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Abstract

Numbers are crucial for various real-world
domains such as finance, economics, and
science. Thus, understanding and reasoning
with numbers are essential skills for language
models to solve different tasks. While different
numerical benchmarks have been introduced
in recent years, they are limited to specific
numerical aspects mostly. In this paper, we
propose a hierarchical taxonomy for numerical
reasoning skills with more than ten reasoning
types across four levels: representation,
number sense, manipulation, and complex
reasoning. We conduct a comprehensive
evaluation of state-of-the-art models to identify
reasoning challenges specific to them. Hence-
forth, we develop a diverse set of numerical
probes employing a semi-automated approach.
We focus on the tabular Natural Language
Inference (TNLI) task as a case study and
measure models’ performance shifts. Our
results show that no model consistently excels
across all numerical reasoning types. Among
the probed models, FlanT5 (few-/zero-shot)
and GPT-3.5 (few-shot) demonstrate strong
overall numerical reasoning skills compared to
other models. Label-flipping probes indicate
that models often exploit dataset artifacts to
predict the correct labels.!

1 Introduction

Numerical data is ubiquitous in the real-world.
Many applications in domains such as finance, eco-
nomics and science require understanding and rea-
soning with numbers. In recent years, benchmarks
were introduced to study language models’ numer-
acy skills (Zhang et al., 2020; Wallace et al., 2019;
Dua et al., 2019). However, these datasets mostly
concentrate on few, specific numerical reasoning
types (e.g. scales (Zhang et al., 2020)).
*Equal contributions

'Data and code are available at https://github.com/
mubasharaak/numerical_reasoning.

Hulk
Directed by Ang Lee
Release date June 20, 2003

Running time 138 minutes
Budget $137 million
Box office $245.4 million

H1: Hulk was released on 20th June, 2003. (E)
Date: Hulk was released on 20-06-2003. (E)
Date Flip: Hulk was released on 12-08-2009. (C)

H2: The movie has a length of 138 minutes. (E)
Appr: The movie has a length of about 150 minutes. (C)

H3: The movie can be watched in about two hours. (E)
Num: The movie can be watched in about 2 hours. (E)
Num Flip: The movie can be watched in 1 hours. (C)

Arith: Hulk brought in $108.4 million profit. (E)
Arith Flip: Hulk brought in $120.9 million profit. (C)

Table 1: Base hypotheses (H1, H2, H3) and (flipped)
probes for heterogeneous numbers (i.e. date), approximation,
numeracy, and arithmetic. Labelled as Entail or Contradict.

Moreover, evaluating models on numerical
benchmarks, it often remains unclear why models
struggle with the tasks. For example, the issues can
arise from models struggling to recognize numeri-
cal representations in text, failing to compute arith-
metic operations, or predicting incorrect outputs
due to a lack of numerical commonsense knowl-
edge. We aim to explore these questions in greater
detail in this study. Limitations of language models’
numerical abilities, as discussed in prior research,
include tokenization and representation of numbers
in text (Thawani et al., 2021b), hallucination (Ji
et al., 2023; Chen et al., 2023; Ye et al., 2023), and
generalizability/robustness issues (Razeghi et al.,
2022; Geva et al., 2020; Xu et al., 2022).

Successful numerical reasoning requires a com-
bination of skillsets: understanding representa-
tion of numbers (Thawani et al., 2021a,b) and
their meaning in a given context (Loukas et al.,
2022), applying operations (Geva et al., 2020; Pa-
tel et al., 2021), and integrating factual and com-
monsense numerical knowledge to solve numerical
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problems (Lin et al., 2020; Park et al., 2022). For
example, classifying the hypotheses “The movie
can be watched in about 2 (or ‘two’) hours.” from
Table 1 requires understanding that both “2” and
“two” depict the same numerical value, converting
“2 hours” to another unit (i.e. 120 minutes), and
applying approximation to map “120 minutes” to
“138 minutes” in the table.

In this paper, we evaluate state-of-the-art models
on various numerical reasoning types. To assess
which reasoning types are challenging for specific
models, we create a diverse and large set of numer-
ical probes and measure shifts in models’ perfor-
mance. We organize all probed reasoning types in
a hierarchical taxonomy. Inspired by how humans
understand and reason with numbers, as well as
previous numerical benchmarks, we include eleven
reasoning types across four level: representation,
number sense, manipulation, and complex reason-
ing (Figure 1). We apply a semi-automated ap-
proaches for probe creation. We select tabular NLI
(TNLI) as a case study task, given three criteria: (7)
numerical data (numbers, percentages, dates, etc.)
is prevalent in tables; (7i) tables are common in
real-world data sources such as in scientific publi-
cations, database systems and financial documents;
(7i7) tables as structured data facilitate automated
perturbations to create large-scale probing sets. See
Table 1 for some examples of probes created from
hypotheses (H1, H2, H3) and the given table.

Our experiments conclude that large language
models (LLMs) like FlanT5 and GPT3.5 perform
better than other models on various numerical rea-
soning tasks. Both table-based and numerical mod-
els struggled to understand data with flipped la-
bels and negative values. Moreover, we observe
that some models’ performance improves signif-
icantly for counterfactual probes (e.g. NTH and
TAPAS) and label-flipping probes (e.g. FlanT5
zero-shot), which indicates that models might ex-
ploit dataset artifacts and are biased towards one
label. These findings emphasize the importance
of further systematically investigating numerical
reasoning capabilities across various NLP models.
Our contributions are as follows:

* We introduce a taxonomy for numeri-
cal reasoning skills, including representa-
tion/number sense/manipulation skills and
complex reasoning with numbers.

* We propose a semi-automated approach to

—' Numeration }
Representation
Numerical Approximation
Reasoning
Manipulation
Arithmetic
Word Problems

Complex
Reasoning

Figure 1: Overview of numerical reasoning types.

