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Abstract
In psycholinguistics, surprisal theory posits
that the amount of online processing effort ex-
pended by a human comprehender per word
positively correlates with the surprisal of that
word given its preceding context. In addition
to this overall correlation, more importantly,
the specific quantitative form taken by the pro-
cessing effort as a function of surprisal offers
insights into the underlying cognitive mecha-
nisms of language processing. Focusing on
English, previous studies have looked into the
linearity of surprisal on reading times. Here,
we extend the investigation by examining eye-
tracking corpora of seven languages: Danish,
Dutch, English, German, Japanese, Mandarin,
and Russian. We find evidence for superlinear-
ity in some languages, but the results are highly
sensitive to which language model is used to
estimate surprisal.

1 Introduction

A great deal of insight into human language pro-
cessing can be gleaned by studying the word-by-
word processing difficulty experienced by a com-
prehender who is listening to or reading language.
Consequently, the timecourse of incremental lan-
guage processing difficulty has formed one of the
major objects of study in psycholinguistics (Se-
divy, 2014, Ch. 8). Here we take up the question
of the functional form of the effect of surprisal
(the negative log probability of each word given
preceding context) on word-by-word processing
difficulty, as indexed by reading time. Whereas pre-
vious empirical work has addressed this question
in English, we study the question in the existing
reading time databases of Danish, Dutch, English,
German, Japanese, Mandarin Chinese, and Russian.
To preview the results, we find consistent evidence
for superlinearity for German and Russian; for all
other languages except Mandarin, we find a linear
effect of surprisal, but the analysis is inconclusive
about the presence of additional superlinear effects

and the result is highly sensitive to which language
model is used to estimate surprisal.

2 Background

In the field of psycholinguistics, Surprisal Theory
(Hale, 2001; Levy, 2008) holds that processing
difficulty is information-theoretic in nature. Letting
wt be the word that a comprehender is perceiving
at time t, and w<t be the sequence of all previous
words, the surprisal St measures the amount of
information contained in wt in context:

St ≡ − log p (wt | w<t) . (1)

In general, Surprisal Theory holds that the amount
of processing difficulty (for our purposes, the read-
ing time, or RT) experienced by a comprehender for
word wt in context w<t is given by f(St), where
f is a monotonically increasing linking function
converting bits of information into milliseconds of
RT.

Surprisal Theory is well-supported empirically
by findings of a correlation between surprisal and
RT, and the ability of surprisal to explain RT effects
previously attributed to other processing mecha-
nisms (Levy, 2008), although it may not explain
the full range of human processing difficulty (van
Schijndel and Linzen, 2021; Arehalli et al., 2022).
The correlation between surprisal and RT gets
stronger when probabilities are calculated using
lower-perplexity language models (Goodkind and
Bicknell, 2018; Hao et al., 2020; Wilcox et al.,
2020), although this relationship may not be uni-
versal across languages (Kuribayashi et al., 2021),
and breaks down for recent large models (Oh et al.,
2022; Oh and Schuler, 2023), whose ability to pre-
dict words is super-human (Buck et al., 2022).

The goal of this work is to empirically inves-
tigate the form of the linking function f across
languages. Although early work did not commit
to a specific form for the linking function f (Hale,
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Language Corpus Genre Tokens Subjects

Danish Copenhagen Corpus (Hollenstein et al., 2022) Speeches 26,454 57
Dutch Ghent Eyetracking Corpus (GECO; Cop et al., 2017) Novel 58,302 18
English Dundee Corpus (Kennedy et al., 2003) Editorials 24,679 10
German Potsdam Sentence Corpus (Kliegl et al., 2006) Artificial 557 273
Japanese BCCWJ-EyeTrack (Asahara et al., 2016) News 970 24
Mandarin Beijing Sentence Corpus (Yan et al., 2010) Artificial 1,521 30
Russian Russian Sentence Corpus (Laurinavichyute et al., 2019) Artificial 892 96

Table 1: Eyetracking corpora used as datasets. ‘Artificial’ genre refers to sentences written by experimenters and
presented in isolation. ‘Tokens’ indicates the number of text tokens (as defined using the tokenization provided by
the eyetracking corpus) for which there is reading time data from at least one subject after all data exclusions.

