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Abstract

The uniform information density (UID) hypoth-
esis states that humans tend to distribute infor-
mation roughly evenly across an utterance or
discourse. Early evidence in support of the UID
hypothesis came from Genzel and Charniak
(2002), which proposed an entropy rate con-
stancy principle based on the probability of En-
glish text under n-gram language models. We
re-evaluate the claims of Genzel and Charniak
(2002) with neural language models, failing to
find clear evidence in support of entropy rate
constancy. We conduct a range of experiments
across datasets, model sizes, and languages and
discuss implications for the uniform informa-
tion density hypothesis and linguistic theories
of efficient communication more broadly.

1 Introduction

Linguistic functionalists have often claimed that
language is optimized for efficient communication
(e.g., Gibson et al., 2019). One common argument
supporting theories of efficient communication is
that humans communicate at or near channel ca-
pacity (Shannon, 1948); functionalists have argued
that because interlocutors can only produce and
comprehend a fixed amount of linguistic informa-
tion per unit of time, and because speakers strate-
gically arrange their utterances to convey as much
information as possible, language should typically
have uniform surprisal over time (Aylett, 1999; Bell
et al., 2003; Aylett and Turk, 2004; Jaeger and Levy,
2007; Jaeger, 2010). Early evidence for this claim
comes from Genzel and Charniak (2002), which
used n-gram language models to argue that En-
glish documents exhibit entropy rate constancy. In
this paper, we identify a limitation in Genzel and
Charniak (2002)’s analysis and directly measure
its hypothesis using neural language models. We
then analyze results across a variety of datasets, lan-
guages, and models and discuss their implications
for theories of efficient communication.
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Figure 1: Entropy rate of the Penn Treebank under a
smoothed trigram model and a GPT-2 XL model (Rad-
ford et al., 2019), averaged across documents per word
position. Genzel and Charniak (2002) showed that en-
tropy rate increased under n-gram models and predicted
that it would remain constant in models which can con-
dition on long-range context. We replicate the former
result but do not find clear evidence supporting the latter.

2 Background

2.1 Efficient Communication
Claims that language is optimized for efficient com-
munication originated with diachronic arguments
about the evolution of language. Zipf (1949) ob-
served that frequent words are usually shorter, lead-
ing to claims that word lengths are optimized for
efficient communication (Piantadosi et al., 2011).
Other work has argued that natural language lex-
icons efficiently carve up semantic space, mak-
ing reference to the cross-linguistic organization
of color terms (Gibson et al., 2017; Zaslavsky
et al., 2018) and kinship terms (Kemp et al., 2018).
Still other work has focused on syntactic effi-
ciency, suggesting that statistical tendencies such
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Figure 2: Entropy rate of the Common Crawl News Dataset, the NYT Annotated Corpus and the Al-Ittihad subset
of the Arabic Billion Words Corpus under a smoothed trigram model and a GPT-2 model (1.5B) (Radford et al.,
2019), averaged across documents at each word position. We observe a roughly increasing trend for the trigram
model across all three datasets, and a variety of trends for the GPT-2 models.

as dependency-length minimization (Futrell et al.,
2015), adjective ordering preferences (Hahn et al.,
2018), and Greenbergian word-order correlations
(Hawkins, 2009; Hahn et al., 2020) may have de-
veloped because they improve communicative effi-
ciency. Collectively, these works demonstrate that
fixed elements of linguistic structure, such as the
lexicon and syntactic rules, often lead to more effi-
cient communication than unattested alternatives.

2.2 Uniform Information Density

In contrast, work in psycholinguistics has high-
lighted the real-time decisions that speakers make
in order to optimize communicative efficiency.
Early work in surprisal theory (Hale, 2001) demon-
strated that the contextual predictability of words
determines their processing difficulty (Levy, 2008;
Brouwer et al., 2010). This finding led to cogni-
tive models of efficient communication such as the
smooth signal redundancy hypothesis (Aylett and
Turk, 2004) and the uniform information density
hypothesis (Jaeger and Levy, 2007; Jaeger, 2010),
which states that given the choice between two
otherwise identical utterances, speakers tend to
choose the one with more uniform distribution of in-
formation content. One line of evidence for the uni-
form information density hypothesis comes from
the analysis of linguistic phenomena such as leni-
tion (Aylett and Turk, 2004), syntactic reduction
(Jaeger, 2010), and word omission (Asr and Dem-
berg, 2015), which are more likely to appear in pre-
dictable contexts. Another line of work uses data-
driven analysis of corpora to determine whether or
not they exhibit properties associated with uniform
information density (Genzel and Charniak, 2002,

2003; Meister et al., 2021). Crucially, research
of this latter type must operationalize the uniform
information density hypothesis in order to test its
predictions; in the following section, we discuss
Genzel and Charniak (2002)’s approach, which
operationalized the uniform information density
hypothesis at the document level.

