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Abstract

Model merging (e.g., via interpolation or task
arithmetic) fuses multiple models trained on
different tasks to generate a multi-task solution.
The technique has been proven successful in
previous studies, where the models are trained
on similar tasks and with the same initializa-
tion. In this paper, we expand on this concept
to a multimodal setup by merging transformers
trained on different modalities. Furthermore,
we conduct our study for a novel goal where we
can merge vision, language, and cross-modal
transformers of a modality-specific architec-
ture to create a parameter-efficient modality-
agnostic architecture. Through comprehensive
experiments, we systematically investigate the
key factors impacting model performance af-
ter merging, including initialization, merging
mechanisms, and model architectures. We also
propose two metrics that assess the distance
between weights to be merged and can serve
as an indicator of the merging outcomes. Our
analysis leads to an effective training recipe
for matching the performance of the modality-
agnostic baseline (i.e., pre-trained from scratch)
via model merging. Our method also outper-
forms naive merging significantly on various
tasks, with improvements of 3% on VQA, 7%
on COCO retrieval, 25% on NLVR2, 14% on
Flickr30k and 3% on ADE20k.1

1 Introduction

Model merging (Singh and Jaggi, 2020; Matena
and Raffel, 2022; Ainsworth et al., 2022; Jordan
et al., 2022), investigates the technique of merging
(e.g., via linear interpolation, task arithmetic (Il-
harco et al., 2022), RegMean (Jin et al., 2023)) two
models trained on different tasks while preserving
their original capabilities or even outperforming
multi-task training (Li et al., 2022). This technique

∗Work done at Microsoft
1Our code is available at https://github.com/ylsung/

vl-merging

enables us to generate the multi-task solution with-
out synchronous training and is especially useful
when the models for merging are already trained
and available online. However, current literature
has only applied model merging to models trained
on similar tasks or even the same dataset, which
inspires us to explore whether model merging will
also work when the models are trained on different
modalities such as language versus vision.

We study this challenging problem with a novel
goal of obtaining an effective and parameter-
efficient modality-agnostic model by merging the
different modality transformers of a modality-
specific model. In vision-language (VL) do-
mains (Driess et al., 2023; OpenAI, 2023), many
modality-specific models (Tan and Bansal, 2019;
Chen et al., 2020; Radford et al., 2021; Li et al.,
2021; Dou et al., 2022) employ dedicated trans-
former encoders to encode vision/language inputs
independently, and on top of which additional
transformer layers are used for multimodal fu-
sion. On the other hand, the convergence of using
transformer-based architectures for various single-
modality tasks has prompted researchers to adopt a
single modality-agnostic transformer (Akbari et al.,
2021; Wang et al., 2021; Kim et al., 2021; Lu et al.,
2022; Jaegle et al., 2022) to encode different modal-
ity inputs and learn cross-modal interactions simul-
taneously. While modality-specific architectures
usually perform better, modality-agnostic ones are
simpler and more parameter-efficient. Both ar-
chitecture designs offer their unique benefits and
have distinct use cases. However, obtaining the
benefits of both these setups can be costly as it
requires independent training. Therefore, in this
paper, we explore how to leverage a well-trained
modality-specific model and develop a modality-
agnostic model from it via model merging, with
a goal of achieving similar performance to the
modality-agnostic baseline which is pre-trained
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Figure 1: Overview of our framework for multimodal merging. The boxes with red boundaries illustrate the
factors (seed pre-training, merging methods, architectures) that are crucial for the performance of merging. We use
blue-filled, green-filled, and orange-filled colors to denote vision, language, and VL modalities, respectively.

from scratch.2 This approach eliminates the need
for training the latter architecture.

To this end, we conduct a systematic study of
model merging on VL models, analyzing the key
factors impacting the merging results, including ini-
tialization, merging mechanisms, and model archi-
tectures. Through comprehensive experiments, we
find that initialization is crucial for model merging,
and using pre-trained weights on VL data is help-
ful. We benchmark three merging methods: inter-
polation, modality arithmetic, and RegMean, and
we find that interpolation performs competitively
while being simple and efficient among compared
merging methods. Lastly, we examine the merging
of different modality-specific architecture variants,
including shared-weight architectures with custom
attention layers, feed-forward networks (FFN), or
layer normalization layers. We find that the ar-
chitecture without sharing performs the best be-
fore merging and attains on-par performance to the
modality-agnostic baseline after merging.

Moreover, we investigate the correlation be-
tween the distance of two weights to be merged
and the merging results, and propose two distance
measures that can potentially indicate the merging
results before training. Overall, our findings serve
as a training recipe which can significantly improve
the simple merging of the modality-specific model
(by around 3% on VQA, 7% on COCO image-text
retrieval, 25% on NLVR2, 14% on Flickr30k and

2When using model merging, we sometimes refer to the
modality-specific model as the model before merging, and the
modality-agnostic one as the model after merging.