Common Sense

J

create large-scale, numerical probe sets using
table NLI datasets.

* We evaluate three different categories of lan-
guage models (LMs) on our numerical probe
sets: (i) numerical LMs; (i7) LMs for tabular
data; and (7i7) zero-/few-shot LMs.

2 A Taxonomy for Numerical Reasoning

This section introduces a hierarchical taxonomy for
numerical reasoning, inspired by previous works
on numeracy in NLP (Thawani et al., 2021b; Xu
etal., 2022) and psychology (Barrouillet and Fayol,
1998a; Whyte and Bull, 2008; Bofferding, 2019).
We group numerical reasoning skills given their
complexity level in four categories: R1 — R4.

2.1 Number Representation (R1)

This category includes skills for understanding the
form of numerical data. Similar to the notion of
form in language (Bender and Koller, 2020), this
is the realization of numbers in text; the way they
are represented and expressed.

Numeration. Numeration studies language
model’s understanding of representation systems
common for numbers in English: the Arabic
(“2”) and English (“two”) numeration systems.
Specifically, we probe if LMs can link between
distinct symbols used for the same number. For
example in Figure 1, H3 contains “two” as a word,
which can be also represented through “2”.

Heterogeneous Number Types. Formatted num-
bers (e.g. dates, times, and fractions) are frequently
used to convey additional information associated
with a numerical value. Numbers are formatted
in a specific way given their context and purpose,
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such as expressing times and dates using full-stop
(“), using the “%” symbol to indicate fractions,
and different currency symbols for money (i.e. “$”
or “€”), e.g. H1 and “Arith” in Figure 1.

Negative Numbers. Early on in their develop-
ment, children develop some mental model for neg-
ative numbers (see experiments with first-graders
in Bofferding (2019)). Using negative numbers re-
quires understanding the notation of negatives (i.e.
“—" followed by a number). This also includes dis-
tinguishing between minus in subtractions (1 — 3),
dates (12-12-2022), counts (i.e. from one to three)
and in negative number (—2).

2.2 Number Sense (R2)

Number sense includes reasoning skills for con-
ceptualizing number quantities and understanding
their meaning in a given context.

Scale. In everyday communication, numbers
commonly occur with measurement scales, e.g.
weights, distances, or heights. Understanding num-
bers in context of scales is a basis for various ap-
plications, e.g. question answering (e.g. “We are
driving 80 km/h, is this within the speed limit?”),
commonsense (e.g. “Cats weight between four and
five kilograms.”) (Lin et al., 2020), and temporal
reasoning (e.g. “She left the office thirty minutes
ago.”) (Zhou et al., 2020; Zhang et al., 2020).

Comparison. Comparing numbers allows under-
standing numerical relationships. It involves iden-
tifying which numbers are greater than, less than,
or equal to others. For example, given the table in
Figure 1, understanding “The running time of Hulk
is longer than 120 minutes.” requires comparison.

Range. The question “Was the budget of the
movie between $130 and $245.4?” about the table
in Figure 1 requires understanding number ranges.
Already at an age between two and three years,
children develop numerical abilities to understand
sequences of numbers and start reciting numbers
in an appropriate order (Fuson, 2012; Laski and
Siegler, 2007). Models’ that understand the nota-
tion of ranges, can correctly answer the question
by knowing that 137 is in the range 130 — 245.4.

Approximation. Humans commonly approxi-
mate number values in everyday life (Odic and
Starr, 2018; Bonny and Lourenco, 2013). H3 in
Figure 1 requires approximation among other skills
to map “about two hours” to “138 minutes” in the

table. As a reasoning skill, it allows to make quick
estimations and metric unit conversations, and un-
derstand the approximate values of numbers with-
out calculating them explicitly.

2.3 Manipulation (R3)

Manipulation reasoning types are used to apply
basic operations on numbers such as addition. Suc-
cessful manipulation of numbers requires under-
standing their representations and meaning in the
given context (i.e. number sense).

Sorting. The sentence “Out of all Ang Lee’s di-
rected movies, ‘Hulk’ was the one with the sec-
ond highest box office income.” requires sorting
all movies according to their box office income in
order to select the one with the second highest in-
come. Sorting objects according to some criteria
is a basic milestone for developing cognitive skills.
By age two, children already begin to understand
the concept of sorting.

Simple arithmetic. Arithmetic reasoning is the
ability of manipulating numbers with basic oper-
ations (addition, subtraction, multiplication, divi-
sion). While adults commonly retrieve results of
simple calculations from memory, children use dif-
ferent operations (Barrouillet and Fayol, 1998b).

2.4 Complex Reasoning (R4)

This category builds on all previous reasoning cat-
egories (R1 — R3) to solve numerical word prob-
lems (NWP). NWP are expressed through natural
language and require multistep reasoning. Extract-
ing information from the problem description and
applying numerical/mathematical reasoning using
the retrieved information and world/commonsense
knowledge is required (Upadhyay and Chang,
2017; Amini et al., 2019; Huang et al., 2016).

3 Numerical Probing Framework

This section provides an overview of the probing
framework. We use tabular Natural Language In-
ference (TNLI) for automated probe creation.

3.1 Preliminaries

Tables for numerical probing. Tables align well
with our objectives given three key criteria: (i)
numerical data is common in tables; (ii) tables
are frequent in real-world data sources; (7ii) ta-
bles, due to their structured formats, facilitate au-
tomated perturbations for probe creation. Tables’
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semi-structured format, the alignments available
between table cells and column/row headers, and
the frequency of numbers, make them well suitable
for creating numerical probes automatically.