2.3 Revisiting Entropy Rate Constancy
Genzel and Charniak (2002) operationalized the
notion of information density by claiming that the
average per-word entropy of the n-th sentence in
English documents does not depend on n. In other
words, they claimed that entropy remains roughly
constant over the course of documents. Genzel and
Charniak (2002) referred to this hypothesis as an
entropy rate constancy principle; we use the same
terminology for consistency, but we note that it
differs from the standard meaning of entropy rate
in information theory, as discussed in Section 5.

In this section, we briefly restate the argument
for entropy rate constancy presented in Genzel and
Charniak (2002) and refer the reader to the original
paper for more details. Formally, let X0, . . . , Xi

be random variables representing words, and let
H(Yi) = H(Xi | Ci, Li) denote the conditional
entropy of a word Xi given its long-distance con-
text Ci = X0, . . . , Xi−n and a local n-gram con-
text Li = Xi−n+1, . . . , Xi−1. Then by the defini-
tion of mutual information:

H(Yi) = H(Xi | Ci, Li) (1)

= H(Xi | Li)− I(Xi;Ci, Li) (2)

Next, assume that the entropy H(Yi) remains con-
stant. By the above equations, mutual information
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Figure 3: Distribution of document sizes for the CC News, NYT and Al-Ittihad test splits. Throughout this paper,
we present word probabilities for the first 500 tokens of each article due to the lack of longer articles in each of
these datasets. We provide additional results on longer documents in Appendix D.

I(Xi;Ci, Li) should increase as contexts become
longer, which means that the entropy given only
local contexts H(Xi | Li) must also increase over
the course of the document.

Because Genzel and Charniak (2002) could not
directly estimate H(Yi) without access to models
that effectively integrate long-distance context, they
instead used n-gram models to demonstrate that
H(Xi | Li) increases over the course of docu-
ments. We replicate their results in Appendix 6.1
but highlight a shortcoming of their argument: non-
decreasing H(Xi | Li) is a necessary but not suf-
ficient condition for entropy rate constancy, and
H(Yi) could increase or decrease depending on
the relative value of I(Xi;Ci, Li). In other words,
Genzel and Charniak (2002) confirmed a predic-
tion of entropy rate constancy but did not provide
direct evidence for the hypothesis itself. Because
modern neural language models are capable of inte-
grating long-distance contexts, we can now directly
approximate H(Yi) to shine further light on these
results. As shown in Section 6.2, our results do
not provide clear evidence for constancy, but rather
for a sharp decline at the beginnings of documents,
followed by a constant or slightly declining trend.

3 Datasets

Genzel and Charniak (2002) ran experiments on
the Penn Treebank1 (PTB; Marcus et al., 1993),
which we replicate in Section 6.1 for complete-
ness. However, we run our primary experiments
on different datasets, in order to obtain additional
data with more chronological diversity, as well
as non-English data. We run experiments on the

1https://catalog.ldc.upenn.edu/LDC99T42

NYT Annotated Corpus2 (Sandhaus, 2008), the
Common Crawl News Dataset3 (Hamborg et al.,
2017), and the Al-Ittihad subset of the Arabic Bil-
lion Word Corpus4 (El-Khair, 2016). We present
dataset statistics in Figure 3 and describe each of
these datasets, as well as our preprocessing and
filtering criteria, in the following subsections.

3.1 The New York Times Annotated Corpus

The New York Times Annotated Corpus features
over 1.8 million articles written and published by
The Times from 1987 to 2007. We randomly sam-
ple 120K documents from this corpus and construct
a data split consisting of 100K train articles, 10K
validation articles, and 10K test articles. We con-
dition on the title of each article when computing
word probabilities and provide additional discus-
sion of this point in Section 6.5 and Appendix A.

