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Abstract

Produced in the form of small injections such
as "Yeah!" or "Uh-Huh" by listeners in a
conversation, supportive verbal feedback (i.e.,
backchanneling) is essential for natural dia-
logue. Highlighting its tight relation to speaker
intent and utterance type, we propose a multi-
task learning approach that learns textual rep-
resentations for the task of backchannel predic-
tion in tandem with dialogue act classification.
We demonstrate the effectiveness of our ap-
proach by improving the prediction of specific
backchannels like "Yeah" or "Really?" by up
to 2.0% in F1. Additionally, whereas previ-
ous models relied on well-established methods
to extract audio features, we further pre-train
the audio encoder in a self-supervised fashion
using voice activity projection. This leads to
additional gains of 1.4% in weighted F1.

1 Introduction

The development of a topic constitutes an integral
part of any conversation. At any time, some par-
ticipant, the speaker, is said to be in control of
the topic flow. Simultaneously, other participants
attend the talk with various degrees of verbal feed-
back. Such feedback may take the form of simple
vocalic sounds with little to no meaning, e.g., "Uh-
Huh", or be extended to more stereotypical phrases,
e.g., "Wow!", "Seriously?" (Iwasaki, 1997). In
the absence of such so-called backchannels, speak-
ers have been found to tell qualitatively worse sto-
ries that they cut off abruptly and half-heartedly
(Bavelas et al., 2000). Not only do backchannels
shape the narrative, but they also help build a feel-
ing of understanding and trust between conversa-
tion partners (Huang et al., 2011; Barange et al.,
2022). Therefore, it is unsurprising that contin-
uous research efforts are put into equipping dia-
logue agents with the all-so-important ability of
backchannel prediction. Backchannel prediction

*Corresponding author.

is the task of identifying time points in an on-
going conversation at which a competent listener
would respond with a certain backchannel type.
Since the advent of ChatGPT, modern dialogue sys-
tems exhibit answer quality levels on par with hu-
mans in various professions (OpenAI, 2023). Once
equipped with human-like attentive listening capa-
bilities like backchanneling, their application could
be extended to social areas such as counseling and
elderly care, not to replace humans but to help
where the demand exceeds the supply.

The phenomenon of backchanneling is tightly
linked to dynamics of turn-taking, i.e., a funda-
mental human ability to orderly manage speaking
opportunities. Listeners do not intend to claim the
turn when producing a backchannel. On the con-
trary, they use them to signal their continued will-
ingness to remain in the listener position (Iwasaki,
1997). This willingness certainly depends on what
the speaker has said. If the previous statement is
descriptive or a personal narrative that the listener
is just learning about, they might be more likely to
encourage the speaker to continue through general
backchannels, e.g., "Uh-Huh". In comparison, if
the previous statement holds an opinion or some
alleged general fact, the listener could agree using a
specific backchannel, e.g., "That’s right!", but they
might as well have reason to dispute and may want
to present their own view. First evidence that such
a relation between dialogue acts and backchannel-
ing exists was provided by Morikawa et al. (2022)
in a preliminary theoretical investigation.

Building on the theoretical observations above,
we propose a multi-task model, BCDA, to simulta-
neously learn the main task of Backchannel (BC)
prediction and the sub-task of Dialogue Act (DA)
classification. A model trained on the task of DA
classification quickly learns to identify utterance
types. We allow the BC prediction model to "eaves-
drop on" this knowledge and use it as additional
guidance to extract more relevant textual features.
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We demonstrate the effectiveness of this approach
and compare it to the previously suggested sub-task
of sentiment classification. Lastly, we verify that
BC prediction models benefit from self-supervised
Voice Activity Projection pre-training (Ekstedt and
Skantze, 2022) even in the presence of large quan-
tities of labeled task-specific backchannel data.