Table NLI. Given a natural language sentence as
hypothesis and a tabular premise, the aim of TNLI
is to classify if the hypothesis entails or contradicts
the table (Gupta et al., 2020). We use the table
NLI datasets TabFact (Chen et al., 2020) and In-
foTabs (Gupta et al., 2020), as well as recast the
table QA datasets TAT-QA (Zhu et al., 2021) and
TabMWP (Lu et al., 2023) to NLI (i.e. TATQA-
NLI, TabMWP-NLI). TAT-QA includes metadata,
i.e. annotations of cells and operations per correct
answer. This information is not available for any
TNLI dataset and is crucial to create probes for
specific reasoning types, e.g. arithmetic reasoning.
Table 2 provides an overview of the TNLI datasets.

Preprocessing. For each of numerical reasoning
type, we first identify base TNLI hypotheses and/or
tables in the datasets that can be used for auto-
mated probe creation. Hereby, we defined a list of
reference tokens specific for each reasoning type
and to filter relevant dataset samples. For exam-
ple, we used units of measurements such as “hour”,
“meter”, or “kilogram” filter hypotheses for scale
probes (see §4 for more details). To recast the
TAT-QA dataset, we follow the simple yet effective,
rule-based approach proposed by Demszky et al.
(2018) for QA to NLI conversion.

3.2 Probes through Structural Perturbation

Overall, we our framework includes three types of
probes, created through hypotheses perturbation
and counterfactual tables.

1. Hypothesis label-preserving probes We cre-
ate label-preserving probes changing the base hy-
pothesis such that its meaning is not changed and
the initial label is preserved. They are used to evalu-
ate model’s ability to reason and predict the correct
label given semantically-equivalent changes.

2. Hypothesis label-flipping probes To generate
label-flipping probes, we modify the base hypothe-
sis such that its meaning alters and the label of the
probe flips, e.g. from entailment to contradiction.
We aim to overcome potential dataset artefacts that
might be exploited for label prediction instead of
performing numerical reasoning.

These changes are specific to the reasoning types.
For example, to flip labels for scale probes, we

Dataset Hypotheses Tables Num cells Probes
TabFact 118,275 16,573  59.00% 214,440
InfoTabs 23,738 2,540  53.6% 19,779
TATQA-NLI 4,947 2,156 59.7% 15,139
ToTTo 1,000 892 45.7% 1,000
TabMWP 283 283 38.3% 238

Table 2: TNLI probing datasets; num cells refers to the
average ratio of numerical cells in tables.

substitute measurement units for a particular scale
(e.g. “kilograms”) by another unit (e.g. “meters”)
or introduce errors in conversion of units (e.g. 3
kilometers replaced by 3, 000 meters).

3. Table Probes through Counterfactual Table
Editing We also probe with counterfactual tables
to evaluate if models rely on spurious patterns in
the premise table for label prediction. We filter the
counterfactual datasets by Jena et al. (2022) consist-
ing of {hypothesis; original table; counterfactual
table} for numerical hypotheses.

4 Probing with TNLI Datasets

This section discussed probes in detail and how we
created them for each reasoning type from §3.”

Numeration. To study models’ understanding of
string (“two”) and numerical (e.g. “2”) number
representations, we create two types of numeration
probes. One converting number representations
from strings to numeric, while the second category
applies the conversion vice versa. We filter hy-
potheses with numbers written as strings (“two”)
and substitute them by their numeric counterpart
(e.g. “2”). The label-preserving probes are seman-
tically equivalent to the base hypotheses and the la-
bel (e.g. entailment) is not changed. Label-flipping
probes replace the converted number x by a random
number in the range of [z — 2 %0.5; x +x x0.5]. For
example, the numeration flipping probe of H1 (Ta-
ble 3) replaces 112 by one hundred and forty-four
and flips the label from entailment to contradiction.

Heterogeneous number types. We created het-
erogeneous probes for the following categories fre-
quent in the TNLI datasets: date formats, ordinals,
percentage, currencies, and scientific notation. To
filter base hypotheses, we applied a simple, rule-
based approach specific to each category (i.e. dates
formats, percentage, ordinals, etc.). To create label-
preserving probes we applied representation-level
changes which did not change the semantic mean-
ing. For H3, we substituted 3rd June, 1986 by an-
other English date format 03-06-1986. To flip the

%Find details on probe statistics in Appendix B.
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Rafael Nadal

Plays Left-handed

Born 3 June 1986 (age 37)
Height 1.85m

Turned pro 2001

Prize money

US$116,111,561 (3rd all-time leader in earnings)

Base Hypothesis H;
Numeration Probe H;
Num Flip Probe H;
Range Probe H;

Base Hypothesis H»

Heterog Probe H,
Heterog Flip Probe H;

Base Hypothesis H3

Heterog Probe H;
Approx Probe H;

Base Hypothesis Hy
Scale Probe H4
Scale Flip Probe Hy

Base Hypothesis Hs
Comparison Probe Hs
Comparison Flip Probe Hs

Bornin 1986 , Nadal is age 37 currently.

Born in nineteen eighty six, Nadal is age thirty seven currently.
Born in nineteen ninety two, Nadal is age forty one currently.
Born in 1986, Nadal is age between 31-43 currently.

The player’s birth date is on 3rd June, 1986 .

The player’s birth date is on 03-06-1986.
The player’s birth date is on 15-01-1999.

With $116,111,561 prize money, he is the 3rd highest earning all-time player.

With $116.111561e — 6 prize money, he is the third highest earning all-time player.
With about $116, 000, 000 prize money, he is the 3rd highest earning all-time player.

Rafael Nadal has a height of 1.85 meters.
Rafael Nadal has a height of 185 centimeters.
Rafael Nadal has a height of 5.2 ft.

After the year 2000, the player Nadal turned pro.
After the year 1995, the player Nadal turned pro.
Before the year 1990, the player Nadal turned pro.