3.2 Common Crawl News

We include a subset of the Common Crawl News
Dataset due to its chronological diversity. In par-
ticular, we run the majority of our experiments on
GPT-2; because articles in the NYT Annotated Cor-
pus were published between 1987 and 2007, they
may appear in GPT-2’s training data. To address
this concern, we filtered the Common Crawl News
Corpus to only include articles which were written
after GPT-2 was trained. In total, there are 270996
news articles written after 2018, of which we ran-
domly sample 100K training documents, 10K vali-
dation documents, and 10K test documents.

2https://catalog.ldc.upenn.edu/LDC2008T19
3https://huggingface.co/datasets/cc_news
4https://arxiv.org/abs/1611.04033
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3.3 Al-Ittihad (Arabic Billion Words)
Lastly, we leverage the Al-Ittihad subset of the Ara-
bic Billion Words Corpus (El-Khair, 2016), as a
means of comparing trends across languages. Al-
though the corpus contains over three million ar-
ticles, we employ one subset due to the differing
nature of dialects, which would complicate compar-
isons. In total, we include 8551 training documents,
1K validation documents, and 2K test documents.

4 Models

In recent years, neural language models, in par-
ticular, transformer-based models (Vaswani et al.,
2017) have been shown to greatly outperform n-
gram models, due to their ability to scale and model
long-distance dependencies. In this work, we com-
pare the entropy rate of English text under the
transformer-based GPT-2 model (Radford et al.,
2019) to that of n-gram models.

4.1 Trigram Model
For each of the three datasets, we train a trigram
model on their respective training splits. To provide
a fair comparison to prior work, we aim to repro-
duce the model in Genzel and Charniak (2002) as
closely as possible. However, because Genzel and
Charniak (2002) did not provide exact details about
its approach to n-gram modeling, we use parame-
ters matching those described in the followup paper
Genzel and Charniak (2003). In particular, we use
a smoothed trigram model:

P (xi | x1...xi−1) ≈ P (xi | xi−2, xi−1) (3)

= λ1P̂ (xi | xi−2, xi−1) (4)

+ λ2P̂ (xi | xi−1) (5)

+ (1− λ1 − λ2)P̂ (xi) (6)

where xi corresponds to the ith word in a document,
λ1 = 0.5 and λ2 = 0.3 are smoothing coefficients
matching those in Genzel and Charniak (2003), and
P̂ is a maximum likelihood estimation via counts:

P̂ (xi|x1...xi−1) =
C(x1...xi)

C(x1...xi−1)
(7)

where C(xi..xj) is the number of times xi...xj ap-
pears in the training data. We train trigram models
at the word level on a closed vocabulary, as dis-
cussed in Appendix B. As a result, we note that
exact probabilities may not be directly comparable
to those computed by GPT-2 models, but the gen-
eral trends between models are still comparable.
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Figure 4: Entropy rate of NYT under four GPT-2 model
sizes (124M, 345M, 774M, 1.5B). We note lower en-
tropy values as model size increases but observe a con-
sistent decline in surprisal values across all model sizes.

4.2 Large Language Models
In addition to training n-gram models, we also
fine-tune GPT-2 on both the NYT and CC News
datasets, with one epoch on the train split and a
batch size of 8 1024-token length inputs. For fine-
tuning on the Arabic Billion Words Corpus, we em-
ploy AraGPT-2 Mega (1.5B) (Antoun et al., 2021).
We report results across all model sizes (124M,
345M, 774M, 1.5B), both with and without fine-
tuning, in Section 6. We also report fine-tuning and
inference times in Table 1 in the Appendix.

5 Experiments

For each dataset and model, we compute the per-
token probability of each document in the dataset:

Pθ(xi | x1, . . . , xi−1) (8)

where θ denotes model parameters. We compute
token probabilities using the maximum context
length available to each model. Because our tri-
gram models are trained on words and the neural
models are trained on subwords, we sum over the
log probabilities of subword tokens to obtain word
probabilities from neural models (Mielke, 2019):

logPθ(wk) =

end(k)∑

i=start(k)

logPθ(xi) (9)

for a word wk consisting of subword tokens
xstart(k), . . . , xend(k). In contrast to Genzel and
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Figure 5: Entropy rate of CC News, NYT and Al-Ittihad on a fine-tuned GPT-2 XL (1.5B) compared to a non-fine-
tuned model. We note that entropy values sharply decline and have lower values on the fine-tuned models, most
likely due to domain adaptation. The difference between the two models is largest at the beginnings of documents.