2001; Levy, 2005), subsequent theoretical and em-
pirical developments have suggested that the link-
ing function f might be a simple proportionality,
that is f(St) = k · St, where k is a scalar conver-
sion factor from bits of information to milliseconds
of RT (Levy, 2008; Smith and Levy, 2013). Sev-
eral studies have found evidence for linearity of the
linking function f using both n-gram models and
modern language models (Smith and Levy, 2013;
Goodkind and Bicknell, 2018; Merkx and Frank,
2021; Aurnhammer and Frank, 2019; Wilcox et al.,
2020; Shain et al., 2022).

However, the picture is complicated by theoret-
ical considerations and recent empirical evidence.
Theoretically, a superlinear function is favored by a
model of incremental language processing in which
an incremental parse tree is derived from a sen-
tence prefix by sampling (Hoover et al., 2023), and
the possibility of a superlinear linking function
is related to the observation that speakers tend to
communicate information at a relatively constant
rate per unit time (Fenk and Fenk, 1980; Levy and
Jaeger, 2007; Jaeger, 2010; Clark et al., 2023): such
effects can be predicted from Surprisal Theory if
processing cost is superlinear in surprisal (Smith
and Levy, 2013; Levy, 2005, 2018). Empirically,
Meister et al. (2021) find evidence for a small su-
perlinear effect of surprisal on reading times at the
level of sentences, and Hoover et al. (2023) find
superlinear effects at the level of words.

Our work addresses the fact that broad-coverage
psycholinguistic studies of surprisal have for the
most part used reading time corpora of English
only, and the functional form of the effect of sur-
prisal on word RT in particular has only been in-
vestigated outside of English in one other study
(Wilcox et al., 2023, to be discussed below in Sec-
tion 5) to our knowledge.

3 Methods

3.1 Reading-time data

We use the reading-time datasets described in Ta-
ble 1. There are two classes of reading-time corpus.
The first is corpora of large amounts of naturalistic
connected text, such as the English Dundee corpus,
the Dutch GECO corpus, the Danish CopCo cor-
pus, and the Japanese BCCWJ-EyeTrack; these cor-
pora contain many different tokens in different con-
texts. The second class is the ‘Sentence Corpora’
of Mandarin, German, and Russian; these corpora
contain only a few hundred artificially-constructed
sentences which are read in isolation, but they have
data from many participants.

Following Smith and Levy (2013), we exam-
ine first-pass gaze durations per word when this is
possible based on the available eyetracking data;
otherwise we examine first fixation duration. First-
pass gaze duration, also called first-pass reading
time and first-run dwell time, is defined as the sum
of the duration of all fixations on a word w, starting
with the first fixation on w and ending with any
fixation on any other word.1

Data exclusions. Following Smith and Levy
(2013), we exclude the following datapoints from
our analysis: words at the beginning or end of a
line (when this could be determined in a corpus);
words attached to punctuation2; and words that
were skipped or have an RT of 0 ms. We also ex-

1For the English Dundee corpus, we used the sum of
FDUR values in the first pass. For Dutch, we used the
WORD_FIRST_FIXATION_TIME field. For German, we used the
dur field. For Mandarin, we used the fixation_duration
field. For Danish, we used the word_first_pass_dur field.
For Japanese, we used the fpt field. For Russian, we used the
IA_FIRST_DWELL_TIME field.

2This exclusion does not affect the Sentence Corpora,
where words were presented without punctuation.
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Language Train Size Dev. PPL

Danish 42M 46.3
Dutch 166M 32.9
English 1,856M 32.6
German 831M 31.8
Japanese 292M 52.2
Mandarin 804M 3.1
Russian 451M 32.6

Table 2: Summary of the training set size and the dev set
perplexity of the monolingual surprisal models trained
in Wikipedia text. Training set sizes are per-token ac-
cording to our trained tokenizers. The training set size
and dev set perplexity for Mandarin are italicized to
indicate that these are per-byte, rather than per-word,
reflecting the byte-level tokenization of our Mandarin
language model.

clude datapoints with a surprisal value greater than
20 nats or an RT greater than 2000 ms.