3% on ADE20k), to match the performance of the
modality-agnostic model obtained by independent
training, demonstrating a novel way to construct
a universal architecture that can process different
modalities simultaneously. We also demonstrate
the merged weight maintains the performance on
unimodal tasks (we focus on vision tasks), and the
proposed approach generalizes broadly to another
backbone model (ViT-Tiny/16).

2 Related Work

Different Types of VL Architectures. VL mod-
els aim to generate outputs based on reasoning over
both text and visual inputs. Because the model
takes two sources of inputs, there are different de-
sign choices to fuse the information, and hence
yielding several mainstream designs in VL mod-
eling: (1) modality-specific transformer (Tan and
Bansal, 2019; Li et al., 2023; Driess et al., 2023),
(2) modality-agnostic transformer (Akbari et al.,
2021; Wang et al., 2021; Kim et al., 2021; Agha-
janyan et al., 2022), and (3) dual transformer (Rad-
ford et al., 2021). Modality-specific transformers
use a language transformer and a visual encoder to
extract modality-specific representations and feed
them into a cross-modal transformer to learn image-
text fusion information. Some modern architec-
tures (Driess et al., 2023; Sung et al., 2022b; Cho
et al., 2021; Yu et al., 2022; Wang et al., 2022b;
Sung et al., 2022a) use the language transformer for
both language and cross-modal modeling. The dual
transformer is a special case of modality-specific ar-
chitecture, where the cross-modal fusion is realized
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via simple dot product, hence more efficient for
fast retrieval. Modality-agnostic transformers use
one single transformer to process multi-modal data.
These methods can be viewed as early fusion mod-
els, and the transformer learns modality-specific
and cross-modal information simultaneously. The
design of modality-agnostic architectures is rela-
tively simple, and they are more memory-efficient
because they only have one backbone.

Model Merging. The de facto approach in recent
model development centers around the “pre-train-
then-fine-tune” paradigm. Due to the substantial
resources required to train robust pre-trained mod-
els, the available repertoire is relatively limited, and
many subsequent models are fine-tuned from this fi-
nite selection. Recent research has discovered that
models derived from the same pre-trained weights
can be successfully merged into a single model.
This merge can either improve single-task perfor-
mance when the models are designed for the same
task (Wortsman et al., 2022a) or create a multi-task
solution when they target different tasks (Ilharco
et al., 2022; Wortsman et al., 2022b; Don-Yehiya
et al., 2022). Various strategies for merging mod-
els have been proposed, including linear interpo-
lation, task arithmetic (Ilharco et al., 2022), and
RegMean (Jin et al., 2023). However, if models
do not share the same pre-trained weights, weight
permutation might be required before merging (En-
tezari et al., 2021; Ainsworth et al., 2022; Jordan
et al., 2022). Our work leverages model merging to-
wards the innovative goal of generating an efficient
modality-agnostic model from modality-specific
models, thus eliminating the need for re-training.

3 VL Transformers

A VL model takes an image-text pair as input and
is designed to tackle various VL tasks with mini-
mal architecture changes. The input image is first
divided into patches, flattened into a sequence, and
then fed into the vision embedding layer to obtain
visual features. The input text is processed by the
language embedding layer to obtain a sequence
of textual features. The features are then jointly
processed by the VL model, for which we explore
different architectures detailed below.
Modality-specific transformer contains two N -
layer (N=12 in this paper) transformers, special-
ized for encoding image and text inputs, respec-
tively, and an additional M (=2 in this paper) trans-
former layers for multimodal fusion (Akbari et al.,

2021; Lu et al., 2019; Li et al., 2019; Su et al.,
2020). We denote their weights for layer i as W v

i ,
W l

i (i = 1, 2, ..., 12) and W vl
i (i = 11, 12). Please

refer to Figure 2(a) for illustration. This design
is inspired by VLMo (Wang et al., 2022a, 2023),
which has different routes for different tasks in for-
warding. For visual question answering and other
classification tasks, we use the first (N −M) lay-
ers of vision and language transformers to extract
the image and text features and feed the concate-
nation of them to the M multimodal fusion layers
to get the final representation. We demonstrate
this architecture/mechanism in the upper part of
Figure 1 and the right part of Figure 2(b). For
image-text retrieval, we directly use the whole N
layers of vision and language transformers to ex-
tract image and text representations for matching
(left part of Figure 2(b)). Only using unimodal en-
coders to extract features allows us to compute the
dot product between features efficiently because it
eliminates the need to forward the input pairs to
cross-modal layers. Please refer to VLMo for more
details. For easier merging, we initialize all the
transformers from the same initialization3, regard-
less of the modalities they are used for, and we use
W 0

i to denote the initial weight for the ith layer.
Modality-agnostic transformer adopts one set of
parameters to jointly learn vision, language, and
cross-modal information, that is, W v

i = W l
i for

i = 1, 2, ..., 12 and W v
i = W l

i = W vl
i for i = 11

and 12. The forward mechanism of this model is
the same as the modality-specific architecture.
Shared-weight modality-specific transformer is
in-between the two aforementioned extreme types
of architecture, i.e., with partial modality-agnostic
and modality-specific modules. Specifically, we ex-
plore three variants of the shared-weight architec-
tures with: (1) custom attention layers, (2) custom
FFN, and (3) custom layer normalization layers.
The illustration of them is shown in Figure 1.