Charniak (2002), we present results at the word-
level rather than at the sentence-level to provide
additional granularity and insight into trends at
the beginnings of documents; additionally, this
approach avoids confounding effects of sentence
length which were noted in previous work (Keller,
2004; Xu and Reitter, 2018).

We then sum over each position in the dataset to
compute the average per-word probability across
documents in the dataset, at each word position i:

f(i) =
1

|W | ·
∑

w∈W
logPθ(wi) (10)

where w denotes an article in a corpus W . Follow-
ing Genzel and Charniak (2002), we refer to the
slope or trend of f(x) as the entropy rate.5

In this paper, we focus on a qualitative analysis
of entropy rate. We avoid quantitative measures
like correlation coefficients, as used in Giulianelli
and Fernández (2021), because they are strongly
dependent on the lengths of sampled documents. In
particular: for sufficiently long documents, entropy
rate must either increase or approach a constant
value, because word probabilities cannot be be-
low zero and must level off asymptotically. Mean-
while, for very short documents, we would observe

5In contrast, given a stochastic process {Xi}, Cover and
Thomas (2012) defines the entropy rate H(X) as the time
density average entropy given by each random variable in the
process, written as:

H(X) = lim
n→∞

1

n
H(X1, X2, ..., Xn) (11)

While the standard definition of entropy rate refers a constant,
our usage refers a more general trend over the course of doc-
uments. Further, rather than computing the limit as n → ∞,
we estimate the average observed word probabilities for each
i ∈ {1, . . . , n} where n is the length of the document.

a strongly negative trend, because word probability
under neural models tend to decline sharply at the
beginnings of documents, as discussed in the fol-
lowing section. We provide additional discussion
of this issue, along with results from the Mann-
Kendall significance test, in Appendix E.

6 Empirical Results

6.1 Replicating Genzel and Charniak (2002)
We first replicate the results of Genzel and Char-
niak (2002) and compare them to entropy rates
achieved using GPT-2 XL (1.5B). As shown in Fig-
ure 1, entropy rates under a trigram model tend
to increase, as reported in Genzel and Charniak
(2002). In contrast, average word surprisals under
GPT-2 XL sharply decline at the beginning of docu-
ments before leveling off. We note that these values
are quite noisy, due to the test split containing only
400 documents. In the following subsections, we
run similar analyses on much larger corpora.

6.2 Measuring Entropy Rate with GPT-2
We also replicate the results of Genzel and Char-
niak (2002) on significantly larger corpora, show-
ing that trigram models exhibit increasing entropy
rates on both the CC News and NYT datasets, as
well as the Al-Ittihad subset of the Arabic Bil-
lion Words Corpus. We then compute entropy
rate using fine-tuned GPT-2 models condition-
ing on the entire document history and observe
various decreasing and non-monotonic trends, as
shown in Figure 2. In particular, average per-
word surprisal as measured by GPT-2 sharply de-
clines at the beginning of documents in all cor-
pora, and then either sharply rises before becoming
roughly constant (CC News), asymptotically de-
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clines (NYT), or slowly increases before beginning
to decrease again (Al-Ittihad). This finding sug-
gests that I(Xi;Ci, Li) and H(Xi | Li) do not
necessarily increase at similar rates and is largely
consistent with recent results about how neural lan-
guage models integrate context (Khandelwal et al.,
2018; O’Connor and Andreas, 2021). Most cru-
cially, these findings do not provide clear evidence
for entropy rate constancy as predicted by Genzel
and Charniak (2002).

6.3 Effect of Model Size
We also fine-tune GPT-2 base (124M), medium
(345M), and large (774M) models on the NYT
dataset and observe a similar decreasing trend
across all model sizes, as shown in Figure 4. As
expected, across both datasets, larger models con-
sistently exhibit lower perplexity. We predict that
future large language models will continue to im-
prove at integrating long-distance context and pro-
duce similar trends in entropy rate and provide
preliminary results on GPT-3 in Appendix C.

6.4 Effect of Fine-tuning
Finally, we also analyze the effect of fine-tuning.
We observe that fine-tuning generally results in
lower surprisal values, especially at the beginning
of documents, as shown in Figure 5. As a result,
entropy rate tends to flatten out faster when com-
puted with non-fine-tuned models. We hypothesize
that this finding may result from domain adapta-
tion: during the fine-tuning process, models may
learn to attribute most of their probability mass
to in-domain vocabulary and conventions. How-
ever, models without fine-tuning must determine
the domain from the context alone, which may be
especially difficult at the beginnings of documents.