Table 3: Exemplary hypotheses and non-/flipping probes for evaluated reasoning types

label, we replaced the date in the adjusted format by
arandom date, i.e. 15-01-1999. We replaced per-
centage signs by the token “percentages” and vice
versa. Similarly, ordinals written as words (firs?)
were exchanged by numerical representations (1st)
and the other way around. For hypotheses with
large numbers (e.g. “ $116,111,561 ” in H3), we
introduced scientific notations ($116.111561¢e — 6).

Negative numbers. To create negative probes,
we replaced negative numbers —n (e.g. —3) by
string equivalents (e.g. minus 3; negative 3)
and evaluated changes in model performances on
these semantically same sentence pairs. For label-
flipping probes, we converted negative numbers
into the positive counterpart n. For example, con-
verting “The company’s monthly closing resulted
in -5 million USD.” to “The company’s monthly
closing resulted in 5 million USD.” lips the label.

Scale. We created two types of scale probes: (i)
conversion; (ii) mapping. Conversion convert
numbers within a measurement scale. For H4 in
Table 3, we converted the number and measure-
ment unit ( 1.85 meters ) to the next smaller unit
within the same scale (185 centimeters) for the
label-preserving probe. For label-flip, we intro-
duced an error in the converted number, i.e. con-
verting 1.85 meters. to 5.2 ft instead of 6.07 ft.

Mapping probes replace the number and measure-
ment unit by an equivalent (e.g. 1.85m by 1.85
meters) for label-preserving probes and a random
measurement unit e.g. 1.85m to 1.85 kilograms)
to flip the base hypotheses.

Comparison. We first created a list of sig-
nal word-pairs by prompting GPT3.5. The
list includes pairs such as {“bigger”:“smaller”},
{“taller”:“shorter”}, and {““faster”:“slower”}. Us-
ing these pairs and their synonyms, we filtered base
hypotheses and created three types of comparison
probes. First, changing the signal word with its op-
posite counterpart to flip labels (see H5 in Table 3
flipping “after” to “before”). Second, altering the
number such that the comparison and label do not
change: replacing “after 2000” by “after 1995”
(Hb5). Finally, we combine both prior approaches
to create label-flipping probes, e.g. “Before the
year 1990, the player Nadal turned pro.”s

Approximation. We first extract a number n
from our base hypothesis and given the value of
n, we decide the magnitude of rounding to ap-
ply. While smaller numbers are rounded to tens,
larger number are rounded to hundreds, thousands
or larger decimal points. For example, we cre-
ated the probe “With about $116,000,000 prize
money, he is the 3rd highest earning all-time player”
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by rounding n equal $116,111,561 to “about
$116,000,000” (H3 in Table 3).

Range. To create range probes, we substitute
number n in the base hypothesis by an appropri-
ate range, e.g. 37 by “between 31-43” (H1). We
define the radius of the range and its boundaries
automatically given the value of n. For example,
given n < 10, we randomly sample a radius be-
tween 1 — 5. For n = 7 and a sampled radius of
2, the range will be [5 — 9]. We select decimal
boundaries if n is a decimal number.

Sorting. We utilized table columns as number
sequences to create sorting probes. We generated a
list of position indicators in number sequences (e.g.
“top”, “second” “3rd”,“biggest”, “lowest”). These
words were used to filter base hypotheses. To cre-
ate label-flipping probes, we changed the position
of the sequence to another one. For instance, we
modified “in the first quarter of 2018 to “in the
third quarter of 2018” by selecting the value from

the third row instead of the first.

Simple arithmetic. Using on TATQA-NLI its
metadata indicating the involved numbers and op-
erations for numerical reasoning, we created arith-
metic probes. We extracted probes involving addi-
tion, subtraction, multiplication, and division. Ad-
ditionally, we generated label-flipping probes by
replacing the operation output (e.g. result of sub-
traction) in the hypothesis with a different number.
In Table 1, the “Arith” probe involves calculating
the difference between the budget and box office
values to determine the correctness of 108.4. The
flipped arithmetic probe produces a close but incor-
rect subtraction output, 120.9.

Numerical word problems. We converted
TabMWP questions and answers into declarative
hypotheses. TabMWP is a dataset of free-text math
word problems that involve reasoning with tabu-
lar data. For label-flipping probes, we substituted
numbers in the hypotheses with random numbers
from the same column.

Counterfactual Table NLI Probes. We filtered
the counterfactual ToTTo (Parikh et al., 2020)
dataset by Jena et al. (2022) for numerical hypothe-
sis. To create counterfactual tables, they swap two
or more table cells to modify the tables such that
the label of the respective hypothesis changes from
entailment to contradiction and vice versa.

5 Experiments and Analysis

Next, we provide an overview of all models that
were evaluated on the probes from §4. We also
discuss the obtained results and insights.

5.1 Probed Models

We use state-of-the-art models which are divers
in terms of architecture, size, and training setup,
grouped into three categories:

(C1) Numerical LMs. This category includes
LMs adapted for numerical reasoning. LUNA (Han
et al., 2022) is a recent transformer-based model
with an adapted tokenization approach for numbers.
The model encodes numbers as single tokens (e.g.
3,201) instead of splitting them down into sub-
words or binned tokens. N75 (Yang et al., 2021)
is a variation of the TS5 model. It has been mod-
ified for numerical reasoning through additional
pretraining objectives and fine-tuning using numer-
ical datasets. PASTA (Gu et al., 2022) is based on
DeBERTa and is pretrained with objectives that use
table-based numeric operations.

