Simpler neural networks prefer subregular languages

Charles Torres
University of California, Irvine
Language Science
charlt4@uci.edu

Abstract

We apply a continuous relaxation of L, reg-
ularization (Louizos et al., 2018), which in-
duces sparsity, to study the inductive biases of
LSTMs. In particular, we are interested in the
patterns of formal languages which are readily
learned and expressed by LSTMs. Across a
wide range of tests we find sparse LSTMs pre-
fer subregular languages over regular languages
and the strength of this preference increases as
we increase the pressure for sparsity. Further-
more LSTMs which are trained on subregular
languages have fewer non-zero parameters, and
LSTMs trained on human-attested subregular
patterns have fewer non-zero parameters than
those trained on unattested patterns. We con-
jecture that this subregular bias in LSTMs is
related to the cognitive bias for subregular lan-
guage observed in human phonology, in that
both are downstream of a bias for simplicity in
a suitable computational description language.

1 Introduction

Despite the wide application of neural networks for
sequence modeling, their inductive biases remain
incompletely understood: for example, whether
RNNs have an inductive bias favoring the kind of
hierarchical structures used in sentence formation
in natural language (Weiss et al., 2018; Ravfogel
etal., 2019; Hewitt et al., 2020; McCoy et al., 2020;
Edelman et al., 2022). It is important to study the
inductive biases of neural networks not only from
a scientific perspective, but also a practical one:
if neural networks can be developed that have in-
ductive biases toward the same kinds of formal
language structures that characterize human lan-
guage, then these neural networks should be able
to learn human language more easily.

Many patterns in natural language are character-
ized by a particular subset of the regular languages,
called subregular languages. These languages
have been hypothesized to form a bound on learn-
able human phonological patterns (Heinz, 2018),

Richard Futrell
University of California, Irvine
Language Science
rfutrell@uci.edu

as well as patterns within tree structures character-
izing syntax (Graf, 2022). The particular subregu-
lar languages theorized to be human learnable are
strictly piecewise (SP), strictly local (SL), and mul-
tiple tier-based strictly local (MTSL). Artificial lan-
guage learning tasks have shown these languages
to be easier to acquire for humans (Lai, 2015; Avcu
and Hestvik, 2020; McMullin and Hansson, 2019).

Here we take up the question of inductive bi-
ases for subregular languages in LSTMs (Hochre-
iter and Schmidhuber, 1997), using a relaxation
of Lg regularization to study networks that are
constrained to be simple in the sense of network
sparsity. We train these networks on several sets
of toy languages which contrast subregular lan-
guages against regular languages in a controlled
manner. This technique not only allows us to study
the inductive biases of sparse networks, but also
to address an outstanding question in the literature
on subregular languages: whether there exists a
computational description language under which
subregular languages are simpler than other regular
languages (Heinz and Idsardi, 2013).

To preview our results, we find that simple
LSTMs favor subregular languages: such lan-
guages can be represented by LSTMs with fewer
parameters, and sparse LSTMs favor subregular
languages in generalization.

The remainder of the paper is structured as fol-
lows: Section 2 gives relevant background on sub-
regular languages, Section 3 gives our general
methods for training sparse neural networks under
Ly regularization, Section 4 presents our experi-
ments on matched pairs of regular and subregular
languages, and Section 5 concludes.

2 Background

It is known that phonological constraints should
be regular given the most common formalisms in
linguistics (Kaplan and Kay, 1994). However, the
regular language class is too permissive: many pat-

1651

Findings of the Association for Computational Linguistics: EMNLP 2023, pages 1651-1661
December 6-10, 2023 ©2023 Association for Computational Linguistics

Language type Example language In language Not in language
SL G = {ac} be, ade, cad, ... ac,bac, acd, ...
SP G = {ac} be, adb, cad, ... ac,ade,abe, ...
TSL G = {ac}, T ={a,b,c} be,cad,adbe,... ac,ade,adde, ...

Table 1: Example subregular languages on the alphabet ¥ = a, b, ¢, d. Both SP and SL languages are defined by
their alphabet and set of forbidden substrings or subsequences () in their definition. The SL language above forbids
the substring ac. The SP language above forbids the subsequence a...c, in other words, ¢ cannot follow a in a string.
TSL languages require a second set (1) specifying which characters are preserved in the tier projection. A tier
projection function f7 maps strings to strings, preserving only characters in the set 7". For example, if T' = a, b, ¢
then fr(adca) = aca. The restrictions G in a TSL languages are forbidden substrings in the projected strings.

terns not attested in natural language are members
of it. The subregular hypothesis is an attempt to im-
prove this bound, lowering it to certain subclasses
of the regular languages (Heinz, 2018). There are
two versions of the hypothesis—the weak version
and the strong version—hypothesizing different
subregular languages as the boundary for human
learnable patterns. The strong subregular hypothe-
sis asserts that phonological constraints are within
the strictly local (SL) and strictly piecewise (SP)
subclasses, whereas the weak hypothesis raises this
bound to the tier-based strictly local (TSL) lan-
guages (the union of multiple constraints being mul-
tiple tier-based strictly local or MTSL). These lan-
guages are not the only subregular languages, but
they are the most important subregular languages
for the hypothesis.