6.5 Effect of Titles
In this section, we demonstrate how these results
are sensitive to pre-preocessing standards. We fine-
tune two GPT-2 XL (1.5B) models on CC News,
one by feeding in just the document, and one with
the title followed by a new-line and then the rest
of the document. We compute word probabilities
and only plot those corresponding to the main body
of each article. Unsurprisingly, the initial word
probabilities are significantly lower when condi-
tioning on the title. However, after 100 words they
are only marginally better. We note that this com-
parison shows that the slight increase in entropy
values towards the beginning of the document seen
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Figure 6: Entropy rate of CC News on two fine-tuned
GPT-2 XL (1.5B) models, one fine-tuned with the title
and one fine-tuned without. We omit entropy values for
the title in this plot, but condition the model on the title.

in Figure 2 can be attributed to conditioning on the
title. We hypothesize that since news titles only
provide a limited amount of information, condi-
tioning on them does not make the document sig-
nificantly easier to predict. Future work might take
an information-structural approach and investigate
entropy rate values associated with different parts
of articles, such as lede paragraphs or conclusions.

7 Discussion

We clarify that the findings presented in this paper
do not necessarily invalidate the uniform informa-
tion density hypothesis. Although entropy rate as
measured by neural language models may decline
over the course of documents, cognitive measures
of surprisal might not decline. For example, the
recently proposed lossy-context surprisal model of
Futrell et al. (2020) posits that surprisal is com-
puted with respect to an incomplete representation
of context, whereas neural language models may
make predictions based on lossless representations
of their context windows. This perspective is also
consistent with recent findings that the base GPT-2
model (124M) outperforms larger GPT-2 and GPT-
3 models as a predictor of human reading time
(Shain et al., 2022). In particular, these results point
to a discrepancy between surprisal values under
a Bayes-optimal language model and cognitively-
relevant measures of surprisal. Despite still being
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worse than humans at a variety of language-related
tasks, we consider it likely that large language mod-
els outperform humans at the task of raw language
modeling, at least as measured by perplexity. As
a result, weaker language models may be better
correlated with cognitive measures of surprisal.

Whether or not our results contradict the entropy
rate constancy principle is a matter of interpreta-
tion. Genzel and Charniak (2002) would predict
that neural language models, which are capable
of integrating long-distance context, would exhibit
roughly constant entropy rate over the course of
documents. Under certain conditions, however, en-
tropy rate as computed by neural language models
seems to decline or even exhibit non-monotonic
behavior. While this behavior is mostly isolated to
the beginnings of documents, it is impossible for
entropy rate to decline forever, because word prob-
abilities cannot be less than zero. At the very least,
we can conclude that our analyses do not provide
clear support in favor of the entropy rate constancy
principle proposed by Genzel and Charniak (2002).

8 Related Work

Most relevant to this work are Giulianelli et al.
(2021) and Giulianelli and Fernández (2021),
which explore the role of entropy rate constancy in
dialogue datasets such as the Spoken British Na-
tional Corpus (McEnery et al., 2017), the HCRC
Map Task (Thompson et al., 1993), and PhotoBook
(Haber et al., 2019). Giulianelli and Fernández
(2021) follows a similar methodological procedure
and computes entropy rate using fine-tuned GPT-2
models, claiming to support the entropy rate con-
stancy hypothesis in the Penn Treebank but not
in the dialogue datasets. In contrast, we focus on
significantly larger news datasets, which are also
more similar to the Penn Treebank data used in
Genzel and Charniak (2002), and compute results
across a wider range of model sizes. Using larger
datasets enables additional fine-tuning and reduces
variance in the results; further, our focus on word-
level surprisal provides additional granularity at
the beginnings of documents, where entropy rate
is least constant. Finally, we note that perplexity is
an extremely sensitive metric (cf. Appendix 6.5),
and large variation in results may be attributable
to small differences in data. In particular, we do
not expect the trends we observe in news articles to
always transfer to other domains, such as spoken
dialogue in Giulianelli and Fernández (2021).

Recent work has also sought to connect cogni-
tive theories of efficient communication with tech-
niques in natural language processing; in particu-
lar, operationalizations of the uniform information
density hypothesis have been connected to natural
language decoding (Meister et al., 2020, 2022) and
used as regularizers for language model training
(Wei et al., 2021). We hope that an improved un-
derstanding of entropy rate constancy will inform
such applications in the future.