(C2) LMs for tabular  reasoning.
TAPAS (Herzig et al., 2020) extends the BERT
encoder with table-specific embeddings. We used a
TAPAS model trained with intermediate pretraining
on synthetic and counterfactual data (Eisenschlos
et al., 2020). We also probe TAPEX (Liu et al.,
2022), which uses BART (Lewis et al., 2020) as
its base model and pretrains the model to mimic
a neural SQL executor over tables. Similarly,
ReasTAP (Zhao et al., 2022) is a BART-based
model pretrained on synthetically generated data
requiring seven table reasoning skills, including a
numerical task, temporal reasoning, and conjunc-
tion. Previous works have also shown the success
of the *BERT models on tabular NLI tasks (Herzig
et al., 2020; Yin et al., 2020; Shankarampeta
et al., 2022; Akhtar et al., 2022). Tables are either
linearized or processed into sentences or structured
formats. The transformed tables are then used
as input to the models. We used a DeBERTa
model (He et al., 2021) trained on multiple NLI
datasets for this setting.

(C3) Large LMs. For few-/zero-shot evaluation,
we selected FlanT5 (Shen et al., 2023), GPT3.5,
and PaLM 2 (Chowdhery et al., 2022) and probed
them in both a few-shot and zero-shot setting.
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Model Table Specific Numerical Specific Large LMs
TAPAS DeBERTa TAPEX | NT5 LUNA PASTA ReasTAP FlanT5 GPT3.5 PaLM

Reasoning few zero few zero few zero
Representation

Numeration -0.32 -1.82 -7.84 | -4.18 -5.22 =17 -7.18 128 -884 -047 565 -135 -3.07

Heterogeneous -4.03 -2.36 -5.94 -3 -10.09 -1.76 -3.18 034 -549 6.8  6.65 044 222

Negative -46.11 -13.77 0.56 | -94.48 -75.55  -10.68 2.65 | 19.21 423 8.24 23 217 1.14
Label Flipped

Numeration -38.87 4.09 -43.3 | -4853 -71.35  -25.85 -37.21 | -78.37  33.38 -37.78 4471 -37.29 -46.45

Heterogeneous -9.57 8.53 -3225 | -197 -4348  -23.59 -16.21 | -53.44 86.6 -27.97 27.79 -20.65 -25.31

Negative -64.81 -41.56  -97.01 | -17.87  76.85  -70.58 -96.46 | -83.92 173.14 -63.64 22 -80.43 -78.41
Number Sense

Scale 0.03 -6.25 -12.91 1.21  -1143 -1.56 -4.6 | -945 -7.05 246 -0.52  -3.71 -17.58

Comparison -21.8 -18.18  -12.58 | -29.19 -30 -35.11 -40.02 | 29.38 140.82 -9.39 9.13 -1691 -20.08

Approximation -5.61 -6.65 -189 | -9.55 -7.67 -27.44 -7.81 -9.66 -12.94 0.03 12.08 -10.44 -12.03

Range -18.89 -33.77 -1.96 | -2043 -86.77  -84.66 497 | 2244 178.13 0.5 -1.07 14.37 441
Label Flipped

Scale -23.73 -64.58  -30.41 | -39.08 -68.44  -51.66 -16.54 | -69.56  93.77 -39.08 3998 -17.85 -274

Comparison 57.67 -19.36 -4.83 | -29.62 -0.28 -19.1 -15.65 | -847 -40.75 -20.81 14.67 -17.96 -16.09
Manipulation

Sorting -34.8 28.66 91| 226 5431 -4.9 -83.96 | -86.67 25 -57.39 -5.62 -3245 -39.59

Arithmetic -58.62 -2496 9553 | -27.1 7.07  -49.06 -88.87 | -71.53  265.07 -60.34 4.87 -67.67 -64.98

Complex Reasoning
Complex 63.37 6.93 -80.18 | -3.22 4141 -50.84 116.17 | -89.77 -40 -60.22 -435 -734 -759
Counterfactual 445 5554  -12.29 | 1593 0.98 -6.09 -10.12 61.5 1223 40.63 526 30.57 48.56

Table 4: Probing results given as accuracy difference (in %) between base hypotheses and probes.

5.2 Training and Evaluation

To fine-tune models, we used the base hypotheses
of the training datasets (e.g. InfoTabs) and eval-
uated models only on probes created with their
testsets. The few-shot models were prompted with
2-shot extrapolation. We evaluated all models in a
3-step process: (1) evaluation of base hypotheses
H; (2) evaluation of probes P, created using H;
(3) calculating changes in model performance by
comparing accuracy of P to H. As our TNLI task
is a binary classification task, we used accuracy for
evaluation.

5.3 Results and Discussion

Table 4 gives on overview of all probing results.
If available, we separately list scores for flipped
probes, e.g. numeration and numeration flipped.

(Q1) Does any model excel in all numerical
reasoning types? While there is not one best-
performing model across all reasoning types and
different models struggle with different types,
FlanT5 and GPT3.5 show overall good perfor-
mance in a zero-shot setting. While GPT3.5 (few-
shot) performance drops by —60.22% for complex
reasoning probes, the model’s average accuracy
change is around —16.7% for other types. This can
be related to (1) models pretraining data, and (2)
training on chain-of-thought reasoning tasks (Wei
et al., 2022). GPT3.5 was trained on more than
300 TB data Common Crawl, allowing the model
to memorize much more numerical data than other
probed models. In comparison, DeBERTa was

trained on only 78GB of data (He et al., 2021).
Interestingly, both NT5 and FlanT5 use T5 as their
base model. FlanT5 was instruction-fine-tuned and
outperforms NTS5 many probing categories.

(Q2) What factors can contribute to high per-
formance variations across certain reasoning
types? Large performance variations mainly oc-
cur due to inconsistent numerical reasoning of mod-
els across tasks. For example, we observe that
some models struggle with more basic reasoning
(e.g., FlanT5 zero on numeration) while perform-
ing very well on more complex types. This be-
havior might have different reasons. One potential
reason is memorization. Previous works (Petroni
et al., 2019; Carlini et al., 2021; Ishihara, 2023)
show that large pretrained language models store
knowledge in their parameters, which they tend
to retrieve instead of reasoning over the provided
input (Gupta et al., 2022a). Hence, models can
memorize common arithmetic operations they en-
counter during training and perform well on certain
downstream tasks. For example, flipping numbers
as words (“two”) to numerals (“2”) might allow
models to retrieve knowledge which they didn’t
consider for the initial hypothesis. Another reason
for high-performance drops can be the hallucina-
tion of models. While models initially perform well
on hypotheses, adjusting the numbers can hinder
models from relying on spurious patterns.