2 Related Work

Regarding the task of backchannel prediction, it
has been a long-standing observation that audio fea-
tures are superior to lexical features (Ruede et al.,
2017; Ortega et al., 2020), with some early models
avoiding the inclusion of the latter entirely (Hara
et al., 2018). In the process, Mel Frequency Cep-
stral Coefficients (MFCCs) have established them-
selves as a simple yet powerful measure of wave-
form representation (Adiba et al., 2021; Jang et al.,
2021) that is only slowly superseded by hidden
representations from pre-trained speech recogni-
tion models (Ishii et al., 2021). When later models
started to incorporate lexical features, they first
needed to handle issues of automatic speech recog-
nition quality (Ortega et al., 2020) and the ram-
ifications of possible time delays in fast-paced
real-time dialogues (Adiba et al., 2021). Gradu-
ally, additional gains obtainable through lexical
features convinced several authors to incorporate
naive word embeddings (Ruede et al., 2017; Or-
tega et al., 2020) or, more recently, pre-trained
language models (Ishii et al., 2021; Jang et al.,
2021). Reflecting the multi-faceted nature of dia-
logue, backchannel prediction has been performed
successfully in tandem with other tasks, such as
sentiment classification (Jang et al., 2021) or turn-
taking prediction (Hara et al., 2018; Ishii et al.,
2021). While results from Hara et al. (2018) sug-
gest that a model trained jointly on the tasks of
turn-taking, filler, and backchannel prediction out-
performs its single-task variant, Ishii et al. (2021)
find that it is not necessarily turn-taking cues itself
that are useful, but instead, the participants’ turn-
management willingness (e.g., willingness to listen,
willingness to speak). So far, no multi-tasking ap-
proach employed dialogue acts directly.

3 Model

3.1 Architecture
We apply a multi-modal approach that exploits au-
dio features in combination with lexical features
(see Figure 1). The audio-processing component is

Figure 1: Dialogue Act-Aided Backchannel Prediction
(BCDA) model architecture.

taken without alterations from Ekstedt and Skantze
(2022). They employ a frame-wise encoder to
extract audio features xt ∈ R256 at 100 feature
vectors (frames) per second. The chosen encoder
combines three input types. First, presentations
from a frozen speech recognition model (i.e., CPC)
(Riviere et al., 2020) are used to encode waveform
information. Then, the participants’ voice activity,
i.e., the notion of whether someone is speaking (1)
or not (0) is encoded in a binary vector. Finally,
past voice activity is aggregated into a history vec-
tor. For two speakers, this aggregation takes the
activity ratio of speaker A over speaker B for se-
lected past time intervals. All three feature vectors
are mapped to a shared space and added before
being pushed through a decoder-only transformer.

As the original authors proposed, we train this
architecture using the self-supervised task of Voice
Activity Projection (VAP) (Ekstedt and Skantze,
2022). Given an 8s input chunk, the model has to
predict a 2s future window for each frame, which is
modeled as four bins per speaker of sizes 200, 400,
600, and 800ms. If a speaker is speaking for more
than half of the bin, it is marked active (1), else
inactive (0). The resulting binary configuration is
translated to its decimal counterpart and encoded
as a one-hot gold prediction vector. A model pre-
trained using VAP has been successfully applied to
predict turn-taking events, including BC, in zero-
shot fashion (Ekstedt and Skantze, 2022). But, it
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has not been verified whether VAP can also be
a useful initialization step prior to task-specific
finetuning. Note that we use pooled speaker &
listener audio during pre-training while finetuning
and evaluation are performed using speaker-only
audio. In this way, we want to ensure that the model
is unable to cheat (i.e., pick up on a backchannel in
the audio) even if BC timestamps are slightly off.

For the text-processing component, we employ
an approach inspired by Malhotra et al. (2022).
Given a history of past speech segments, encoded
using BERT (Devlin et al., 2019), the segment that
directly precedes the current timestamp is projected
as the query vector, while the full history serves as
keys and values. To reflect the relative importance
of a segment in relation to its distance from the
current timestamp, the dot product between query
and key is scaled down by a monotonically decreas-
ing function of time (i.e., Time-Aware Attention)
before the resulting scalars are used to produce a
history enriched representation of the current seg-
ment. Intuitively, while not all prior speech seg-
ments may be directly related to the current one,
some may prove valuable to supplement omitted or
abbreviated content, i.e., pronoun resolution.

Finally, the representations of both modalities
are concatenated and fed through a fully connected
softmax layer, resulting in a probability distribution
across BC classes. Weight updates are obtained
using a cross-entropy (CE) loss.