9 Conclusion

In this work, we computed entropy rate using tri-
gram models and GPT-2, failing to find clear evi-
dence in support of Genzel and Charniak (2002)’s
claim of entropy rate constancy in text. We provide
results across various model sizes, with and without
fine-tuning, and across several datasets, including
the Arabic Billion Words Corpus. Our work also
provides one of the only analyses of entropy rate
constancy in a language besides English, although
see Genzel and Charniak (2003) for results in Rus-
sian and Spanish. We encourage future work to
further investigate the cross-linguistic validity of
the uniform information density hypothesis.

Limitations

One limitation of this work is that since the train-
ing data for GPT-2 was not released, it is unknown
whether the contents of the NYT Annotated Cor-
pus exist in the pre-training data. We circumvent
this issue by also evaluating entropy rates on doc-
uments from the Common Crawl News dataset,
filtered to those published after 2018. However, it
is a possibility that time generalization may com-
plicate the measurement of entropy rate (Lazaridou
et al., 2021). Another limitation of our analysis is
the sensitivity of word surprisal to small changes
in text. As shown in Appendix 6.5, results can
significantly change when titles are omitted from
fine-tuning and inference. Handling of punctuation
and other text preprocessing decisions also plays a
large role in the computation of word probabilities,
and consequently these decisions may affect any
resultant conclusions about entropy rate constancy.
Lastly, although the AraGPT-2 training data does
contain the Arabic Billion Words Corpus (Antoun
et al., 2021), we utlize it due to the unavailability
of Arabic-based LLMs and Arabic datasets.
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A Preprocessing and Fine-tuning Details

In this section, we describe preprocessing and fine-
tuning details for each of the three datasets. Fine-
tuning GPT-2 across all datasets was performed
with one epoch and a batch size of 8 1024-token
length inputs. We outline the fine-tuning and infer-
ence times in Table 1. All experiments were run on
Quadro RTX 6000 and Quadro RTX 8000 GPUs.

A.1 NYT
We randomly sample 120K documents from the
NYT Annotated Corpus and construct a training
set consisting of 100K documents, a validation
set consisting of 10K documents, and a test split
consisting of 10K documents. We feed in each
document with the title as the first line, followed
by a newline (\n) token, and the body of the article
afterwards. For non-finetuned runs, we replace the
newline token with a colon (":").

A.2 Common Crawl News
Similar to NYT, we randomly sample 120K docu-
ments that were written after 2018. For finetuning,
we construct each document by placing the title in
the first line, followed by a new line, and the rest
of the document afterwards. For the non-finetuned
experiments, we place the title in the first line, fol-
lowed by a colon (":"), a new line, and the rest of
the document after.

A.3 Al-Ittihad
We split the Al-Ittihad subset of the Arabic Billion
Words Corpus (El-Khair, 2016) into a train split,
containing 8551 documents, a test split containing
2000 documents and a validation split containing
1000 documents. We then finetune AraGPT2-Mega
(1.5B) (Antoun et al., 2021) by feeding in the title
of each document followed by a new line, then the
contents of the article after.

B Constructing a Closed Vocabulary

We follow additional preprocessing steps to con-
struct a closed vocabulary for the trigram models.
We first tokenize each document by splitting on
whitespace and lowercasing all alphabetical char-
acters. We then form a closed vocabulary by re-
placing each word which appears in the training
data less than five times with the <unk> token. As
a result of lowercasing and <unk>ing, we note that
exact perplexity values may not be directly com-
parable to those computed by GPT-2 models, but
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Figure 7: Entropy rate of NYT under GPT-3 (davinci)
and GPT-2 XL (1.5B). Although GPT-3 perplexity val-
ues are notably lower than those of GPT-2, the general
trend is similar. Neither model was fine-tuned for a
direct comparison.

the general trends between models are still compa-
rable. Indeed, we observe that the n-gram models
are occasionally better at predicting words at the
beginnings of documents, which we attribute to
the frequency of rare words at the beginnings of
documents which are often replaced with an <unk>
token in closed-vocabulary models.

C Large Language Models

We primarily use GPT-2 for our experiments due
to (a) its public availability, (b) the ability to fine-
tune and run inference on standard hardware, and
(c) the availability of comparable models for Ara-
bic. We also provide preliminary experiments us-
ing the largest GPT-3 model (175B) but do run on
all configurations due to cost considerations. We
report results on 1000 documents from the NYT
Annotated Corpus in Figure 7, observing a simi-
lar trend as with GPT-2 models. We use the base
davinci model rather than the instruction-tuned
text-davinci-003 because our work focuses on
the base language modeling objective.