(Q3) How do models perform on different types
of numerical reasoning? Representation. In
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Table 4, comparing numeration probes, we find
for all models a performance drop of between
[0; —10] percentages for numeration probes, ex-
cept FlanT5 (few). This drop strongly increases
for almost all models evaluated numeration flipped
probes. For example, FlanT5 (few) shows a per-
formance drop of —78.37%. FlanT5 (few) also
performs well on heterogeneous probes, followed
by DeBERTa (—2.4%) and NT5 (—3%). Whereas
LUNA performance drops significantly for hetero-
geneous probes (flipped and non-flipped). TAPAS,
NTS5, and LUNA show significant performance
drops (between —38.87% and —71.35%) on neg-
ative number probes. This could be because the
models exploit correlations between the “—” sign
and labels for predicting base hypotheses. Interest-
ingly, few- and zero-shot models like FlanT5 and
GPT3.5 show improvements on negative number
probes. This may be because the models under-
stand probed versions of negative numbers (e.g.
“minus 22”) as a negative number but not the initial
representation (e.g. “—22).

Number sense. Comparing models based on
number sense probes, we observe different patterns
for fine-tuned models and few-/zero-shot models.
Fine-tuned models struggle especially with com-
parison probes, with a —26.7% average perfor-
mance drop. Scale probes show a —42.1% decrease
on flipping probes, while approximation (flipping)
probes report a —12.0% decrease in model per-
formance. In contrast, FlanT5 perform better on
comparison and range probes, sometimes surpass-
ing predictions on the base hypotheses. All mod-
els demonstrate lower performance on approxima-
tion probes compared to the base hypotheses, with
PASTA performance dropping by —27.44%.

Manipulation and Complex Reasoning. Fine-
tuned models exhibit an average accuracy drop
of —57% on arithmetic probes, except for LUNA
with a slight performance increase. The perfor-
mance of PaLM (zero) and FlanT5 (few) drops by
—67.67% and —71.53%, respectively. All models’
performance drops on sorting probes (avg. —27%),
except for DeBERTa, LUNA, and FlanT5 (zero).
Unlike most other reasoning types, fine-tuned mod-
els outperform few-/zero-shot models on complex
reasoning probes. ReasTAP achieves the highest
accuracy, followed by TAPAS and LUNA. FlanT5,
TAPEX, and PaLLM have the largest performance
drops on complex reasoning probes.

(Q4) Do models perform similarly for flipped
and non-flipped probes? We observe higher per-
formance drops for label-flipping probes compared
to non-flipping probes across models. Models that
struggle with flipping probes but perform well on
their non-flipping counterparts indicate a reliance
on spurious patterns for label prediction. The per-
formance of TAPAS, TAPEX, PASTA, ReasTAP,
FlanT5 (few), and PaLM drops significantly for
the representation reasoning category comparing
non-flipping and flipping probes. For example,
TAPAS performance drops by —2.28% on numer-
ation probes, but show a drop of —45.98% on nu-
meration flipping probes. Similarly, DeBERTa per-
forms well on scale probes (—6.25%) compared
to the flipping version (—64.58%). PaLM perfor-
mance on numeration, heterogeneous, and negative
probes drops by approximately —35%, —20%, and
—80% on flipping counterparts. DeBERTa exhibits
robust performance on number flipping probes for
sorting and FlanT5 on negative numbers, as well
as arithmetic probes.

(Q5) Are numerical and table-specific models
better for numerical reasoning than LLMs?
Numerical models. Our experiments do not in-
dicate any superiority of numerical models over
others. LUNA, a transformer model that uses a spe-
cific tokenization method for numbers, performs
similarly to other models on many reasoning types.
The only reasoning type where LUNA outperforms
is comparison flipping probes, with a small im-
provement of 0.28%. PASTA is a DeBERTa-based
model trained on numerical data and pretraining
objectives. However, compared to DeBERTa, it
only performs better on negative number and scale
probes.

6 Related Work

Numeracy Taxonomies in NLP. Prior works
have introduced surveys and taxonomies to organ-
ise numeracy in NLP research. Thawani et al.
(2021b) categorise NLP work on numeracy into
seven subtasks along the dimensions granularity
(i.e. exact and approximate numbers) and unit (i.e.
abstract and grounded numbers). Xu et al. (2022)
focus on the robustness of QA systems in handling
numerical data and organize their numeracy prob-
ing tasks in two broad categories: (i) numerical
parsing, and (ii) semantic parsing. The DROP
benchmark (Dua et al., 2019) is a QA dataset that
requires discrete operations (e.g. subtraction, count,
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sort) to answer questions over text. While Thawani
et al. (2021b) concentrate on number representa-
tions in NLP systems, our work includes three
further numerical reasoning categories. Xu et al.
(2022) focus on the robustness of NLP models in
handling numerical data. Our probing study on the
other side pivots towards the reasoning capabilities
of models when dealing with numerical and tabu-
lar data. Different to prior work, our study gives
a broad and in-depth evaluation of ten different
models from three different categories (numerical,
tabular, large pretrained LMs) on more than ten
different reasoning types (representation, number
sense, manipulation, and complex reasoning).