What the SL, SP, and TSL languages all share
in common is that they are defined by prohibiting
features in the strings of that language. The SL and
SP languages (corresponding to the strong subreg-
ular hypothesis) are defined by sets of prohibited
substrings and subsequences respectively. These
prohibitions are meant to capture phonological con-
straints associated with local restrictions (SL) or
harmony-like patterns (SP). The TSL languages are
slightly more complex than the other two, forbid-
ding substrings after characters have been removed
from a string (the retained characters are defined
by a second set, usually labeled T for tier). To
demonstrate these prohibitions in action examples
of these languages are given in Table 1, however
curious readers can look to Heinz (2018), Rogers
and Pullum (2011), and Heinz et al. (2011) for a
rigorous treatment of these languages as well as
definitions for other subregular languages which
are not part of the subregular hypothesis.

The recent interest in subregular languages and
their ability to capture phonological patterns has

stimulated some work on the learnability of sub-
regular patterns by RNNs. Results in this area
have been mixed. LSTMs and RNNs both show
difficulty when trained to predict membership in
subregular languages (Avcu et al., 2017). Never-
theless, other work has still shown that the learning
of subregular patterns is easier for sequence to se-
quence RNNs than the learning of other patterns,
echoing human-like preferences (Prickett, 2021).
Work in this area is still limited.

What can explain these preferences in LSTMs or
humans? Previous work has attempted to tie a pref-
erence for simplicity to biases in natural language,
for example by using the minimum description
length (MDL) principle, a formulation of Occam’s
razor favoring simple hypotheses that account for
given data, where a hypothesis is simple if it can be
described using a small number of bits in some de-
scription language (Griinwald, 2000). Can the sub-
regular preference be similarly explained? Heinz
and Idsardi (2013) levelled a challenge against ac-
counts of human language learning based on this
method in explaining this preference: It is easy
to find examples where a subregular and regular
language both have the same description length
in some computational formalism (for example a
finite-state automaton, FSA). While they left open
the possibility that a computational formalism may
be found where description length can distinguish
these examples, they expressed doubt that such
a thing could be found. A similar challenge was
raised in Rawski et al. (2017) where MDL accounts
were challenged to explain learning biases.

Is there a computational representation that,
when given access to data consistent with a sub-
regular and regular language, would learn only the
subregular pattern by using an MDL method? We
attempt to address these challenges. We will show
that when controlling for description length (num-

1652

ber of nonzero parameters) in our case studies, neu-
ral networks prefer subregular patterns over regular
ones on the basis of simplicity, where FSAs do not.
That this is true in LSTMs leaves open the possi-
bility that MDL accounts are capable of explaining
this bias in other systems, as in human language
learning.

3 General Methods

A crucial part of our method requires finding opti-
mal tradeoffs between accuracy and network com-
plexity. We operationalize the complexity of a neu-
ral network as its number of nonzero parameters,
reflecting the size of the subnetwork required to
achieve a given accuracy. As such, we would like
to use the Ly norm, which counts the number of
nonzero entries in the parameter vector 6:

19|

16]l0 = 16,20 (1)
j=1

Ideally, the Ly norm would form a part of our ob-
jective function like so:

N
1
R(8) = D2 Lpo(wi), i) + Al6llo, - @)
i=1

where L(pg(z;),y:) is the log likelihood of the ¢’th
label y; given input z; in the training data under the
model with parameters . However, the Ly norm is
not differentiable, and cannot serve as part of our
objective function during training.

We get around this limitation using a relaxation
of Ly regularization developed by Louizos et al.
(2018). For the j’th parameter in our model 6;, we
assign a masking parameter 7; > 0. This parame-
terizes a distribution with cumulative distribution
function Q(-|m;), from which we can sample a
mask value z; € [0, 1], which critically can take
the values of true O or 1. The vector of values z
generated in this way is then used as a mask to filter
the parameters 6, generating a vector of masked
parameters 6 where éj = z;0;.