D Modeling Longer Documents

We also attempt to feed in longer documents and
therefore compute entropy rates on WikiText-2
(Merity et al., 2016) using GPT-2 XL. As shown in
Figure 8, these results show a non-monotonic trend
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Figure 8: Entropy rate of WikiText-2 on a GPT-2 XL
(1.5B), up to the first five thousand words. We run this
experiment on WikiText because it has a larger number
of very long documents than our primary evaluation
corpora. However, we note that entropy values are not
accurate due to a fixed context size and still suffer from
noisiness due to a lafck of long-form documents.

even past 1000 words. We note that this result is
not an accurate representation of entropy values,
due to the fixed 1024 context window of GPT-2. In
order to get around the fixed context window, we
use a stride of 64 tokens. As a result, we expect
entropy values to increase in the long run, follow-
ing Genzel and Charniak (2002)’s argument for
n-grams. We attribute the noise in these results to
the lack of documents with more than 5000 words.

E Significance Testing

We report entropy values on a per-word basis for
both n-gram models and GPT-2. We also apply the
non-parametric Mann-Kendall test (Mann, 1945;
Kendall, 1948) to determine whether entropy rate
is monotonically increasing or decreasing through-
out the course of a document. We note that this
method is not intended to compare the relative sizes
of trends and that it is sensitive to hyperparame-
ters such as the length of perplexity timeseries and
choice of tokenization scheme. We omit these find-
ings from the main body of the paper primarily due
to how sensitive they are to the x-axis cutoff. We
present the results and significance figures in Ta-
ble 2. We further note that other methods, such as
correlation coefficients or mixed effects models as
used in Giulianelli and Fernández (2021) are also

highly sensitive to the length of documents, espe-
cially since entropy is least constant at the begin-
nings of documents. As a result of this sensitivity,
we focus primarily on qualitative evaluations of the
observed trends rather than on significance tests.
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Dataset Model Fine-tuning Time Inference Time

CC-News

GPT-2 Small (124M) 3 hours 7 minutes
GPT-2 Medium (345M) 7.5 hours 12 minutes
GPT-2 Large (774M) 15 hours 26 minutes
GPT-2 XL (1.5B) 25 hours 37 minutes
Trigram 7 minutes 1 minute

NYT

GPT-2 Small (124M) 3 hours 6 minutes
GPT-2 Medium (345M) 7.5 hours 12 minutes
GPT-2 Large (774M) 14 hours 24 minutes
GPT-2 XL (1.5B) 24 hours 36 minutes
Trigram 8 minutes 1 minute

Al-Ittihad
AraGPT-2 Mega (1.5B) 3 minutes 1 minute
Trigram 1 minute 1 minute

Table 1: Fine-tuning and inference times across all datasets under each model size.

Dataset Fine-tuned Model Trend p-value

N/A Trigram Increasing 8 · 10−8

Yes GPT-2 XL (1.5B) Decreasing 1 · 10−5

Yes GPT-2 Large (774M) Decreasing 0.4
CC News Yes GPT-2 Medium (345M) Decreasing 0.01

Yes GPT-2 Small (124M) Decreasing 9 · 10−9

No GPT-2 XL (1.5B) Decreasing 1 · 10−17

N/A Trigram Increasing 1 · 10−17

Yes GPT-2 XL (1.5B) Decreasing 1 · 10−13

Yes GPT-2 Large (774M) Decreasing 1 · 10−17

NYT Yes GPT-2 Medium (345M) Decreasing 1 · 10−17

Yes GPT-2 Small (124M) Decreasing 1 · 10−17

No GPT-2 XL (1.5B) Decreasing 1 · 10−10

No GPT-3 Davinci (175B) Decreasing 0.1

N/A Trigram Increasing 6 · 10−16

Al-Ittihad Yes GPT-2 XL (1.5B) Increasing 1 · 10−14

No GPT-2 XL (1.5B) Decreasing 4 · 10−7

Table 2: Results of running the Mann-Kendall test on each of the experimental conditions in this paper. In general,
we observe a decreasing trend for neural models, and an increasing trend for n-gram models. Although this test is
non-parametric, we caution that results are highly dependent on the length of the input time-series.
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