3.2 Multi-task Learning (MTL) Setting

In the MTL setting, the lexical representation is
further passed to another fully connected softmax
layer to predict the DA of the current segment (if
an annotation is available). A probability for each
DA is returned and the CE loss is calculated. The
total loss for training the multi-task model is a
linear combination of the previously mentioned
main task loss and this new sub-task loss: (1−λ)∗
main_loss+λ∗sub_loss. Through an exhaustive
search, λ was set to 0.3

4 Experiment

4.1 Backchannel Data

In our experiments, we employ the Switchboard
Corpus, a corpus of about 260 hours of dyadic
small-talk telephone conversations (Godfrey and
Holliman, 1993). Based on an aggregated list of
surface forms, Ruede et al. (2017) automatically
assigned utterances the label BC if they looked

Figure 2: Segmentation of utterances into history seg-
ments (h1∼h6) given the backchannel "yeah". h1 is also
called the current segment.

like a BC and were a speaker’s only voice activity
in a fixed interval. To obtain an equal number of
negative examples, they defined the timestamp 2s
before each BC to be an instance of NO-BC. Later,
Ortega et al. (2020) divided their list into generic
forms, e.g., "Uh-Huh", and specific forms, e.g.,
"Wow!" which they assigned the labels Continuer
and Assessment, respectively. The result are 122k
data instances: 50% NO-BC, 22.5% Continuer, and
27.5% Assessment.

While DA annotations for half the conversations
in the corpus are theoretically available (Jurafsky
et al., 1997), this annotation was performed on an
early version of the transcript before it was reseg-
mented, corrected, and enriched with word-level
start- and end-timestamps (Deshmukh et al., 1998).
We align the two transcript versions using a naive
Levenshtein distance-based approach. Despite an
imperfect alignment and the fact that only 48.2%
of all conversations have DA annotations, to be-
gin with, we manage to obtain labels for 41.9% of
all utterances preceding a BC (or NO-BC). Out of
a total of 42 DA tags, the most frequent ones are
statement-non-opinion/non-disputable (68.5%) and
statement-opinion/disputable (24.2%).

4.2 Preprocessing

Each BC instance is linked to a timestamp, and the
1.5s of audio preceding it will be used as input to
the model. Additionally, we need to represent tex-
tual transcriptions as a history of speech segments.
To handle utterance overlap and interruptions, we
propose the following segmentation. Given the
timestamp of an instance, we collect all the pre-
ceding words, sorting them by their start time. We
then aggregate neighboring words into one segment
if they originally belonged to the same utterance
(this implies them being pronounced by the same
speaker). An example is given in Figure 2. The
utterance "I can see why" is split into two segments
to accommodate the interjection "what", which it-
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Trainbl. Params.
Model Audio Text NO-BC Continuer Assessment Weighted F1
Baselines (* reimplementation)
Ortega (Ortega et al., 2020) 2.3K 24.0K 72.4 41.6 47.0 58.4
BPM_ST* (Jang et al., 2021) 146.0K 109.0M 79.6 41.5 50.3 63.0
BPM_MT* (Jang et al., 2021) 146.0K 109.05M 79.7 (+0.1) 41.8 (+0.3) 50.1 (-0.2) 63.0 (+0.0)
Ours
BCDA_ST 2.6M 111.0M 82.5 46.8 49.4 65.4
BCDA_MT 2.6M 111.03M 82.8 (+0.3) 46.7 (-0.1) 51.4 (+2.0) 66.0 (+0.6)

Table 1: Backchannel prediction results. With the exception of Ortega et al. (2020) shown values are averages across
10 random seeds. Numbers in brackets indicate differences between single-task (ST) and multi-task (MT) models.