This parameterization lends us a new objective
function where the labels y; are predicted from
the inputs x; using the masked parameters 0, and
the model is penalized for having too few masked

Figure 1: A simple depiction of L(regularization,
LSTM neurons in green,. Right: an unregularized net-
work with a similar architecture as in the harmony test
Left: after L regularization has pruned connections.

parameters:
1 N
RO, m)= E |) L@ y)|+ 3)
=~Q() [N ; ’
0]
A Qz > 0lmy),
j=1

where the expectation is over mask vectors z drawn
conditional on the vector of masking parameters 7.
The regularization term now reflects the expected
number of parameters whose value is not masked.

We use Equation 3 in all our experiments below,
with different loss functions L as required. When
L is a form of cross-entropy this term represents
the cost of encoding the data using the distribution
specified by the neural network. Under these con-
ditions, the objective becomes a form of minimum
description length as a two part code: with the
regularization term encoding the distribution, and
L encoding the data (Griinwald, 2000). Though
our approach focuses on the MDL interpretation,
this formulation also has a Bayesian interpretation,
optimizing the negative log likelihood with the reg-
ularization term as a prior and the loss term as a
posterior as we show in Appendix A.

4 Experiments

4.1 Subregular Battery

The first experiment measures the complexity of
LSTMs that learn subregular and regular languages.
We call this the subregular battery: an experiment

1653

run on three sets of three formal languages, where
the description length of the generating FSAs are
controlled within each set. Each set of languages
contains one strictly local and one strictly piece-
wise (which are both subregular) and one regular
language. One set of languages was used in Heinz
and Idsardi (2013)’s argument that minimum de-
scription length fails to separate subregular lan-
guages from other regular ones; we offer two addi-
tional sets. The languages are described in Table 2.

4.1.1 Methods

The method can be split into 3 steps: data genera-
tion, network training, and evaluation.

Data generation For each language, we sample
2000 words from a probabilistic finite state au-
tomaton (pFSA) designed to generate words from
that language following a geometric distribution on
word length. The geometric distribution on word
length is important for two reasons: (1) it implies
a constant stopping probability in all states, mean-
ing that the distribution over string lengths does
not depend on the structure of the strings in a lan-
guage, and (2) it is memoryless, meaning that the
network need not keep track of the total characters
observed so far to attain high accuracy. Maintain-
ing a geometric distribution on string lengths is
the simplest method for attaining the same distri-
bution over string lengths across languages while
sampling from pFSAs.

This data is then split into training, development,
and testing sets at an 80/10/10 ratio. Sets are con-
structed such that no duplicate words existed be-
tween sets. This was done by grouping words by
form, and then randomly assigning them to the
training, testing, or development sets before reshuf-
fling them within the group.

Network training Each LSTM has the same ar-
chitecture: a 3-dimensional embedding layer, a 5
unit LSTM layer, and a 2-layer perceptron decoder
with a hidden width of 5 units. We train LSTMs
for up to 400 epochs on the training set. For the
subregular battery, we use cross entropy loss with
the aforementioned L regularization technique as
our objective function. After each epoch, we eval-
uate development set performance (including the
approximate Lg penalty), and if improvement on it
has not increased for 50 epochs, training is halted.'
Otherwise we use the best performing network on

'This high patience is necessary due to the stochastic na-
ture of the Lo regularization technique.

the development set over all 400 epochs. We repeat
this procedure five times for various regularization
penalties to get data on performance at different
levels of network complexity.

Evaluation Once data is collected, we evaluate
the trained networks in terms of the trade-off of
network complexity—measured as the number of
nonzero parameters—and error, defined as the av-
erage per-character KL divergence of the LSTMs
from the target distribution (the pFSAs from which
the languages were sampled). For a target lan-
guage with distribution () and a model Py, this
divergence is

D[Qc||Ps] = H[Qa, Py] — H[Qa]. (@)

Thus, using the KL divergence here instead of cross
entropy allows us to control for the entropy H[Q¢]
of the target language G. We measure an approx-
imate per-character KL divergence using the N
sample strings in the evaluation set for language G:

121 3 anG (i | 27
NSZTiz Pl EvN

)
where T is the length of the ¢’th sample string in
the evaluation set, ! is the ¢’th character of the ¢’th
sample string, and x> t is the prefix of characters
up to index ¢ in the n’th sample string.

We use area under the curve (AUC) as a met-
ric to evaluate complexity. This is defined as the
area under the convex hull of (complexity, KL ap-
proximation) points. A small area under the curve
indicates that it possible to achieve low error with
a simple network; a large area under the curve
means that error is high even with a more com-
plex network. We determine if there is a significant
difference between languages by performing a per-
mutation test. This is done by randomly sampling
points from the union of two languages and com-
paring the AUC statistic in the permuted samples.