3.2 Language models

We use two sets of language models to derive sur-
prisal estimates. First, we use the existing mGPT
model (Shliazhko et al., 2022), a large multilin-
gual model trained on Wikipedia text also used by
Wilcox et al. (2023). Second, we train new autore-
gressive language models using the GPT-2 archi-
tecture (Radford et al., 2019) on text from Wiki40b
dataset (Guo et al., 2020), removing title and sec-
tion headers and splitting the remaining content
by paragraph. We use the provided training/dev
set splits. For all languages except Japanese and
Mandarin, we train the default GPT-2 tokenizer on
the training set. For Japanese, the GPT-2 tokenizer
uses excessive memory, so we use the XLNet tok-
enizer instead (Yang et al., 2019). For Mandarin,
we tokenize the text by byte (Xue et al., 2022), be-
cause the GPT-2 tokenizer splits up the sentences
in the eyetracking corpus very differently from the
provided tokenization.

We train language models to minimize cross-
entropy loss on the training set using the
huggingface library (Wolf et al., 2020). For lan-
guages other than Mandarin, we continue training
until either dev set loss reaches 3.5 nats, or 7 epochs
through the training data have been completed. For
Mandarin, we continue training until the decrease
in dev set loss is flat by visual inspection; the spe-
cial treatment of Mandarin is because its byte-level
loss is not comparable to the token-level loss for

the other languages. Table 2 shows training set size
and final language model perplexities.3

3.3 Statistical Analysis
We analyze the RT data by fitting linear mixed-
effects models (Baayen et al., 2008) to predict RT
as a function of surprisal, controlling for word
length. In order to test for a linear effect of RT,
we fit a sequence of models:

1. M0: A regression including word length and
log-transformed word frequency from Speer
(2022) as a control predictor, with random in-
tercepts by subject. This is the maximal con-
sistently converging random effect structure
(Barr et al., 2013).

2. ML: M0 plus a linear effect of surprisal.

3. MLQ: ML plus a quadratic effect of surprisal,
testing for a superlinear effect beyond the lin-
ear effect.

The existence of a linear effect was determined by
a likelihood ratio test comparing M0 to ML. The
existence of an additional superlinear effect was
tested by comparing ML to MLQ.

Spillover. In reading time data, processing slow-
down due to factors such as surprisal is often de-
layed, appearing on following words (Erlich and
Rayner, 1983). In order to control for this effect,
we adopt the standard practice in psycholinguistics:
for all the variables in our models, we use not only
the value of the current word, but also the value
of the K previous words, where the value of the
spillover window size K is determined by the fol-
lowing procedure: first a control model is fit to the
reading time data using only word length as a pre-
dictor, and then a second model is fit using the same
variables, incrementing the spillover window size
by one. If the incremented model is a significantly
better fit to the data than the control model by a
likelihood ratio test, then the size of the spillover
window is expanded. The resulting spillover win-
dow sizes for the four corpora are shown in Table 3.
If a token does not have valid surprisal values for
all previous tokens within its spillover window, it
is excluded from statistical analysis. Results fol-
lowing an alternative procedure where the spillover
window is fixed at 2 for all corpora are shown in
Appendix A.

3The trained LMs are available at https://huggingface.
co/rfutrell.
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mGPT Monolingual
Language Spillover ET PPL Linear Quadratic ET PPL Linear Quadratic

Danish 3 41.1 + p = 0.427 76.7 + +
Dutch 3 124.5 + − 295.7 + +
English 2 52.0 + p = 0.935 74.9 + +
German 3 37.1 + + 186.9 + +
Japanese 0 16.1 + p = 0.354 215.9 + p = 0.326
Mandarin 0 21.4 p = 0.275 p = 0.487 30.7 p = 0.284 p = 0.081
Russian 3 27.1 + + 220.6 + +

Table 3: Summary of results using the mGPT language model and the monolingual models trained in Wikipedia text
to estimate surprisal. ‘Spillover’ is the spillover window size determined by the procedure in Section 3.3. ‘ET PPL’
is the perplexity of each language model evaluated on the eyetracking corpus text. Note that the perplexities across
models are not directly comparable because of different tokenizations. The monolingual perplexity for Mandarin
is italicized to indicate that these are per-byte, rather than per-word, reflecting the byte-level tokenization of our
Mandarin language model. ‘Linear’ is the sign of any significant (at p < 0.05) linear effect of surprisal on RT for
the current token, and ‘Quadratic’ is the sign of any significant quadratic effect for the current token; p values are
presented if the effect is not significant.

