repeat the process in
the other language. You will also take a screenshot
of both charts and save them to Google Drive.

We’re interested in the outcome as well as in the
process: please let us know if anything in this docu-
ment is unclear and what challenges you encounter
following the steps below. If you would like to
leave specific comments on a particular table (eg.
doubts, questions, something you were unsure of),
kindly add them in column S “Comments” in the
Table index.

I.2 Cheat Sheet

* Claim your document assignment from this
list

* Open the PDF files and tables.

* Find the first chart in the English document
and transpose into a table in the spreadsheet
by filling the template in Tab 1.

 Take a screenshot of the chart, upload it to the
folder and rename it to match the name of the
table.

¢ Add the text from the Table.

* Repeat steps 2-5 for the same chart in the
second language.

* Find the next chart in English and repeat steps
2-6.

Always remember to:

Check the spelling, especially when transcrib-
ing a language you do not speak.

Check that the number of the table ID corre-
sponds with the name of the tab.

Creating your first Table in English

1. The documents you will extract the data from
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are in PDF format. You will be working on
one document at a time. Claim the docu-
ment you will be working from this the Docu-
ment Index by adding your user name to the
“Claimed by” cell of one of the rows

. Now open the PDF documents listed in

columns C and E of the same row. There
can be two different PDFs, one per language,
or just one, where the content in the second
language comes after the content in the first
language. If this is the case, you will see the
same text in columns C and E.

. Now, open the spreadsheets linked from

columns D and F. This is where you’ll cre-
ate the tables. The two spreadsheets have
the same alphanumerical name with a differ-
ent two letter code at the end to differenti-
ate between English (“en”) and the second
language. The spreadsheets have been pre-
populated with templated tabs for you to trans-
form your chats into. The tabs are named with
numbers starting at 1. You’ll transform the
first chart into tab 1, the second chart into tab
2, the third chart into tab 3, and so on. To ac-
cess tabs with higher numbers, click the right
arrow at the bottom right of Spreadsheets (and
then the left one to return to the original view)

. Templates include the following fields for you

to fill in:

* Table ID: refers to the order in which the
chart appears in the document: the first
chart will be 1, the second chart will be
2 and so on. This should match with the
tab number in the spreadsheet into which
you extract the chart’s information.

* Page Number: this is the page number
where the chart appears. Do not trust the
page numbers written inside the docu-
ment. Use the page number shown in the
PDF viewer (see example)

* Title: This is the title of the chart as in
the document



» Unit of measure: include the chart / ta-
ble’s unit of measure here

* Screenshot link: You will take a screen
capture of the chart and enter the link
here (instructions below).

» This is how you capture your screen:
[Omitted for brevity]

5. Now it’s time to look for charts. Start skim-

ming the PDFs from the beginning of your
English text looking for charts and tables. We
are interested in all types of charts: bar charts,
pie charts, map charts, etc. (see chart exam-
ples below). The only exception to this rule is
HIV related information: please skip any HIV-
related charts, these will not be transcribed.
Non-exclusive list of HI'V-related examples:

* HIV Prevalence by Marital Status
* Trends in Recent HIV Testing
» HIV Prevalence by Province

¢ Trends in HIV Prevalence

The next steps to transcribe the chart require
some more thinking: please interpret at a ba-
sic level what the English chart is about and
what information it conveys. It won’t work
well to copy-paste it blindly.

6. Once all the chart text has been added to row

and column headers, fill in the table with val-
ues from the chart.

. Now look in the text surrounding the chart

to find text that refers to the chart. It can be
anything explicitly mentioning the data in the
table. In the document, you will normally find
it before or after the chart. We are interested
in capturing only those sentences that describe
or compare the chart’s data, so watch out for
irrelevant sentences appearing mid-paragraph,
as illustrated here. [This is a common pitfall]
When you find the text you’ll add it to the
table below the line “START OF TEXT «En-
ter text below. Move this row further down
if the table needs more space»”. You’ll add
the text sentence by sentence, one sentence
per cell in the first column only, as shown in
the following example. Make sure to include
full sentence casing and punctuation, as in the
original text.