4 Model Merging for VL Architectures

Our objective is to combine various transform-
ers within the modality-specific architectures into
a single modality-agnostic transformer. We do
not merge the embedding layers and keep them
modality-specific as they have different architec-

3We have explored merging the model that uses BERT
to initialize the language transformer and BEiT for the other
transformers, but the average of IR and TR is only 49.9 on
COCO even if we permute the weights (80.6 before merging).
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Figure 2: VLMo-like modality-specific architecture. It
has an N-layer vision, N-layer language, and M-layer
cross-modal transformer. For classification tasks and
ITM in pre-training, it uses cross-modal layers to jointly
process the image and text input. For retrieval tasks
and ITC in pre-training, it only forwards inputs through
vision and language encoders. For modality-agnostic
architecture, the V, L, and VL transformer layers share
a single set of parameters while keeping the forward
mechanism the same.

tures and dimensions. For shared-weight architec-
tures, we only merge the weights of custom layers
since the other parts are already modality-agnostic.
In a modality-specific VL model, the transformers
receive inputs from different modalities and work
together to accomplish the target task. We merge
such transformers to allow a single transformer that
can handle different modalities concurrently. This
situation deviates from previous studies on model
merging (Li et al., 2022; Matena and Raffel, 2022;
Ainsworth et al., 2022), where the transformers (in
these previous works) to be merged take input from
the same modality. In the following, we describe
our process for merging the VL architectures.

4.1 Merging Methods

We explain the details of the three merging meth-
ods, and their illustrations are shown in Figure 1.
Interpolation. For simple interpolation, the vi-
sion, language, and cross-modal transformer layers
are element-wise weighted-averaged with given ra-
tios. We control the ratio α between the vision
and language transformer and set the ratio of the
cross-modal transformer at a constant value (13 for
the layers that have three modalities). The merged
weights are αW v

i +(1−α)W l
i for the first (N−M )

layers while they are 2
3(αW

v
i +(1−α)W l

i )+
1
3W

vl
i )

for the top M layers.
Modality Arithmetic. The second method is
inspired by the concept of task vectors (Ilharco
et al., 2022), which indicate the directions to
improve the tasks’ performance from the initial
weight. For a given task, the task vector is ob-

tained by subtracting the initial weight from the
tuned weight (illustrated in Figure 1). Then, the
merged weight containing multi-task information
is computed by adding all task vectors to the initial
weight. In this paper, we extend this idea to learn-
ing such vectors for different modalities, dubbed
as modality vectors. We define the modality vec-
tors as the difference between the weight for a
specific modality and the initial weight, for exam-
ple, τvi = W v

i − W 0
i , and the merged weight is

W 0
i + λ

∑
m∈{v,l} τ

m
i for the first (N − M) lay-

ers and is W 0
i + λ

∑
m∈{v,l,vl} τ

m
i for the top M

layers, and λ is the scaling parameter.
RegMean. Different from the previous two meth-
ods, RegMean (Jin et al., 2023) finds closed-
form solutions for the weights of linear layers
and evenly interpolates other weights (layer nor-
malization, bias terms). Assume Xm

i is the in-
put for the ith layer in the transformer for m
modality, RegMean finds the merged weight Wi

that minimizes the distance of features before
and after merging, that is,

∑
m∈{v,l,vl}∥W⊤

i Xm
i −

Wm⊤
i Xm

i ∥22. The closed-form solution of
Wi is (

∑
m∈{v,l,vl}G

m
i )−1

∑
m∈{v,l,vl}(G

m
i Wm

i ),
where Gm

i = Xm⊤
i Xm

i . Moreover, Jin et al.
(2023) pointed out that introducing a scalar γ to
decrease the non-diagonal elements of Gm

i (G̃m
i =

γGm
i + (1− γ)diag(Gm

i )) and replace Gm
i by G̃m

i

in the above solution form leading to stabler results.