Language Model / Numerical Skills. Var-
ious studies have evaluated LMs’ numeri-
cal skills in recent years. Earlier works
probed word embeddings for numeration (e.g.
4=four) (Naik et al., 2019), comparison (e.g.
3 < 4) (Wallace et al., 2019), scale (Zhang
et al., 2020), and superlatives (Wallace et al.,
2019). More recent works evaluate LMs on out-of-
distribution numbers (Kim et al., 2021), numera-
tion/magnitude/sorting/superlatives (Pal and Baral,
2021), and arithmetic (Muffo et al., 2022). Our
work builds upon these previous evaluation studies
and extends them with further numerical probing
categories, e.g. heterogeneous numbers.

Numerically-tuned Language Models. Various
numerical LMs have been developed in recent
times. Geva et al. (2020) and Liang et al. (2022) in-
ject numerical skills into BERT through numerical
pretraining objectives. PASTA (Gu et al., 2022) and
NT5 (Yang et al., 2021), which are based on De-
BERTa and T5 respectively, fall into the same cate-
gory of models. Another line of work adjusts LMs’
architectures for numerical reasoning through nu-
merical tokenization (Han et al., 2022) or addi-
tional, numerical embeddings (Jin et al., 2021).

Systematic Probes for Tables. Tables have been
utilized previously used to create probes for ta-
ble grounding (Gupta et al., 2022b) or recasting
non-NLI datasets (e.g. question-answering) to
NLI (Jena et al., 2022). Unlike unstructured text
data, tables have a natural structure that allows cre-
ating controlled experiments more easily (Gupta
et al., 2022a). We drew inspiration from prior tab-
ular probing approaches and extended them for
automating probing of numerical tabular data. Jena
et al. (2022) introduce a generic approach to adjust

table QA datasets and generate NLI data. For data
recasting, they follow a systemic approach simi-
lar to ours. However, the focus is on transforming
QA datasets, emphasizing the end-result (i.e. the
NLI data) through data augmentation. They do not
evaluate the presence of numerical data in their ta-
bles or consider numerical reasoning in the model
evaluation phrase.

Comparison to Prior Work. All the above men-
tioned prior works on numerical reasoning have
provided motivation for our research. However,
their evaluations have focused on a narrow range
of reasoning types and models. Most study only
concentrated on one specific model such as T5 (Pal
and Baral, 2021), GPT3 (Muffo et al., 2022), or
BERT (Park et al., 2022). In contrast, our frame-
work provides a comprehensive evaluation of nu-
merical reasoning skills. We cover a wide spectrum
of complexity levels, ranging from representation
to complex reasoning. Moreover, we assess a vari-
ety of models with diverse architectures, sizes, and
training settings for numerical reasoning.

7 Conclusion

This paper presents a framework for probing lan-
guage models’ numerical reasoning skills. We or-
ganise skills in a taxonomy and generate large-scale
sets of probes covering more than ten numerical
reasoning types. Using table NLI as a case study,
we evaluate the numerical reasoning abilities of
ten models. These models belong to the categories
numerical LMs, tabular LMs, and few-/zero-shot
LLMs. We discuss reasoning types that prove chal-
lenging for the probed models and explore promis-
ing directions for future research.

Future Directions. For certain (numerical)
tasks, tool-augmented LMs equipped with capa-
bilities such as calculators or code execution have
been proven valuable (Mialon et al., 2023). How-
ever, certain tasks require implicit numerical rea-
soning which might not necessarily involve direct
calculations based on numbers. For instance, classi-
fying sentences that incorporate numbers in varied
settings, like time indications (Feng et al., 2023),
currencies or conversations (Macina et al., 2023).
Such tasks demand a numerical interpretation be-
yond mere arithmetic computations. Moreover,
calling external tools using LMs requires basic nu-
merical comprehension to invoke an external tool
correctly (Chen et al., 2022).
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Limitations

This work proposes a taxonomy and framework
to probe numerical reasoning skills in LMs. It in-
volves the creation of large-scale probing sets using
an automated approach. However, the evaluation of
this approach is currently limited to the task of table
NLI. For future research, it is interesting to extend
this to include additional tasks and datasets. This
extension serves two purposes: first, it allows eval-
uating a more diverse range of datasets. Second, it
enables including challenges specific to other tasks.

In this paper, the evaluation of most reasoning
types primarily involves structural changes at the
hypotheses level. While we include counterfac-
tual table probes, they are limited to one dataset
and perturbations method only. Further research is
needed to study models’ performance on numeri-
cal data in the premise data. Therefore, we need
table-based probes for all reasoning types of the
proposed taxonomy.

Ethics Statement

In this paper, we study the numerical reasoning
skills of different LMs. However, to deploy these
systems in real-world applications, further studies
and evaluations specific to the intended use cases
are required. In order to support future research,
we plan to release all the scripts and resources used
for probe creation and model evaluation. This will
facilitate and encourage further research in this
field.
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A Insights

Main Insights. We investigated the language mod-
els and found that LLMs like FlanT5 and GPT3.5
perform better than other models on various numer-
ical reasoning tasks. When the labels are switched
around and when dealing with negative values, we
found that both table-based and numerical models
had difficulty comprehending the data. In contrast,
DeBERTa performs relatively well compared to
models like LUNA and PASTA, which are tuned
for improved numerical reasoning skills.

B Probe Statistics

Reasoning Type Count
‘Word Problems 238
Sorting 379
Counterfactual 1,000
Currency 1,014
Negative 3,316
Range 4,208
Scientific notation 6,274
Arithmetic 8,082
Ordinal 10,569
Percentage 16,851
Date 18,642
Approximation 20,440
Comparison 30,763
Numeration 166,319
Total 288,095
Flipped probes 77,687

Table 5: Breakdown of probes per reasoning type.