. Once you have added all the text, add your

new table to the Table Index next to your
screenshot (step 4): [details omitted for
brevity]

CONGRATULATIONS! You have completed
all the steps for the first English chart. Now it’s
time to move to the second language.

You can then start populating your table. En-
ter the Table ID, the Page Number, the chart
Title, the Unit of measure and the screenshot

link as explained above. I.4 CREATING YOUR FIRST TABLE IN

Please enter the table below the line START
OF TABLE «Enter table contents below»,
leaving this text unchanged. Note you may
need to add rows to fit in all the information
from the chart.

Then identify the axes in the chart and start
populating the table with row and column
headers: copy the text exactly as it appears
in the PDE. As best you can, try to include the
item with the largest number of items in rows,
so that the table is taller (vertical) rather than
wider (horizontal). You do not have to dupli-
cate the unit of measure in the table if there
are other headers already (see example to the
right, and 4-5 below). If the unit of measure is
the same as the column header (see examples
1-3 below), include it as column header.

One example is shown here (image below, ta-
ble to the right) and for other charts on the
final page of this document.
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THE SECOND LANGUAGE

1. In the PDF for the second language (or the sec-

tion of the bilingual document you’re working
from that corresponds to the second language),
find the same chart you just transformed into
a table. The documents are aligned in both
languages, so they should be in the same page
in both documents.

When you find the chart, repeat steps 4 to 10
using the second language table in the docu-
ment index and replacing where it says En-
glish (EN) by the two letter code of your sec-
ond table (e.g. “SW?” for Kiswabhili).

Tips to working in a second language:

* Documents are aligned by language.
This means that the formatting of the
text in one language mirrors the second
language. Therefore, when looking for
the same chart, go to the same page in



the second document if you have two
documents. Or find the start of the sec-
ond language if you’re working with one
bilingual document, and use images and
charts to guide you until you find what
you’re looking for.

* Check the number of sentences in the
paragraph by identifying the full stops.
This will help you find the start of the
sentence you’d like to copy-paste.

* Geographical names may be similar or
related: you can use them to confirm
you’re copying the sentence you wanted
to copy.

* Identify the numbers in the sentence: you
can use them to confirm you’re copying
the sentence you wanted to copy.

e Arabic: Arabic is a language with a
right-to-left writing system (in English,
the words are written left-to-right). As
you go through Arabic text, remember
that sentences start on the right and con-
tinue to the left. Also note the cursor of
your mouse may behave strangely when
selecting the text for copy pasting. You
may need to start selecting on the right-
hand side, and drag towards the left.

WELL DONE! You have two aligned tables, one
in English and one in a different language. Now
continue adding more tables.

I.5 ADDING MORE THAN ONE TABLE
TO YOUR SPREADSHEETS

After completing your first table in English and
your second language, it’s time to continue looking
for the second chart back in the English document.
When you find the next chart in the document, fill
out the next tab (e.g. 2) by selecting it at the bottom
of your screen.

Now repeat steps 4-10 for English, adding a new
line to the table index, and again for the second
language until you reach the end of the PDF. At
this point, your table should have as many tabs as
the number of tables in column F of the Document
index.

If anything in these guidelines is unclear, please
let us know. Thanks!

1.6 CHART AND TABLE EXAMPLES

[5 examples here omitted for brevity]

1.7 COMMON PITFALLS

[Note: Every pitfall is accompanied by a screenshot
or an example.]

Ensure that all copied text is relevant to the ta-
ble. Irrelevant Text: Stunting also varies by gov-
ernorate. Stunting is below 25% in Aden, Abyan,
and Al Mhrah, and is highest in Reimah, at 63%.
Relevant Text: According to the survey, 47% of
children under five are stunted, or too short for their
age.

— Please only copy sentences that are directly
supported by the chart which means that numbers
in the table or its column/row names or title are
directly referenced or compared. Should a sentence
partially be supported by a table, please still copy
it in full.