D[Qc|Py] =

4.1.2 Results

Figure 2 shows the trade-off of number of param-
eters and KL divergence for the three sets of lan-
guages. The areas under the curve are shaded, and
the points which closely mimic the target distri-
bution are shown in color. For a given level of
complexity, the areas under the curve for the reg-
ular languages exceed both the piecewise testable
and strictly local languages. The specific AUC
numbers are shown in Table 3. In every case the

1654

Set SL variant SP variant

Regular variant

No string aac
No string ab / ba
No string ac

*Qac
xab, xba
xac

No sequence a...a...c
No sequence a...b/b...a
No sequence a...c

No c if the number of ¢ = 2 (mod 3)
No b (a) after an odd number of a (b)
No c after an odd number of a

Table 2: Language sets composing the subregular battery. Each language set consists of three languages matched
for FSA complexity: a strictly local language (SL), a strictly piecewise language (SP), and a regular language. All
languages are subsets of {a, b, c}*. The table gives a short description of each language. The last set is from Heinz

and Idsardi (2013).

Strictly Local

Strictly Piecewise

Regular

0.5
0.4+
0.3
= 0.2
~0.1-

€ 0.0-

Jee,

5] J
E”0.5
o 0.4-
>

0O 0.3+
E 0.2
$0.1-
- 0.0+

eqy ‘gey

_:406 0.5
S04
So0.3-
<
0.2
0.1-
0.0-

2B,

20 40 60 20

40

60 20 40 60

Number of parameters (expected value)

Figure 2: A trade-off of accuracy (KL divergence from the target language to the model) and complexity (number of
nonzero parameters) of LSTMs trained on subregular and regular languages matched for description length in an
FSA representation. Points within 1/100 of a bit or less from the true distribution are shown in color. The shaded
area is the area under the curve (AUC) used to compare the languages in our statistical analysis in Table 3. The
subregular languages show consistently lower AUC than the matched regular languages.

differences between both subregular languages and
regular languages are statistically significant and in
the expected direction as determined by a permuta-
tion test.

We augment this test with an additional post-
hoc analysis of the most accurately performing net-
works (which we define as having a KL divergence
of less than .01 bits) to determine if the size of
the minimal LSTMs are also significantly different.
This analysis is also done with a permutation test.
These networks (Table 4) attain a lower complexity
score for the subregular languages, a significant
difference in all cases except *ac.

4.1.3 Discusssion

This experiment’s results demonstrate that, at least
in the languages chosen, strictly piecewise and
strictly local languages better favor a tradeoff be-

*ac *aac xab, xba
Reg.—SL. .354%* 2.70%* 2.688**
Reg.—SP .620%* 1.727** 2.260%**
SP—-SL —.266 .970%* 428

Table 3: Differences in AUC between languages within
the subregular battery, as shown in Figure 2. The first
row shows the AUC difference for regular languages
minus SL languages, etc. Comparisons marked ** are
significant at p < 0.01 in a permutation test. The AUC
differences between regular and subregular languages
are always significant. Comparing SP and SL languages,
the SP language has a significantly higher AUC for the
*aac languages, and the difference is otherwise insignif-
icant.

1655

tween simplicity and complexity as demonstrated
in our AUC analysis. We also see that they can be
generated by functions implemented with simpler
LSTMs in all but one case. In our post-hoc analy-
sis we find that all but one subregular language is
significantly simpler to accurately mimic in com-
parison with the regular language. These results
also demonstrate that checking for the presence of
two substrings is more complicated than one, and
checking for a longer substring is more compli-
cated than a shorter one. But if compared within a
similar strictly regular pattern (here represented by
controlling for generating FSA size) the preference
is clearly for subregular languages.

*ac xaac *ab, xba
Reg.—SL. .981 44. 7% 23.8%*
Reg.—SP 5.74%* 43.7%* 22.9%*
SP—-SL —4.75% 963 972

Table 4: Differences in complexity between languages
within the subregular battery, as shown in Figure 2. The
first row shows the complexity difference for regular lan-
guages minus SL languages, etc. Comparisons marked
** are significant at p < 0.01 in a permutation test.
Complexity differences are significant between subreg-
ular and regular except for *ac.

4.2 Standard Harmony and First-Last
Harmony

In the second test we investigate whether a prefer-
ence exists between two subregular languages. One
language is MTSL, a class of subregular languages
believed to be learnable in the subregular hypoth-
esis. The other is a locally testable (LT) language,
which is believed to not be human learnable. This
test is inspired by previous experimental works
(Lai, 2015; Avcu and Hestvik, 2020) which were
investigations of standard vowel harmony (attested
in human languages) and first-last harmony (not at-
tested). These two languages are not controlled for
FSA size, but are languages that serve as important
evidence for the subregular hypothesis.