4.2 Evaluation Pipeline

Unlike previous model merging literature that
merges models fine-tuned on downstream tasks,4

we merge the transformer weights for different
modalities after VL pre-training (Gan et al., 2022)
to explore a more effective modality-agnostic pre-
trained model for fine-tuning. We follow the same
pipeline to evaluate different merging methods
as shown in the upper part (gray-filled boxes)
of Figure 1. First, we pre-train the modality-
specific models for KV L steps on VL corpra in
an end-to-end manner. Next, we merge the weights
of modality-specific transformers to construct a
modality-agnostic model via the methods described
in Section 4.1. Lastly, we fine-tune the merged
model on downstream tasks. Note that when re-
porting the performance of modality-specific archi-
tectures, weight merging is not needed. Hence, we

4We find that directly merging a fine-tuned modality-
specific model performs poorly: the average of IR and TR is
50.5 on COCO (80.5 without merging).
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Method
VQA MSCOCO

Acc Avg TR Avg IR

Modality-agnostic architecture
(MAA) VL pre-trained from scratch

73.94 83.91 72.23

Modality-specific architecture
(MSA) VL pre-trained from scratch

75.14 86.46 74.67

Merging from MSA by
interpolation (merging baseline)

70.89 77.38 65.43

Table 1: Results on directly merging the modality-
specific architecture, without seed pre-training, and
the comparison with the modality-agnostic baseline.
The merging result without seed pre-training has a
significant performance gap to the other approaches.

directly finetune the models after pre-training.
We pre-train our models on the standard 10M

image-text corpus from COCO (Lin et al., 2014),
Visual Genome (Jin et al., 2022), SBU (Ordonez
et al., 2011), and Conceptual Captions (Sharma
et al., 2018) with three popular objectives: image-
text contrastive (ITC) learning (Radford et al.,
2021), image-text matching (ITM) (Li et al., 2021),
and masked language modeling (MLM) (Devlin
et al., 2019). During finetuning, we evaluate sev-
eral VL and vision downstream tasks. The details
of the experimental setup are shown in Section 5.

4.3 Seed Pre-training
For our first pilot investigation, we follow the above
evaluation pipeline to pre-train a modality-specific
model initialized from BEiT (Bao et al., 2022)
for 200k iterations, then perform merging with
interpolation (α = 0.5), and lastly fine-tune on
downstream tasks. We name this simple method
as the merging baseline. Table 1 shows that the
performance drop from merging is quite signifi-
cant, and the merged model lags behind our goal
of matching the modality-agnostic baseline, which
is pre-trained from scratch. We hypothesize that
the model weights of language and cross-modal
transformers after VL pre-training are not located
in the same basin (Entezari et al., 2021) as the vi-
sion transformer, because the initial BEiT weight
only contains visual information.

Hence, in order to ensure that different trans-
formers remain situated within a common basin
and avoid significant deviation from one another
after VL pre-training, we next turn to use a sin-
gle pre-trained weight containing vision, language,
and cross-modal information for initialization, by
pre-training a single modality-agnostic transformer
(initialized from BEiT) on VL corpora for Kseed

steps. This approach is also used by Li et al. (2022)

and referred as the seed phase. We then use this
weight to initialize different modality transformers
of the modality-specific model before the VL pre-
training step and evaluate the model performance
as described in Section 4.2. For a fair comparison,
we ensure that all compared methods go through
the same number of total pre-training iterations on
the same VL corpora, i.e., Kseed +KV L = 200k.

Note that VL pre-training can be conducted
on different model architectures, including both
modality-specific models and modality-agnostic
models. Also, seed pre-training for a modality-
specific model is essentially equivalent to VL pre-
training on a modality-agnostic model. We use
different terms for seed pre-training and VL pre-
training to distantiate the different training stages
for training the modality-specific model.

5 Experimental Details

We describe the experimental setup for our models
and training in this section and more details about
hyper-parameters for fine-tuning, computational
usage, and the number of parameters of our models
are included in Appendix A.

Architectures. We use ViT-B/16 (Dosovitskiy
et al., 2021) (which has a similar architecture as
BERT (Devlin et al., 2019)) throughout our experi-
ments. The model has 12 transformer layers, and
the dimension of the model is 768.

VL Pre-training. As described in Section 4.2,
we adopt the standard 10M image-text corpus (4M
images) and utilize ITC, ITM, and MLM for VL
pre-training. The overall pre-training objective is
the weighted combination of the three aforemen-
tioned loss functions. ITC maximizes the pair-wise
positive matching and minimizes the matching be-
tween any negative pairs within the training batch.
Similar to ITC, ITM predicts whether the image-
text pair is positive or negative, by modeling it as
binary classification. For MLM, we mask out 15%
of text tokens, and the model is required to recon-
struct the missing tokens with multimodal context.
The overall pre-training objective is the weighted
combination of the three aforementioned loss func-
tions, and we find that using a smaller weight (0.25)
for MLM empirically leads to better results. The
forward mechanism of ITC is the same as the re-
trieval task, and of ITM and MLM is the same as
VQA (Figure 2(b)).