In Arabic, ensure that entire sentences are
copied, and that only the relevant sentences are
copied. Periods are hard to spot, but if you are
unsure about where the sentence ends you can dou-
ble check by sending a copied sentence through
Google Translate:

Make sure to also transcribe map charts In
map charts, every region should be a separate row.

Do not leave empty rows and columns for spac-
ing Here we have two empty rows under the table
before the start of the text, highlighted in yellow.
These rows should be deleted (right-click on your
mouse to quickly access this option). Empty spaces
make it difficult to read the tables automatically.

Ensure number formatting matches the orig-
inal values When entering percentages (e.g.
10%) or ranges (e.g. 10-20) into Google Sheets,
they may get reformatted automatically and no
longer match the original values. Watch out for
this. Fix by adjusting the number formatting inside
the Sheet until your table matches the original doc-
ument’s values. If copy-pasting from the document,
try to paste without formatting (Ctrl+Shift+v).

Representation of additional graph elements
Some charts are designed in such a way that they
contain additional elements. When representing
them, keep the below in mind:

Secondary scale annotations Add a column to
the left of the main categories and fill out the values
as they correspond in the graph.

Supercategories Identify supercategories in a
separate row with the value cell left empty. Add all
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subcategories of a given supercategory below.

Representation of Footnotes When a table or
its text includes footnotes, you do not need to add
the footnotes to the spreadsheet. We additionally
ask you to try to remove the footnote symbol from
the text itself.

Use the PDF page numbers, not the ones writ-
ten in the document Please use the page num-
bers indicated by the PDF reader and not those
appearing inside the document.

J Human Evaluation Instructions

The following are the instructions that were pre-
sented to annotators in our human evaluation.

J.1 Overview

In this task you will evaluate the quality of one-
sentence descriptions of a table. You will evaluate
multiple sentences for the same table that are all in-
dependent of each other. Each descriptive sentence
should make sense and be grounded in information
provided in the source table.

For each sentence, we ask you to rate along four
dimensions:

1. The text is understandable

2. All of the provided information is fully at-
tributable to the table, its title, and its unit of
measure.

3. How many cells does the text cover?

4. Generating the text requires reasoning or com-
parison of multiple cells.

The first three dimensions are binary statements
where we ask you to answer with a “No” (false) or
“Yes” (correct) and the last one asks you to count
the number of cells that a description covers. The
sections below describe each of the dimensions in
detail.

J.2 Additional notes

The descriptions may appear very fluent and well-
formed, but can contain inaccuracies that are not
easy to discern at first glance. Pay close attention
to the table. If you are unsure about any particular
answer, please enter “-1” in the relevant cell.

(Q1) The text is understandable. In this step
you will evaluate whether you can understand the
sentences on their own. You may consult the table

for this stage in case that context is required, but
you should ignore all other sentences when mak-
ing your judgment. Carefully read the sentences
one-by-one and decide whether you agree with the
following statement: “The text is understandable”.

Definition: A non-understandable description is
not comprehensible due to significantly malformed
phrasing.

The purpose of Q1 is to filter out descriptions
that you cannot rate along the other dimensions
because you cannot understand their meaning. If
the description is unclear, select “No”. In other
words, if you cannot understand what a sentence
is trying to say to the extent that you will not be
able to rate it along the other dimensions, mark it
as “No.”

In the case a sentence has conjunctions that don’t
make sense for alone-standing sentences (e.g., start-
ing with “However”, you can still mark it as under-
standable if the rest of the sentence makes sense.

Please do not mark anything as “No” that is factu-
ally incorrect, making value judgments. The ques-
tion is only meant to filter out sentences like “The
proportion of women declined by 30%” or “Women
proportion by 30%” where it is completely unclear
what the text refers to or that are so ungrammatical
that it becomes nonsensical.

If you select “No”, you do not have to answer
the remaining questions.