The difference between standard vowel harmony
(SH) and first-last (FL) harmony languages is
shown in Table 5. In an SH language we require
languages to begin and end with an @ or b, and
we forbid both a and b from occurring in the same
string. In an FL harmony pattern, we require a
word to begin and end with a or b, and to begin and
end with the same character, but allow any charac-

ters in-between. These examples are a simplistic
representation of patterns that are attested in human
language (standard harmony) versus not attested
(first-last harmony).

In the experiment below, we apply a similar test
and evaluation method as in the subregular battery
to demonstrate that the functions which generate
SH patterns (which are MTSL) are simpler than
functions which generate FL patterns (which are
LT).

SH FL

bab bab

cac cac
babbab bcabch
cacacac ccbabe
bbbbabb bcacabb

Table 5: Examples of legal words in standard-harmony
(SH) and first-last harmony (FL) patterns.

4.2.1 Methods

We use LSTMs with with the same architecture
as in section 4.1. The only difference is that the
objective for these networks is to predict the cor-
rect continuation set: the set of possible charac-
ters that can grammatically follow after a prefix,
an objective introduced in Gers and Schmidhuber
(2001) and used elsewhere (Suzgun et al., 2019).
The network is trained to predict, for each possible
character continuing a prefix, whether that charac-
ter 18 licit or not—that is, whether that character
is a member of the continuation set C'. Given a
continuation set C' and an LSTM equipped with a
decoder that reads in a prefix x of characters and
produces a vector of real values € RICI, the loss
for the network is

1

Lcs(pG(m)v C) :@

> —Cilog(ps(x)i)— (6)

1€|C|
(1 —C;)log(1l — pg(x);)

This breaks with the prior work using the contin-
uation set objective, as we use the binary cross-
entropy loss instead of mean squared error.

Using this loss function is necessary to control
for differences in entropy between the SH and FL
languages when conducting comparisons. Above,
we control for differences in entropy by using an
approximate KL divergence as an accuracy metric
and we control for length-related effects on LSTM

1656

0.6

)
=
Auow.eH prepuels

o
)

o
o

o
o

Average Bernoulli loss (per character)
o
~

1se7-1814

0.2

0.0

20 40 60
Number of parameters (expected value)

Figure 3: Graphs for LSTMs trained on first last har-
mony versus standard harmony, with description lengths
on the x-axis, and test set performance on the y-axis
(lower is better).

complexity by making the lengths of strings geo-
metrically distributed. This is not possible when
comparing the SH and FL languages, because they
cannot be generated by pFSAs in a way that yields
a geometric distribution on string length.

Data generation To accommodate this new task,
we sampled words uniformly given length. For SH
data, words were generated such that they began
and ended with the same character (either b or ¢)
with a geometrically sampled number of charac-
ters in-between (p = .05) consistent with the SH
pattern (see table 5). For FL languages the same
procedure was followed except that the center char-
acters were consistent with the FL pattern.

Network training Training was performed simi-
larly to the subregular battery. This was for a maxi-
mum of 200 epochs, potentially terminating earlier
if development set performance did not improve
for 50 epochs.

Evaluation At the end of training, (complexity,
continuation-set loss) pairs were calculated from
the best network’s performance on the heldout test
set. As in Section 4.1 we use AUC as the perfor-
mance metric, the only difference being the points
are now (complexity, continuation-set loss) instead
of (complexity, KL approximation).

4.2.2 Results

Our results are shown in Figure 3. Again, we see
a similar pattern as in the subregular battery, but
this time showing the human-learnable subregu-
lar language is preferred over the unlearnable one.
Standard harmony performance deterioriates at the
40 parameter mark, whereas first-last harmony de-
teriorates at the 75 parameter mark. The areas
approximated by the frontier points (shaded) re-
main significantly different under a permutation
test, with p = .009.

4.2.3 Discussion

These results continue the pattern seen in the sub-
regular battery, but demonstrate not just a subreg-
ular preference, but a human-learnable subregular
preference. While prior studies have shown a pref-
erence and higher performance for SH over FL
with sequence to sequence networks, this experi-
ment demonstrates that beyond a preference, these
functions are more easily represented in simpler
LSTMs.

4.3 Generalization

Above, we found that subregular languages, and
particularly human-learnable ones, were repre-
sented by simpler LSTMs. The question remains:
does this simplicity constraint affect generaliza-
tion?