The image input size is set as 224× 224 and the
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Figure 3: The effect of seed pre-training’s duration on the merging results. Increasing the iterations of seed
pre-training improves the merging outcomes, and the optimality happens at 100k iterations as more iterations in
seed pre-training reduce the iterations of VL pre-training, and limit the learning of the modality-specific model.

(a) Interpolation
α for

interpolation
VQA COCO

Acc Avg TR Avg IR

0 (L weight only) 68.58 75.25 62.64
0.25 72.40 81.34 69.29
0.5 73.59 83.64 71.77
0.75 73.91 83.83 72.30
1.0 (V weight only) 73.15 82.75 71.25

(b) Modality arithmetic
λ for modality

arithmetic
VQA COCO

Acc Avg TR Avg IR

0 (no VL PT) 73.44 83.27 70.84
0.25 73.85 83.56 71.61
0.5 73.59 83.64 71.77
0.75 72.49 80.22 68.51
1.0 69.49 73.94 62.07

(c) RegMean
γ for

RegMean
VQA COCO

Acc Avg TR Avg IR

0 74.14 83.73 72.03
0.25 74.17 83.64 72.20
0.5 74.13 83.80 72.18
0.75 74.07 83.80 72.18
1.0 74.15 83.71 72.25

Table 2: The ablation of using different hyper-parameters for (a) interpolation, (b) modality arithmetic, and (c)
RegMean. Note that interpolation with α = 0.5 is the same as modality arithmetic with λ = 0.5. L, V, and PT are
the abbreviations of language, vision, and pre-training. Interpolation works well when α = 0.5 and 0.75. With
additional computations, RegMean can obtain stable performance.

text input length is 40. The text input is encoded
by bert-base-uncased (Devlin et al., 2019) tok-
enizer, which has 30522 vocabularies. During train-
ing, we apply RandAugment (Cubuk et al., 2020)
on image inputs. For all pre-training experiments,
we set the batch size as 1024, the total number of
iterations as 200k (if no seed pre-training), with
2500 for warmup. Adam optimizer with the peak
learning 2e-4 is adopted for training.

Fine-tuning. We use VQA (Goyal et al., 2016),
COCO image-text retrieval (Lin et al., 2014),
NLVR2 (visual reasoning) (Suhr et al., 2019),
Flickr30k (image retrieval) (Plummer et al., 2015),
ImageNet-1k (image classification) (Deng et al.,
2009) and ADE20k (semantic segmentation) (Zhou
et al., 2016) as downstream tasks. In evaluation,
we report the accuracy for VQA and NLVR2, top-1
accuracy for ImageNet, and mIOU for ADE20k.
We use the average of top-1, top-5, and top-10
text recall (TR), and image recall (IR) for retrieval
tasks. We report the results for each method with
a single run. Appendix A shows other details of
experiments.

6 Experimental Results

In this section, we investigate the key factors im-
pacting the merging performance on VQA and
COCO. Recall that our goal is to improve the merg-
ing baseline in Table 1 to match the performance
of the modality-agnostic model and keep the per-
formance of the modality-specific model (before
merging) to remain similar.

6.1 Effect of Seed Pre-training
We first validate the effectiveness of seed pre-
training by varying Kseed in Figures 3a and 3b.5

Training more steps in the seed phase naturally
leads to worse performance for modality-specific
models as fewer training steps are dedicated to
the learning of modality-specific information in
custom modules. However, the merging perfor-
mance is stronger for longer seed pre-training,
as the initial weight may absorb more language
and cross-modal information, making the weights
more likely to locate in the same basin before merg-

5Note that the models with Kseed = 0 is the same as what
have been reported in Table 1.
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Figure 4: The effect of shared-weight architectures on the merging results. The modality-specific architecture which
has entire custom modules performs the best before merging and attains on-par performance with the modality-
agnostic baseline (pre-trained from scratch) after merging.

ing. Moreover, the optimality for merging happens
when Kseed = KV L = 100k, which also leads to a
competitive modality-specific model that performs
comparably to the one without seed pre-training.
Therefore, we adopt this as the default recipe for
all remaining experiments.

6.2 Comparison between Merging Methods
We compare different merging methods and ab-
late their hyper-parameters in Table 2. Table 2c
shows that RegMean performs strongly in both
tasks (especially VQA) and is robust to γ. Table 2b
shows that reducing the length of the modality arith-
metic leads to better downstream performance. In
Table 2a, we observe that vision weight is more
important for our downstream tasks, as only us-
ing vision weight (α = 1) achieves much better
results compared to only using language weight
(α = 0). Comparing different merging methods,
interpolation (with the ratio 0.75) performs as
competitively as RegMean without additional
computation and storage for the gram matrices
Gm

i , and is more effective than modality arithmetic.
Intuitively, the best performance with an interpo-
lation ratio of 0.75 is somewhat similar to using
different weights for tasks to mitigate the negative
transfer in multi-task learning (Liu et al., 2019).