(Q2) All of the provided information is fully
attributable to the table, its title, and its unit of
measure. If a sentence is understandable, we next
ask you to read the associated table and its meta-
data above it. Then, mark whether you agree with
the above statement for each individual sentence.
You should write “Yes” only if all of the informa-
tion provided in the sentence is in accordance with
the data in the table and its meta information. Even
a single error should lead to you answering “No”.
When making the judgment you may be lenient if
a number is off by a bit (e.g., reporting 3% instead
of 3.5% or “two thirds” instead of 70%), but you
should select “no” if any number significantly de-
viates from the corresponding number in the table.

Inferences based on numbers are okay here, as
long as they are not attributed to anyone. For exam-
ple, “the result merits further study” is acceptable,
but “Two men claimed that the results merit further
study” is not.

An exception from this question are references
to figures - If everything about a sentence is okay,
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but it includes a reference to a figure (e.g., “Figure
2 shows X”’), you may still mark this question as
“yes”.

If you select “No”, you do not have to answer
03 and Q4.

(Q3) How many cells does the text cover?
This question asks you to count how many cells a
table talks about. You should count as a mention
every time a description uses a value from the row
or column header, or mentions a table entry. Only
cells of the table (anything under START OF TA-
BLE) should be counted. If a description compares
multiple values, count all of them even if they are
not explicitly mentioned. For example, “X has the
highest Y” should count all of the cells that men-
tion “Y” (a statement does not have to be true for
the cells to count). The unit of measure and title
should not count toward this number.

(Q4) Generating the text requires reasoning
or comparison of multiple cells. The next ques-
tion asks whether a sentence requires reasoning. A
positive example could compare values in a col-
umn or row, e.g., “X has the highest Y”, or “X
has more Y than Z”. If a sentence contains any
statement that requires such comparison or implicit
reasoning, answer “Yes”. In all other cases, answer
“No”.

J.3 Example

Below, we show one exemplary table (Tab. 6 with
descriptions and corresponding answers.

Description 1 Fertility is lowest in Nairobi
province (2.8 children per woman), followed by
Central province at 3.4 children per woman, and
highest in North Eastern province (5.9 children per
woman).

Q1: This text is understandable, and the answer is
thus “Yes”.

Q2: All of the details (province names and fertil-
ity rates) can be found in the table. The answer is
“Yes”.

Q3: Writing this sentence requires looking at all 8
values of the entire “Province” section in the table,
in addition to its section title and the 3 province
names. The answer is thus 12.

Q4: The text describes “highest” and “lowest”
which requires comparison. The answer is thus
“Yes” again.

Description 2 This is particularly clear in the
median ages at which events take place and the

Title Total Fertility Rates by
Background Characteris-
tics

Unit of Measure Total fertility rate

Kenya 4.6
Residence

Urban 2.9
Rural 5.2
Province

Nairobi 2.8
Central 34
Coast 4.8
Eastern 4.4
Nyanza 54
Rift Valley 4.7
Western 5.6
North Eastern 5.9
Education

No education 6.7

Primary incomplete 5.5
Primary complete 4.9
Secondary+ 3.1

Table 6: The example provided in the annotation in-
structions.

compactness of the typical family formation pro-
cess in each country.

Q1: It is completely unclear what “This” in the
sentence refers to and the answer should thus be
“No”.

Q2: Because QI is “No”, we leave this blank.
Q3: Because Q1 is “No”, we leave this blank.
Q4: Because Q1 is “No”, we leave this blank.

Description 3  These differentials in fertility are
closely associated with disparities in educational
levels and knowledge and use of family planning
methods

Q1: This sentence is understandable and the an-
swer is thus “Yes”.

Q2: The mentions of disparities as reasons for the
differentials is not attributable to information in the
table and the answer should thus be “No”.