Here, we test whether a pressure for sparsity in
LSTMs yields a bias towards learning a subregular
language when the network is trained on data that
is consistent with both a subregular and regular
language, an approach suggested by Rawski et al.
(2017). More precisely, the test is as follows. Take
two formal languages Ggy1, and G'reg, One subregu-
lar and one regular. Now, using their intersection
Gsub M Gheg as training data, what does the induced
grammar correspond to, Gup, Of Greg?

4.3.1 Methods

As our pair of langauges, we use languages from
the subregular battery in Section 4.1. We take as
Gsub the language xac and as Grg the regular lan-
guage which forbids b after an odd number of as.
This language is the test as described in Rawski
et al. (2017).

Data generation For each network, we generate
data from Gy, N Greg, dividing these into a train-
ing set and a development set with approximately
1600 words in the training set and 200 words in

1657

0.6 o6
0.4
o}
o
c
o
2
o 02
o
Q2
>
0
o
0.0 = e .
pe Greg Preferred .
-0.2
50 100 150 200

Number of Parameters (expected value)

Figure 4: Model preference for subregular language Gy, over regular language G, where preference is defined
according to Equation 7, as a function of the number of model parameters. The preference for G, peaks in the

shaded region occupied by simpler networks.

the testing set. We generate two additional testing
datasets for Ggy1, and G'eg individually, checking
the sets such that no words in the testing set ap-
peared in the training or development data of 200
words each. This matches the size of the dataset to
that of Section 4.1.

Network training With the data generated, our
LSTMs are trained according to the per character
cross entropy loss, regularized as in Equation 3,
with a procedure identical to that used in Section 2.

Evaluation After training, performance on Ggyp
and G is evaluated using the model which per-
formed best on the development set over the course
of training. As in the subregular analysis, we calcu-
late the approximate KL divergence by subtracting
the true per-character entropy as determined by
the generating pFSA from the cross-entropy as in
Equation 5.

Our analysis, unlike the previous ones, is qual-
itative. We will investigate the subregular bias,
operationalized as the difference:

Prefc,,, = D[Qc.., | Ps] — D[Qc.., 1 Po], (1)

where the approximate divergences D are calcu-
lated over the evaluation sets for the two languages
Gsub and Greg, as in Eq. 5. The value Prefq_, is
positive when the model’s distribution over strings
more closely resembles the one defined by the
pFSA for language Ggp.

4.3.2 Results

The results of our generalization experiment show
a clear preference for the subregular language re-
gardless of complexity (Figure 4). However, unlike
prior results, we also see a clear increase in prefer-
ences as network complexity is constrained. This
difference is especially pronounced in the high-
lighted region. In the lowest complexity range,
there is a collapse in performance where the net-
work can do nothing but predict a uniform distribu-
tion on all characters at all times.

Examining the KL divergences for the individual
languages, as in Figure 5, we find that this result is
driven by high accuracy in modeling the subregular
language G, using a small number of parameters.
Accuracy in modeling the regular language G'eg
is mostly poor, while accuracy modeling subreg-
ular language Gy, is highest when the expected
number of parameters is between 25 and 75.

4.3.3 Discussion

While our prior results in the complexity evalua-
tions have shown that subregular languages are gen-
erated with simpler networks, these results demon-
strate a more clear inductive bias. LSTMs with
constrained complexity generalize better to the sub-
regular language than to the regular language. This
indicates that, not only is the subregular function
simpler, but that simpler networks prefer subregular
languages.

1658

o
o

Kullback-Liebler Divergence (bits)
o o
o ~

0.0

50 100 150 200
Number of Parameters (expected value)

Figure 5: KL divergences from the target languages
to the model distributions as a function of the num-
ber of model parameters. Performance on subregular
languages (black) dips in the shaded region whereas per-
formance on regular languages is relatively poor (red).

But we also see that this inductive bias exists
even in low regularization regimes. This result is
consistent with previous findings, and may be re-
lated to other phenomena like previously observed
locality biases (Ravfogel et al., 2019) which are a
basic constraint in all RNN functioning (Battaglia
etal., 2018).

5 Conclusion

In our complexity measurement experiments we
observe that subregular languages are represented
by consistently simpler networks than similar regu-
lar languages, and that human-learnable subregular
patterns are represented by simpler networks than
unlearnable ones. This result is surprising, given
that the use of a description length criterion to dis-
tinguish these languages had been deemed unlikely
(Heinz and Idsardi, 2013).

Furthermore, we found that in the generalization
experiment, data consistent with a subregular and
regular language leads to a preferential generaliza-
tion towards learning the subregular distribution,
and that this preference increases as the network be-
comes simpler. This supports the idea that a change
in computational representation systems may favor
subregular over regular languages, with the caveat
that comparing subregular languages with radically
different complexities in FSA representation may

mean that this generalization pattern does not hold.