6.3 Ablation on Shared-weight Architectures
Lastly, we explore applying model merging on
different architectures described in Section 3, in-
cluding shared-weight architectures with custom
attention layers, FFN, or layer normalization lay-
ers. Results are shown in Figures 4a and 4b. The
model with custom layer normalization layers can

largely retain the performance after merging, how-
ever its performance before merging is not as com-
petitive, only comparable to the modality-agnostic
baseline (whereas ideally, we want the performance
of the modality-specific model before merging to
be higher than the modality-agnostic model). Shar-
ing attention layers or FFN has mixed results on
VQA and COCO retrieval, as it improves on one
task while hurts the other. Notably, the modality-
specific architecture with entirely independent
modules performs the best without merging and
attains on-par performance with the modality-
agnostic baseline after interpolation.

6.4 Final Recipe
Overall, as an initial study on merging modality-
specific models, our empirical results reveal a
recommended takeaway recipe: (1) select a pre-
trained weight that has been trained on all modali-
ties, (2) use interpolation with a ratio around 0.75
(or 0.5) as an effective initial approach, or employ
RegMean if additional computational resources are
deemed acceptable, and (3) employing modality-
specific architectures with entirely independent
modules can attain satisfactory merging outcomes.

6.5 Generalization to Diverse Tasks and
Architectures

In this section, we further apply our merged model
to a diverse spectrum of tasks and architectures and
compare our approach with the modality-Specific
Architecture (MSA), Modality-Agnostic Architec-
ture (MAA), and the Merging Baseline (MB) (men-
tioned in Table 1 and Section 4.3).
More Tasks. We include additional evaluation on

1569



Methods
NLVR2 Flickr30k ImageNet-1k ADE20k

Acc Avg TR Avg IR Top-1 Acc mIOU

MSA 79.71 95.10 87.37 83.25 49.85
MAA 78.39 93.10 84.57 82.78 48.65

MB 52.55 77.63 68.62 82.90 46.80
Ours 77.54 91.53 82.64 83.00 50.14

Table 3: Comparison between our method, Modality-
Specific Architecture (MSA), Modality-Agnostic Ar-
chitecture (MAA), and Merging Baseline (MB) across
NLVR2, Flickr30k, ImageNet-1k, and ADE20k. The
top results are highlighted in bold for both merged
and non-merged model categories. Our method aligns
closely with MAA for NLVR2 and Flickr30k and sur-
passes it on ImageNet-1k and ADE20k.

NLVR2 and Flickr30k as well as ImageNet-1k and
ADE20k to cover more VL and vision tasks. To
make a direct comparison, we do not apply the inter-
mediate fine-tuning (used in VLMo) for Flickr30k,
ImageNet-1k, and ADE20k. For modality-specific
architectures, we only fine-tune the vision encoder
to the vision tasks. The results of our experiments
are presented in Table 3. Notably, our approach,
which involves seed pre-training and interpolation
with a ratio of 0.75, exhibits significant improve-
ments over the naive merging approach in both
NLVR2 and Flickr30k tasks. However, we have
observed that the performance gap between our ap-
proach and the modality-agnostic architecture is
somewhat larger for NLVR2 and Flickr30k com-
pared to the VQA and COCO tasks, where our
results closely align with the baseline performance
(Figures 4a and 4b). We hypothesize that the merg-
ing outcomes could be better if the domain shift
between pre-trained and downstream tasks were re-
duced, considering that images of VQA and COCO
are used for VL pre-training. In the results of Ima-
geNet and ADE20k, our merging approach not
only matches but also surpasses the baselines.
These results affirm that the merging process
does not compromise the representational ca-
pacity of the individual modalities.
More Architectures. We also conduct experiments
on another backbone model, ViT-Tiny/16 (Dosovit-
skiy et al., 2021). Note that it is not trained by the
BEiT unsupervised objective but is trained by the
supervised classification objective. In this experi-
ment, we pre-train the model for 100k steps instead
of 200k steps, and for our merging approach, we
use 50k steps for both seed pre-training and VL pre-
training. We compare our approach to baselines on
four VL datasets and display the results in Table 4.

Methods
VQA NLVR2 COCO Flickr30k

Acc Acc Avg TR Avg IR Avg TR Avg IR

MSA 65.36 68.42 71.75 59.98 80.73 70.14
MAA 62.25 64.90 63.17 52.08 72.50 62.27

MB 55.52 51.07 51.98 42.43 17.63 16.09
Ours 60.02 52.89∗ 63.40 52.82 68.40 59.53

Table 4: Comparison between our approach and base-
lines using ViT-Tiny/16 on four VL tasks. Our method
demonstrates stronger performance compared to the
merging baseline. ∗We found using an interpolation
ratio of 0.5 can boost the performance to 60.94 and cut
the gap to MAA significantly.