Q3: Because Q2 is “No”, we leave this blank.
Q4: Because Q2 is “No”, we leave this blank.
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Train Setup Model STATA QE  STATA REF  STATA QE+REF

ar SSA -0.00 0.45 0.22
Small -0.04 0.36 0.16
XXL 0.20 0.56 0.39
en SSA -0.01 0.48 0.24
Small 0.01 0.53 0.29
XXL 0.28 0.68 0.54
fr SSA 0.03 0.51 0.27
Small 0.05 0.53 0.30
XXL 0.33 0.63 0.52
ha SSA -0.01 0.50 0.22
Small 0.01 0.53 0.23
XXL 0.20 0.55 0.32
ig SSA 0.09 0.53 0.25
Small 0.03 0.44 0.21
XXL 0.31 0.61 0.42
pt SSA -0.01 0.48 0.23
Small 0.01 0.50 0.26
XXL 0.23 0.62 0.44
SW SSA 0.11 0.55 0.29
Small 0.12 0.60 0.31
XXL 0.43 0.72 0.55
yo SSA 0.11 0.49 0.26
Small 0.08 0.44 0.24
XXL 0.23 0.56 0.35
MONOLINGUAL SSA 0.04 0.50 0.25
Small 0.03 0.49 0.25
XXL 0.28 0.62 0.44
SKIP NO REFERENCES SSA 0.05 0.51 0.26
Small 0.01 0.47 0.23
XXL 0.61 0.76 0.74
TAGGED SSA 0.09 0.54 0.29
Small 0.07 0.52 0.27
XXL 0.57 0.76 0.69
+ SKIP NO VALUES SSA 0.11 0.57 0.32
Small 0.10 0.54 0.30
XXL 0.55 0.76 0.71
+ SKIP NO OVERLAP SSA 0.01 0.47 0.22
Small 0.00 0.42 0.19
XXL 0.59 0.77 0.75

Table 7: Full evaluation results using STATA. On top, the individual monolingual results, and on the bottom the
aggregated results. We highlight notable numbers in the separate sections. In the monolingual setups, Swahili and
English lead to the highest performance. The aggregated setups lead on average to a much better performance,
with the SKIP NO OVERLAP and SKIP NO REFERENCES setups outperforming the others.
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Language Model Understandable  Attributable Reasoning  Cells

ar mTS5¢ a1 0.11 0.05 1.00 2.00
mT5ggA 0.27 0.10 1.00 4.40
mT5yxy, 0.78 0.50 0.86 6.05
reference 0.86 0.56 0.84 6.11
en mTS5¢ 11 0.28 0.05 1.00 4.67
mT5gg A 0.30 0.05 1.00 4.67
mTS5yxy. 0.87 0.47 0.74 6.79
reference 0.95 0.56 0.76 7.14
fr mT5¢ 11 0.14 0.22 0.33 8.17
mT5ggA 0.21 0.07 0.33 4.67
mT5xx]. 0.84 0.66 0.30 5.97
reference 0.95 0.60 0.27 7.88
ha mT5¢ -1 0.20 0.11 0.50 11.00
mT5ggA 0.24 0.04 0.50 8.00
mT5xx7, 0.66 0.42 0.46 8.23
reference 0.78 0.52 0.58 12.30
ig mTS5¢ 11 0.10 0.59 0.79 6.07
mT5ggA 0.13 0.50 0.93 10.07
mT5xx7, 0.60 0.91 0.97 8.77
reference 0.65 0.95 0.93 9.22
pt mT5¢ 11 0.14 0.08 1.00 9.50
mT5ggA 0.20 0.03 1.00 10.00
mT5yx7, 0.58 0.53 0.88 8.93
reference 0.70 0.54 0.79 7.53
SW mT5¢ 11 0.23 0.48 0.86 6.29
mT5ggA 0.40 0.38 0.68 5.64
mT5xx7, 0.83 0.79 0.91 9.97
reference 091 0.76 0.78 8.42
yo mT5. .11 0.21 0.10 1.00 8.25
mT5gg A 0.32 0.02 1.00 13.00
mT5xxy, 0.76 0.47 0.99 8.13
reference 0.97 0.55 1.00 5.68

Table 8: Full human evaluation results. Note that the attributable fraction is only of those examples marked
understandable and reasoning+cells is only answered if an example is attributable.
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