Why do LSTMs favor subregular languages?
We argue that our results may explain this prefer-
ence via the lottery ticket hypothesis (Frankle and
Carbin, 2019). This hypothesis states that neural
networks learn by tuning “winning tickets”—which
are subnetworks that perform well on the task at
initialization—which explains why larger neural
networks perform well (they “buy more tickets”).
The existence of smaller networks (as we define
them) for subregular languages means that any neu-
ral network will contain more tickets for subregular
languages at initialization, and thus have an induc-
tive bias toward such languages. If this line of
reasoning is true, Lq regularization does not intro-
duce anything qualitatively new in LSTM training,
but shifts the probability mass to favor tickets with
smaller subnetworks.

Perhaps more controversially, we also believe
these results may be of interest to human cognition.
While the human brain is not an LSTM, our results
indicate that a subregular bias can be downstream
of a bias for simplicity within an appropriate com-
putational formalism, showing that rich (and often
puzzling) constraints can be downstream from sim-
ple rules. A bias like this can be construed as a
universal grammar—a bound on learnable formal
languages (Nowak et al., 2002).

More needs to be done, of course. This work
is far from a proof of the simplicity of subregular
languages in LSTMs. Likewise, more subregular
languages ought to be investigated. We may find,
for example, that the true inductive bias for LSTMs
is not exactly subregular, or that only certain as-
pects of subregularity are simple to implement. But
we find the current results exciting and intriguing,
for its relationship to network complexity and func-
tion implementation, its potential to explain LSTM
inductive biases, and the demonstration of subregu-
lar biases resulting from computational complexity
constraints.

6 Limitations

The largest limitation of this work is that it is ex-
perimental, and not a proof. We try to show several
demonstrations of the simplicity of subregularity,
and believe further work should be done, but are
aware of the limitations of this kind of work in
addressing matters of mathematical curiosity.

We also understand that, because this work ad-
dresses these issues in an experimental way, there

1659

is no certainty that our object of study (subregular
languages and their patterns) are what LSTMs are
truly biased towards.

Our work uses LSTMs, rather than the Trans-
former architectures which underlie recently influ-
ential large language models (Brown et al., 2020).
Although LSTMs are not currently the most popu-
lar architecture, recurrent models are recently see-
ing a revival (Peng et al., 2023) due to their inherent
advantages such as being able to model indefinitely
long sequences. In contrast to LSTMs, Transform-
ers are known to be highly constrained in their
strict formal expressivity (Hahn, 2020); however,
their formal inductive biases in practice are not yet
thoroughly explored.

Ethical considerations

We foresee no ethical issues arising from this work.

Acknowledgements

This work was supported by NSF grant #1947307
to R.F. We thank Connor Mayer, Jon Rawski, and
Aniello de Santo for helpful discussion.

References

Enes Avcu and Arild Hestvik. 2020. Unlearnable phono-
tactics. Glossa: a journal of general linguistics, 5(1).

Enes Avcu, Chihiro Shibata, and Jeffrey Heinz. 2017.
Subregular complexity and deep learning. CLASP
Papers in Computational Linguistics, page 20.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst,
Alvaro Sanchez-Gonzalez, Vinicius Flores Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, Caglar
Giilgehre, H. Francis Song, Andrew J. Ballard, Justin
Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R.
Allen, Charles Nash, Victoria Langston, Chris Dyer,
Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and
Razvan Pascanu. 2018. Relational inductive biases,
deep learning, and graph networks. Computing Re-
search Repository, arXiv:1806.01261, v3.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. 33:1877—
1901.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and
Cyril Zhang. 2022. Inductive biases and variable cre-
ation in self-attention mechanisms. In Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning
Research, pages 5793-5831. PMLR.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Felix A Gers and E Schmidhuber. 2001. LSTM recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333-1340.

Thomas Graf. 2022. Subregular linguistics: Bridging
theoretical linguistics and formal grammar. Theoreti-
cal Linguistics, 48:145-184.

Peter Griinwald. 2000. Model selection based on min-
imum description length. Journal of Mathematical
Psychology, 44(1):133-152.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156—
171.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. Phonological typol-
0gy, phonetics and phonology, pages 126—-195.

Jeffrey Heinz and William Idsardi. 2013. What com-
plexity differences reveal about domains in language.
Topics in Cognitive Science, 5(1):111-131.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 58—64, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

John Hewitt, Michael Hahn, Surya Ganguli, Percy
Liang, and Christopher D. Manning. 2020. RNNs
can generate bounded hierarchical languages with
optimal memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1978-2010, Online. As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735—
1780.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computational
Linguistics, 20(3):331-378.