Our findings demonstrate that our technique
significantly outperforms the merging baseline.
Furthermore, we observe a larger performance gap
between our approach and the modality-agnostic
baseline when employing the ViT-Tiny/16 back-
bone, and this phenomenon is aligned with past
research (Ainsworth et al., 2022), which shows
larger (wider) models exhibit greater resilience to
performance drop when merging.

7 Analysis

In the preceding experiments, we highlight three
factors that influence the outcomes of merging.
This sparked a curiosity regarding the existence
of potential metrics capable of predicting or ex-
plaining the quality of these merging results. One
intuitive hypothesis is that the distance between the
weights to be merged (vision and language weights
in our case) might play an important role, as the
performance drop caused by merging should be 0 if
the distance between them is 0, and vice versa, the
drop should be considerable if the distance is large
(the weights are not in the same basin). To test
the hypothesis, we apply various distance measures
on the vision and language weights of modality-
specific models and compute the correlation be-
tween the distance and the performance drop after
merging to assess the influence on merging results.

Metrics Definition. Four metrics are chosen to
measure the distance between vision and language
weights of modality-specific models, including
the L2 distance, cosine dissimilarity (equivalent
to one minus cosine similarity), soft sign dissimi-
larity (SSD), and truncated soft sign dissimilarity
(TSSD), where the last two are inspired by Yadav
et al. (2023). To compute the distance, we first
flatten all the weight matrices from vision and lan-
guage transformers and concatenate them respec-
tively to form vision and language weight vectors
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wv and wl. Note that we do not include weights that
are not mergeable, such as embedding layers. For
L2 and cosine dissimilarity, we follow the standard

ways to compute them, namely,
√∑

i(wv
i − wl

i)
2

and 1− wv ·wl

∥wv∥∥wl∥ .
Yadav et al. (2023) show that model merging

might result in information loss due to interfer-
ence from redundant parameter values and disagree-
ment on the sign of given parameter’s values across
weights to be merged. Motivated by this, we design
two metrics to reflect the disagreement between
signs and the interference of redundant parameters.
Unlike the method used by Yadav et al. (2023),
soft sign dissimilarity (SSD) considers the two re-
quirements in a soft manner, and the mathematical
definition is as follows,

SSD(x, y) = 1− 1

L

∑

i

|xi + yi|
|xi|+ |yi|

, (1)

where L (= ∥x∥ = ∥y∥) is the size of x and y.
Equation (1) represents one minus the soft sign
similarity. The similarity will be one if xi and yi
have the same sign, which can quantify the agree-
ment of the signs. In the case when the values have
different signs, the similarity will be the cancel-out
value divided by the magnitude: (1) if they have
exact opposite values, the similarity will be zero
(the numerator is zero); (2) when yi is a redundant
value, denoting it has the opposite sign of x but the
magnitude is small. The output of the similarity
measure will be close to 1, making our approach
softly quantifying redundancies.

Truncated soft sign dissimilarity (TSSD), is
designed to incorporate the original implementa-
tion (Yadav et al., 2023) of the ‘redundancy re-
moving’ stage. To compute this, we zero-out the
parameters of x and y if their original values are
among the top-k smallest in x and y respectively,
then apply SSD to the new inputs. After truncation,
the redundant values might be set to zero and will
make its similarity with the other value to be one.
Therefore, this approach can be viewed as a hard
approach to quantify redundancy. Note that the
truncation introduces many zeros to both x and y,
and we simply do not include the similarity of two
zero values in computation because merging two
zeros does not affect the merging results and thus
should not affect the similarity either. In practice,
we set k to 50% of the total parameters of vision
weights, thus zeroing half of the parameters.

Metrics
Kseed Corr.

0 50k 100k 150k

L2 580.6 496.8 388.5 284.6 0.881
Cosine 0.371 0.264 0.163 0.098 0.938
SSD 0.198 0.161 0.125 0.104 0.939
TSSD 0.066 0.037 0.015 0.006 0.971

Performance drop on COCO retrieval

9.16 4.50 2.80 2.60

Table 5: We apply four metrics to modality-specific
models trained on different lengths of seed pre-training.
The bottom two rows indicate the performance drop on
COCO retrieval after model merging, and the right-most
column is the Pearson correlation between these metrics
and the performance drop. The result shows that TSSD
can best reflect the merging outcomes.

Results. We apply the aforementioned metrics
to modality-specific models using different seed
and VL pre-training iterations and show the results
along with the performance drop after merging on
COCO in Table 5. We observe that the distance in-
deed relates to the performance drop as their trends
are aligned. To investigate what metric best reflects
the merging outcomes, we calculate the Pearson
correlation (Freedman et al., 2007) between the
performance drop and each distance metric. The
results in Table 5 reveal that the L2 distance is the
least correlated to the performance drop, in com-
parison to other measures, implying that magnitude
may not be a crucial factor for merging. On the
other hand, TSSD shows the highest correlation
among all metrics, suggesting a better metric to
predict whether two models are mergeable.