4 Results

Figure 1 shows average reading time as a func-
tion of surprisal, along with linear fits, using the
mGPT surprisal estimates. A strong positive re-
lationship always obtains. Visually, the effect ap-
pears to be largely linear in the larger corpora of
Danish, Dutch, and English, but the shape of the ef-
fect is harder to discern for the the smaller corpora
(German, Japanese, Mandarin, and Russian).

Regression results for both surprisal models are
schematized in Table 3, which gives the sign of
the coefficient for (linear or quadratic) surprisal in
the fitted regression predicting reading time. As
expected, the sign of the linear effect is always pos-
itive, meaning that increasing surprisal corresponds
to increasing reading time; the effect is significant
in all languages except Mandarin. For the mGPT
model, the quadratic effect is significantly negative
in Dutch, indicating sub-linearity, and significantly
positive in German and Russian, indicating super-
linearity. The quadratic effect is not significant
elsewhere. For the monolingual models, we find
positive quadratic effects in all languages except
Japanese and Mandarin.

The full regression code and results are available
at https://github.com/weijiexu-charlie/
Linearity-of-surprisal-on-RT.

4.1 Discussion

Overall, the results provide evidence for a positive
linear effect of surprisal on reading time across lan-
guages, and inconsistent evidence for a superlinear

effect: the quadratic effect of surprisal varies in
significance and sign depending on the language
model used.

It is hard to discern a systematic difference be-
tween languages showing evidence for only a lin-
ear effect and those showing possible deviations
from linearity—a consistent superlinear effect is
found only in German and Russian, the two small-
est datasets. The evidence for superlinearity does
not seem to follow a typological pattern.

5 Concurrent work

Concurrent to our work, Wilcox et al. (2023) have
examined the linearity of the effect of surprisal
on RT in 11 languages of the MECO eyetracking
corpus (Siegelman et al., 2022), finding consis-
tent evidence for linearity and a lack of evidence
for superlinearity across all languages studied.4

Our work is complementary with this other work,
differing in datasets, languages considered, and
statistical methodology. Regarding data, Wilcox
et al. (2023) use the MECO corpus, consisting
of parallel translated text, which is more similar
in size to the ‘Sentence Corpora’ that we use for
German, Mandarin, and Russian. In contrast, we
use larger corpora of naturalistic text for Danish,
Dutch, English, and Japanese. We also investigate
reading times in Japanese and Mandarin, which

4Another related work is de Varda and Marelli (2022,
2023), who study the existence of a surprisal effect across
languages; however, they do not test the functional form of
surprisal.
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Figure 1: Average RT as a function of the surprisal from mGPT. Surprisal is binned into 25 categories, and the mean
RT within each category is shown in black with a 95% confidence interval in blue. A linear fit to these points is
shown in red.

are not present in Wilcox et al. (2023). Reading
times in these languages are especially interest-
ing because they are written using orthographies
that do not mark word boundaries; thus reading
in these languages involves some arguably differ-
ent cognitive processes than the other languages,
as word/morpheme segmentation must be inferred
from the text.

Our work also differs from Wilcox et al. (2023)
in the statistical methodology. Following Smith
and Levy (2013) and Wilcox et al. (2020), Wilcox
et al. (2023) compare fits of linear and non-linear
Generalized Additive Models when predicting read-
ing times from surprisal after controlling for word
length and frequency, with a fixed spillover win-
dow across languages. In contrast, we adopt a sim-
pler approach: we compare a mixed-effects linear
model against a quadratic model, with a variable
spillover window across languages.

Resolving the apparent tension between our re-
sults, which join Hoover et al. (2023) in finding
possible evidence for superlinearity, against the re-
sults suggesting pure linearity (Shain et al., 2022;
Wilcox et al., 2023, for example) should be a focus
in future research.

6 Conclusion

We conclude that the effect of surprisal on reading
times across languages may be slightly superlinear,
but the evidence for this superlinearity is unstable

and depends on the language model used. Deter-
mining the functional form of the effect in further
languages will require reading time corpora of large
amounts of naturalistic text and strong language
models.

Limitations

The generality of our conclusions is limited by
factors related to statistical methodology, the nature
of the corpora used, and the nature of the language
models trained.

Statistical Methodology Our analysis is limited
because we adopt a relatively simple statistical
methodology, in three ways.