A PT T MT NO-BC Continuer Assessment Weighted F1
+ - - - 79.77 (±0.05) 43.62 (±1.60) 42.40 (±1.55) 61.36 (±0.25)
+ + - - 80.80 (±0.16)* 44.03 (±1.09) 45.11 (±0.90)* 62.71 (±0.15)*
- - + - 72.79 (±0.47) 40.52 (±0.82) 45.46 (±0.66) 58.00 (±0.37)
- - + + 73.15 (±0.20) 40.60 (±0.97) 46.52 (±0.70)* 58.49 (±0.16)*
+ + + - 82.52 (±0.16) 46.77 (±0.69) 49.38 (±0.80) 65.35 (±0.16)
+ + + + 82.81 (±0.16)* 46.70 (±0.66) 51.35 (±0.50)* 66.02 (±0.13)*

Table 2: Ablation study results as averaged across 10 random seeds. Numbers in brackets show one standard
deviation. Asterisks mark values that are significantly better than other values in the same block (paired t-test, p <
0.01). (A) Audio encoder. (PT) VAP pre-training. (T) Text encoder. (MT) Multi-task learning using DA prediction.

self becomes one segment. The average number of
words in the current segment is 13.4, aligning with
related work that used 5 to 20 words as input.

4.3 Training Setting

We apply a train-test-valid split suggested by Ruede
et al. (2017). The model is trained using an Adam
optimizer with a learning rate (lr) of 2e-5 for BERT
and the audio component and an lr of 1e-4 for ev-
erything else. The former uses a warmup scheduler
that gradually increases the lr over 10% of train-
ing time before decreasing it again to zero. The
latter uses a linear decreasing lr scheduler. During
loss computation, we assign each class a rescaling
weight (NO-BC: 0.8, Continuer: 1.3, Assessment:
1.1) to counteract class imbalance. The chosen his-
tory size is 3, batch size 16, and the number of
training epochs 10. The best model is saved based
on the weighted F1 of the validation set. Each
model configuration was trained on ten different
randomly chosen seed values and test set perfor-
mance values are averaged across those.

5 Results

We compare our results to the models of Ortega
et al. (2020) and Jang et al. (2021). Jang et al.
(2021) perform backchannel prediction in tandem
with sentiment classification. Initially proposed
for private Korean counseling data, we reimple-
ment their approach using labels from a pre-trained
English sentiment classifier. Surprisingly, we ob-

served no significant gains when the sub-task of
sentiment classification was introduced. Notably,
our model outperforms all baselines by at least a
margin of 3% in weighted F1. This performance
increase comes at the cost of a comparably small
increase in model size of about 4.5M parameters
compared to BPM. In comparison, BPM replaced
the traditional word2vec embedding employed by
Ortega with the powerful BERT model. Despite
an additional 109M parameters, they outperformed
Ortega by no more than 4.6% in weighted F1.

To provide insight into the origins of our im-
provements, we perform an extensive ablation
study (see Table 2). As illustrated, an audio-
only model outperforms the much heavier text-
only model by more than 3.3% in weighted F1.
However, both components have complementary
strengths. While the audio component excels
at predicting CONTINUER, the text component
shows better results in predicting ASSESSMENT.
Their combination outperforms both single modal-
ity models by at least 4.0% in weighted F1. This
shows the value of including text information.

Additionally, we performed significance tests for
each pair of rows in Table 2, evaluating differences
between a naive audio-only model vs. a pre-trained
audio-only model, a text-only single task model
vs. a text-only multi-task model, and a full single
task model vs. a full multi-task model. First of
all, VAP pre-training leads to a significant perfor-
mance increase across two out of three categories,
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with an overall increase in weighted F1 of around
1.4%. This proves the effectiveness of this form of
pre-training, even in the presence of large volumes
of labeled data. Finally, it can be observed that
the proposed sub-task of dialogue act prediction
benefits mainly and to large extent the performance
on ASSESSMENT (+2.0%), with only minor but
significant gains on NO-BC (+0.3%) and no sig-
nificant effect on CONTINUER. This might be
explained by the fact that ASSESSMENT holds
specific backchannel forms, e.g., "Wow.", which
are very much content-dependent. Therefore, a bet-
ter encoding of the context through content-based
multi-task learning can help in correctly predict-
ing them. In contrast, CONTINUER are generic
backchannel, e.g., "Uh", which can often be in-
serted arbitrarily and independent of content.