Table 2 gives an overview of probes per dataset.
Most probes (i.e. 214,440) are created from Tab-
Fact hypotheses as this is also the biggest dataset
available, followed by InfoTabs (19, 779). Table 5
provides a breakdown of probes per reasoning type.
In total, we have 286, 857 probes, of which 76, 404
are label-flipping probes.

In the ideal scenario with counterfactual tables,
the models’ performance should be similar to the
performance on the original tables. However, we
observed that TAPAS and DeBERTa’s performance

improved significantly, which leads to the conclu-
sion that models are biased toward one label.

Overall no language model excels in all the nu-
merical reasoning tasks. Surprisingly, models per-
form relatively well in complex tasks like Numeri-
cal Word Problems but struggle at simple reasoning
tasks like numeration and comparison.
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Model Table Specific Numerical Specific Large LMs
TAPAS DeBERTa TAPEX | NT5 LUNA PASTA ReasTAP FlanT5 GPT3.5 PalLM

Reasoning few  zero few zero few  zero
Representation

Numeration 19.02 61.69 74.83 | 64.19  63.57 85.43 7535 | 6459 6758 776 61.83 7638 70.76

Heterogeneous 79.25 56.61 81.17 | 66.85  70.71 89.11 76.49 | 70.17 71.04 7882 61.26 76.75 69.85

Negative 59.38 69.81 97.01 | 51.77  24.66 70.44 81.04 | 70.8 20.37 85 87 92 88
Label Flipped

Numeration 23 61.92 75779 | 71.98  76.34 86.96 73.64 | 8893 6693 90.57 54.11 8597 8791

Heterogeneous 67.66 53.12 82.96 | 62.94 7757 83.75 68.37 | 87.48 5155 89.18 6532 86.55 79.14

Negative 59.38 69.81 97.01 | 51.77  24.66 70.44 72.53 | 70.8 20.37 88 85 92 88
Number Sense

Scale 74.11 67.29 7832 | 63.05 72.24 77.82 31.1 | 61.25 69.59 79.17 69 78.04 71.15

Comparison 68.43 68.7 54.12 | 66.85  69.19 84.75 58.46 | 37.77 23.87 8331 50.58 77.43 63.78

Approximation 75.49 64.65 71.64 | 633  67.09 86.08 58.66 | 62.28 78.09 75.13 59.62 76.88 7535

Range 70.84 57.53 9499 | 58.14  48.86 73.25 87.77 | 80.2 20.09 90 855 80 81.41
Label Flipped

Scale 72.33 76.74 71.78 | 65.17 78.8 87 9592 | 8571 59.6 92.62 60.71 79.58 80.21

Comparison 53.55 70.75 38.29 | 68.64  69.76 85.74 42.69 | 86.12 49.66 96.05 37.34 82 54.86
Manipulation

Sorting 68.71 49.98 94.65 | 69.83  51.11 69.87 8333 | 7544 614 9144 77 6894  70.5

Arithmetic 71.15 58.01 95.92 | 58.83 73.6 73.6 88.97 | 7892 2242 895 8.5 835 815

Complex Reasoning
Complex 54.6 52.65 82.69 | 52.94 39.22 81.93 95.92 | 91.69 69.03 93  56.1 94 913
Counterfactual 59.71 43.23 88.7 | 80.98 81.3 83.52 86.9 | 3546 625 5818 69.09 55.38 53.85
Table 6: Results on original sets (average accuracy).
Model Table Specific Numerical Specific Large LMs
TAPAS DeBERTa TAPEX | NT5S LUNA PASTA ReasTAP FlanT5 GPT3.5 PaLM

Reasoning few zero few zero few zero
Representation

Numeration 18.4 59.24 68.34 | 60.5 59.44 79.64 69.36 | 645 63.01 77.19 643 7538 74

Heterogeneous 72.76 54.52 7575 | 62.19  63.73 80.59 7432 | 6892 67.52 7736 6578 755 70.22

Negative 32 60.2 97.55 | 2.86 6.03 62.92 76.19 | 844 2898 92 89 90 89
Label Flipped

Numeration 10.13 43.68 39.41 | 33.89  29.82 533 41.05 | 17.34  70.04 56.83 73.37 52.54 45091

Heterogeneous 63.1 4245 49.44 | 57.08  47.97 68.75 56.58 | 40.57 80.34 62.16 78.83 70.12 62.18

Negative 20.9 40.8 29 4252 4361 20.72 41.28 | 11.38 55.63 32 86.87 18 19
Number Sense

Scale 71.68 49.43 68.38 | 60.39  62.21 73.63 67.23 | 53.12 62 80.46 66 75.15 59.39

Comparison 42.78 5491 4532 | 4594 54779 60.04 40.73 | 48.84 5533 7374 58.69 64.97 51.71

Approximation 62.94 58.65 56.01 | 56.75  61.56 61.55 51.26 | 56.23 67.65 7496 66.1 6925 66.4

Range 57.73 38.09 93.13 | 46.28 6.46 11.24 92.12 | 982 5587 9047 845 915 85
Label Flipped

Scale 39.26 44.24 3891 | 4455  28.63 43.12 98.46 | 23.69 77.67 5631 66.94 60.93 5257

Comparison 62.59 57.28 37.15 | 469  66.75 69.72 3474 | 6643 5029 7522 546 69.43 4498
Manipulation

Sorting 44.8 63.75 8.47 | 53.89 77.79 64.54 13.29 | 10.03 76.75 3875 72.81 46.38 4231

Arithmetic 71.15 43.52 4.28 | 42.89 37.5 37.5 9.88 | 2245 81.08 355 895 27 285

Complex Reasoning
Complex 89.22 56.3 16.39 | 51.24  55.46 40.28 34| 938 4142 37 7278 25 22
Counterfactual 86.21 67.24 77.8 | 31.23 82.1 78.43 78.1 | 57.27 70.14 81.82 7273 7231 80

Table 7: Results on probed sets (average accuracy).
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