Regine Lai. 2015. Learnable vs. Unlearnable Harmony
Patterns. Linguistic Inquiry, 46(3):425-451.

1660

https://doi.org/10.5334/gjgl.892
https://doi.org/10.5334/gjgl.892
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v162/edelman22a.html
https://proceedings.mlr.press/v162/edelman22a.html
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/1903.01611
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1109/72.963769
https://doi.org/10.1515/tl-2022-2037
https://doi.org/10.1515/tl-2022-2037
https://doi.org/https://doi.org/10.1006/jmps.1999.1280
https://doi.org/https://doi.org/10.1006/jmps.1999.1280
https://doi.org/https://doi.org/10.1162/tacl_a_00306
https://doi.org/https://doi.org/10.1162/tacl_a_00306
https://doi.org/https://doi.org/10.1111/tops.12000
https://doi.org/https://doi.org/10.1111/tops.12000
https://aclanthology.org/P11-2011
https://aclanthology.org/P11-2011
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/J94-3001
https://aclanthology.org/J94-3001
https://doi.org/10.1162/LING_a_00188
https://doi.org/10.1162/LING_a_00188

Christos Louizos, Max Welling, and Diederik P Kingma.
2018. Learning sparse neural networks through Lg
regularization.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? Sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Computa-
tional Linguistics, 8:125-140.

Kevin McMullin and Gunnar Olafur Hansson. 2019.
Inductive learning of locality relations in segmental
phonology. Laboratory Phonology, 10(1).

Martin A Nowak, Natalia L Komarova, and Partha
Niyogi. 2002. Computational and evolutionary as-
pects of language. Nature, 417(6889):611-617.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Huangi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, et al. 2023.
RWKYV: Reinventing RNNs for the transformer era.
Computing Research Repository, arXiv:2305.13048.

Brandon Prickett. 2021. Modelling a subregular bias in
phonological learning with recurrent neural networks.
Journal of Language Modelling, 9.

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. 2019.
Studying the inductive biases of RNNs with synthetic
variations of natural languages. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3532-3542. Association for
Computational Linguistics.

Jon Rawski, Aniello De Santo, and Jeffrey Heinz.
2017. Reconciling minimum description length with
grammar-independent complexity measures. MIT
Workshop on Simplicity in Grammar Learning.

James Rogers and Geoffrey K Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20:329-342.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM networks can
perform dynamic counting. pages 44-54.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. On
the practical computational power of finite precision
RNNs for language recognition. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 740745, Melbourne, Australia. Association
for Computational Linguistics.

A L regularization as maximum a
posteriori (MAP) estimation

We show that Ly regularization is equivalent to
MAP estimation with an exponential prior on the

number of non-zero parameters in the model. Con-
sider the standard MAP estimation problem:

Oriap = arg max f(z]0)q(0), (®)

where f is a distribution conditional on parameters
0 and ¢ is a prior distribution on #. Now consider
the expected value of non-zero parameters ¢’. In
Equation 3, #’ is the regularization term, as shown
below:

o
> Q(z>0]m) ®)
j=1
0
zz/q(zj [75) - 1(z > 0)dz; (10)
j=1
0
:Z/q(z!ﬂ)-l(zj>0)dz (11)
j=1
0
:/q(z MY 10z >0d: (12)
j=1
0
= F 1(z; >0 (13)
Q) ; =20
=0, (14)

with probability density function ¢(- |) corre-
sponding to cumulative distribution function Q(- |
), and indicator function 1(-). If we consider an
exponential prior on #” we would have:

q(0") = xe 7. (15)
Then by Eq. 15 and the monotonicity of the log
function, the MAP estimation problem is equiva-
lent to finding

Oniap = argmein—log f(x]0)+ 10 —log A, (16)

which is equal to our objective in Eq. 3 up to an
additive constant — log A that does not depend on
the parameters to be optimized.

1661

https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1712.01312
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/https://doi.org/10.5334/labphon.150
https://doi.org/https://doi.org/10.5334/labphon.150
https://doi.org/https://doi.org/10.1038/nature00771
https://doi.org/https://doi.org/10.1038/nature00771
https://arxiv.org/abs/2305.13048
https://doi.org/https://doi.org/10.15398/jlm.v9i1.251
https://doi.org/https://doi.org/10.15398/jlm.v9i1.251
https://doi.org/10.18653/v1/N19-1356
https://doi.org/10.18653/v1/N19-1356
https://doi.org/https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117