6 Discussion

When applied to counseling data, the sub-task of
sentiment classification has been previously shown
to yield considerable improvements of as much as
3% in weighted F1 (Jang et al., 2021). The dis-
crepancy between those findings and ours could
be explained by a difference in the nature of the
data. While counseling data is emotion-loaded
and the counselor committed to validating those,
casual conversations between strangers are quite
the opposite. In our data, more than 72.6% of
all backchannels have been produced in response
to a completely neutral utterance. The proposed
sub-task of dialogue act classification constitutes
a promising extension and alternative, especially
in such casual conversations where the sub-task
of sentiment classification fails. Our dialogue act-
aided multi-task model achieves an accuracy of
75.12% at the task of dialogue act classification.
It is especially good at the differentiation between
statement-opinion (sv) and statement-non-opinion
(sd). Jurafsky et al. (1997) describe sv as view-
points that the listener could conceivably have their
own (possibly differing) opinion about, while sd
are non-disputable descriptives or narratives. They
further state that this distinction was introduced
to reflect “the different kinds of responses [they]
saw to opinions (which are often countered or dis-
agreed with via further opinions) and to statements
(which more often get [...] backchannels)” (Juraf-
sky et al., 1997, Section 5.1.1). While they express
doubts about whether or not this distinction is actu-
ally fruitful, we have shown that it provides indeed

useful hints for the prediction of certain types of
backchannels.

7 Conclusion

We proposed a multi-task learning scheme that
effectively incorporates dialogue act annotations
to enhance backchannel prediction without estab-
lishing any requirement for such annotations to
be available at inference time. We demonstrated
its superiority over the previously suggested sub-
task of sentiment classification in casual settings
void of strong emotions. Especially, the prediction
of specific backchannels could be improved by as
much as 2%. Moreover, we have shown that self-
supervised pre-training using voice activity pro-
jection benefits the performance of backchannel
prediction models. Overall, we outperform previ-
ous baselines by 3%. All experiment code is made
publicly available1.

Limitations

In comparison to simple intuitive tasks like senti-
ment analysis that can be performed by any layper-
son, dialogue act annotation is commonly per-
formed by linguists, researchers, or other experts
in discourse analysis. While it is possible to train
a layperson to perform this task with proper guide-
lines and instructions, the quality of the resulting
annotation likely varies. Experts, on the other
hand, are often expensive to hire. As for any other
task, automatic classifiers exist, but they are still
insufficiently accurate, e.g., 83.2% accuracy on the
Switchboard Dialog Act Corpus (He et al., 2021).

Moreover, researchers have proposed dialogue
act label sets of varying granularity and focus. Each
such set might be less or more beneficial when used
in tandem with backchannel prediction. The label
set applied in this study might not be representative
of every possible label set, just as it might not be
among the most effective ones.
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A Baselines

This section provides a more in-depth explanation
of the chosen baselines. We selected two baselines
from previous literature for comparison.

Ortega et al. (2020) employed CNNs in tandem
with word2vec embeddings, MFCC features and
a listener embedding. They use the same data as
is applied in our study. While they do not directly
report F1 values, they provide a confusion matrix
based on which those could be calculated.

Jang et al. (2021) employed a pre-trained BERT
language model together with an LSTM on top of
MFCC features. As no public implementation is
available, we reimplemented their model based on
the information available in the paper. The only
parameter missing from their explanation was the
hidden size of the LSTM module. After some ex-
perimentation, we set this parameter to 128. In their
multi-task approach, the original authors used a Ko-
rean sentiment dictionary that assigned each word
in a collection one out of five sentiments (very neg-
ative, negative, neutral, positive, very positive). To
the best of our knowledge, a fine-grained dictionary
such as this one is not available in English. There-
fore, we experimented with some alternative ap-
proaches to include sentiment classification. Given
a pre-trained sentiment classifier for English2, we
obtain a probability distribution across the senti-
ments: negative, neutral, and positive. We can now
either predict this distribution directly, using KL
divergence for loss propagation or encode the cat-
egory with the highest probability as a hard label,
using cross-entropy for loss propagation. The latter
approach yielded better performance values, so we
used it in our experiments. Input to the model is the
first segment joined with any following segment
until the speaker changes or the history size (of 3)
is exceeded.

2https://huggingface.co/cardiffnlp/twitter-roberta-base-
sentiment-latest
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