First, our handling of spillover effects, while
standard in the psycholinguistic literature, does not
account for the full shape of the timecourse of the
effect of surprisal, which may lead to a lack of
power to detect effects (Shain and Schuler, 2018).
More sophisticated methods for handling spillover
effects, such as deconvolutional time series meth-
ods (Shain, 2019; Shain et al., 2022), may yield
different results. The procedure of setting a fixed
spillover window also limits statistical power be-
cause a token can only be kept in the regression if
it has valid surprisal values for all previous tokens
within the spillover window; the result is that many
tokens must be thrown out.

Second, our test for superlinear effects of sur-
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prisal on RT is relatively simple: we compare a
model with only a linear effect against a model
with a linear+quadratic effect. In contrast, Smith
and Levy (2013) search for linearity using a method
involving cubic splines, and Meister et al. (2021)
fit models predicting RT as

RT = k · Sα
t (2)

for varying α, allowing them to quantify the shape
of the superlinearity (they find best overall fits with
values between α = 1 and α = 1.5). Our method
can detect the existence of a superlinear effect but
cannot find a specific exponent α to characterize it.

Third, we use linear regression to predict read-
ing times, because we want to study a linear effect
of surprisal on RT in particular. However, linear
regression assumes a Gaussian error distribution,
which does not generally hold for human reaction
times: human reaction times cannot be negative and
tend to be skewed to the right, and have been char-
acterized using distributions such as Log-Normal
(Baayen and Milin, 2010) and Ex-Gaussian (Luce,
1986). The use of a more realistic error distribu-
tion may lead to different results, especially in our
critical datapoints where RT values are higher than
expected from linear Surprisal Theory.

Eyetracking Corpora We use publically-
available eyetracking datasets which are not
matched across languages, because the datasets
were developed by different researchers for
different purposes at different times. As a result,
the corpora differ not only in language but also
genre.

Language Models We only use one language
model architecture (GPT), which is a potential
source of inaccuracy in our surprisal values: other
language model architectures may deliver surprisal
values that better reflect human expectations. Fur-
thermore, the ET corpus texts differ in genre from
the Wikipedia text corpora used to train the lan-
guage models. This discrepancy may result in sur-
prisal values for the ET corpus texts that do not re-
flect human expectations. This factor may account
for the discrepancy where we find a superlinear
effect in English whereas some previous work has
not (for example, Wilcox et al., 2020).

Another potential limitation is that we train all
the monolingual language models to the same tar-
get perplexity, which may not reflect the same level
of language model quality per language because

different languages may have different inherent en-
tropy rates (Bentz et al., 2017).
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A Results with a Fixed Spillover Window

Table 4 shows our main results but using a fixed
spillover window of size 2 for all languages, for the
mGPT and monolingual surprisal models. When
using mGPT, fixing the spillover window yields
a significant positive linear effect of surprisal in
Mandarin, eliminates the evidence for the apparent
sublinear effect in Dutch, and gives evidence for
a superlinear effect in Japanese. When using the
monolingual models, the results are the same as in
the main text, but now with an apparent positive
quadratic effect in Japanese.

15718

https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.18653/v1/N19-1413
https://doi.org/10.18653/v1/N19-1413
https://doi.org/10.18653/v1/N19-1413
https://doi.org/10.18653/v1/D18-1288
https://doi.org/10.18653/v1/D18-1288
https://doi.org/10.18653/v1/D18-1288
https://doi.org/10.5281/zenodo.7199437
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf


Linear Quadratic
Language mGPT Monoling mGPT Monoling

Danish + + ns, p = 0.289 +
Dutch + + ns, p = 0.101 +
English + + ns, p = 0.935 +
German + + + +
Japanese + + + +
Mandarin + ns, p = 0.058 ns, p = 0.855 ns, p = 0.424
Russian + + + +

Table 4: Main results as in Table 3 using the mGPT surprisal model with afixed spillover window of size 2.

B Additional Figures

Figure 2 shows reading times as a function of sur-
prisal based on the monolingual surprisal models.
Figures 3 and 4 show residual reading times after
controlling for spilled-over length and frequency,
as a function of surprisal, for the mGPT and mono-
lingual language models respectively.
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Figure 2: As in Figure 1, average RT as a function of the surprisal from monolingual LM.
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Figure 3: Average residual RT controlled by word length and word frequency as a function of the surprisal from
mGPT.
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Figure 4: Average residual RT controlled by word length and word frequency as a function of the surprisal from
monolingual LM.
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