8 Conclusion

We explore applying the model merging tech-
nique to transform modality-specific models into
modality-agnostic models. With comprehensive
experiments, we analyze the key factors impacting
the merging results, including initialization, merg-
ing mechanisms, and model architectures. With
seed pre-training and merging methods as sim-
ple as interpolation, we improve the merging re-
sults of the modality-specific model significantly
(+3% on VQA, +7% on COCO image-text retrieval,
+25% on NLVR2, +14% on Flickr30k and +3% on
ADE20k). Moreover, we demonstrate the merged
weight maintains the performance on unimodal
tasks, and the proposed approach generalizes to
another backbone model. We also discuss an initial
recommended recipe for multimodal merging.
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9 Broader Impact and Limitations

This paper demonstrates the potential to merge a
modality-specific VL model to obtain a universal
architecture that can handle multiple modalities si-
multaneously. The findings in this paper address
several questions that might be beneficial for fu-
ture research. Firstly, what representation do the
vision and language transformers learn so that the
merging performance is better? This helps to un-
derstand the fundamental problem of when we can
learn a universal model. Secondly, can we merge
two transformers that are initialized from unimodal
pre-trained weights? This is useful as initializing
the models from a related domain would have per-
formance gain. Lastly, can we apply the merging
on the models fine-tuned on downstream VL tasks,
so as to construct a multi-task modality-agnostic
model? We hope our study can inspire future work
in this direction.

Though we show seed pre-training is crucial for
merging, it shares similar cost issues with other
pre-training experiments, leading to high carbon
emission and electricity usage that may cause a
certain degree of environmental damage and energy
cost.
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A Additonal Experimental Details

Datasets split. In training, we use the
Karpathy-train split (Karpathy and Fei-
Fei, 2017) for VQA and COCO datasets and use
the train set for other datasets. For evaluation,
we use test-dev split for VQA, test-P split for
NLVR2, the validation set for ImageNet and
ADE20k, Karpathy-val split for COCO and test
set for Flickr30k.

Fine-tuning of ImageNet-1k and ADE20k. We
use the source codes of BEIT (https://github.
com/microsoft/unilm/tree/master/beit)
with our trained checkpoints for fine-tuning.

Hyper-parameter for fine-tuning. We show the
hyper-parameters used in fine-tuning in Table 6.

Dataset Image Size Learning Rate Batch Size Training Epochs

VQA 480× 480 3× 10−5 128 10
COCO 384× 384 6.25× 10−6 640 20
NLVR2 384× 384 5× 10−5 128 10
Flickr30k 384× 384 6.25× 10−7 128 40

Table 6: Hyper-parameters used for fine-tuning.

Computational Usage. We use 48xV100 GPUs
for seed pre-training and VL pre-training and it
takes around 3.5 days for 200k iterations. We use
32xV100 GPUs for VQA and COCO fine-tuning
and they take around 7 hours to finish, while we
use 16xV100 GPUs for NLVR2 and Flickr30k and
they take around 4 hours to finish.

Number of Parameters. We display the number
of parameters for BEiTbase architectures used in
this work in Table 7.

Modality-specific
architecture

Custom
Attn

Custom
FFN

Custom
LN

Modality-agnostic
architecture

Number of
parameters

217M 151M 184M 118M 118M

Table 7: Number of parameters for each architecture
based on BEiTbase when being applied on VQA.

B Licenses

• Conceptual Captions: Other

• COCO: Creative Commons Attribution 4.0
License

• Visual Genome: Creative Commons Attribu-
tion 4.0 License
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https://api.semanticscholar.org/CorpusID:249642544
https://api.semanticscholar.org/CorpusID:249642544
https://api.semanticscholar.org/CorpusID:258762390
https://api.semanticscholar.org/CorpusID:258762390
https://api.semanticscholar.org/CorpusID:258762390
https://api.semanticscholar.org/CorpusID:248512473
https://api.semanticscholar.org/CorpusID:248512473
https://api.semanticscholar.org/CorpusID:11371972
https://api.semanticscholar.org/CorpusID:11371972
https://api.semanticscholar.org/CorpusID:11371972
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/microsoft/unilm/tree/master/beit
https://github.com/google-research-datasets/conceptual-captions/blob/master/LICENSE
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


• VQAv2: Creative Commons Attribution 4.0
License

• annotations of NLVR2: CC-BY-4.0 (There are
no licenses for images as the original authors
also do not hold the copyright.)

• Flickr30k: Other

• ADE20k: Creative Commons BSD-3 License
Agreement
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https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/
https://www.flickr.com/help/terms/
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/

