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Abstract

In-Image Machine Translation (IIMT) aims
to convert images containing texts from one
language to another. Traditional approaches
for this task are cascade methods, which uti-
lize optical character recognition (OCR) fol-
lowed by neural machine translation (NMT)
and text rendering. However, the cascade meth-
ods suffer from compounding errors of OCR
and NMT, leading to a decrease in translation
quality. In this paper, we propose an end-to-
end model instead of the OCR, NMT and text
rendering pipeline. Our neural architecture
adopts an encoder-decoder paradigm with seg-
mented pixel sequences as inputs and outputs.
Through end-to-end training, our model yields
improvements across various dimensions, (i) it
achieves higher translation quality by avoiding
error propagation, (ii) it demonstrates robust-
ness for out domain data, and (iii) it displays
insensitivity to incomplete words. To validate
the effectiveness of our method and support for
future research, we construct our dataset con-
taining 4M pairs of De-En images and train our
end-to-end model. The experimental results
show that our approach outperforms both cas-
cade method and current end-to-end model.1

1 Introduction

Machine Translation (MT) is an important tech-
nique for achieving communication between differ-
ent languages (Zhang and Zong, 2020). Recently
researches on MT mainly focus on text and speech
modality (Fang et al., 2022; Fang and Feng, 2023),
and there is less work based on image modality MT.
In-Image Machine Translation (IIMT) is an image-
to-image MT task which aims to transform images
containing texts from one language to another. The
technique of IIMT enables visual text translation
across different languages, which helps users to

*Corresponding Author.
1The code is available at https://github.com/

YanzhiTian/E2E-IIMT

Figure 1: The illustration of two main architectures of
IIMT. We observe that even minor error in the OCR
output can negatively affect the subsequent translation
quality for the cascade IIMT method.

understand street signs, scanned documents with-
out the input of text manually (Mansimov et al.,
2020). Compared with previous researches on im-
age modality MT (Salesky et al., 2021; Ma et al.,
2022; Lan et al., 2023), the most significant distinc-
tion lies in the outputs of IIMT which are images
containing translated texts, making users under-
stand the meaning of images more easily.

IIMT is a novel machine translation task, with
inherent research value and a wide range of appli-
cation scenarios. An intuitive method of IIMT is
decomposing the task into several subtasks: firstly,
recognizing the text in the image, then translating
the text, and rendering the translated text into the
image, which is commonly referred to as the cas-
cade method. Specifically, the cascade method of
IIMT usually contains three parts: (1) Recogniz-
ing: recognize the text in the origin image with
an optical character recognition (OCR) model. (2)
Translating: translate the text recognized by OCR
model to the target language with a neural machine
translation (NMT) model. (3) Rendering: eliminate
text content in the original image and render the
translated text.

However, a disadvantage of most cascade meth-
ods is the issue of error propagation. If errors occur
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in the output of the previous stage model, it can
directly impact the performance of the following
models. As shown in Figure 1, “STADT” in the im-
age is incorrectly recognized as “STAOT” by the
OCR model, and the NMT model incorrectly trans-
lates it. Consequently, the incorrect translated text
is rendered into the image, resulting in the incorrect
output image. Besides, some of the texts in the im-
ages may be incomplete because of the blocked by
obstacles, resulting in the OCR model recognizing
incomplete texts, thereby leading to the decreasing
quality of NMT translations and the output images.

One of the methods to reduce the influence of
error propagation and incomplete texts is design-
ing end-to-end models instead of cascade methods.
End-to-end models take into account the entire task
directly and learn the transformation from input
images to output images without explicit interme-
diate outputs, eliminating the need for intermediate
steps or stages. Building end-to-end IIMT models
is full of challenge because it is hard to generate
images with specific texts (Ma et al., 2023), and
few IIMT dataset is publicly available. Mansimov
et al. (2020) propose end-to-end models for IIMT
firstly. But the translation quality of their end-to-
end models is much lower than that of cascade
methods.

In this paper, we aim to develop an end-to-end
IIMT model which achieves better translation qual-
ity than the cascade method. We regard images as
pixel sequences, transforming the image-to-image
generating task to a pixel sequence-to-sequence
translation task and applying sequence-to-sequence
architecture to build our end-to-end model. We also
build IIMT datasets for training and validating our
IIMT models.

The main contributions of this paper are as fol-
lows:

• To the best of our knowledge, we regard the
image as a pixel sequence, transforming IIMT
into a pixel sequence-to-sequence translation
task first.

• We propose an end-to-end model based on
segmented pixel sequences for IIMT with an
improvement in translation quality compared
with current end-to-end models and cascade
methods.

• To facilitate the study of IIMT, we construct
IIMT datasets to train and validate models,

which can also serve as valuable resources for
future research of IIMT.

2 Task Formulation

IIMT is a machine translation task where both input
and output are images containing texts,

IIMT : x ∈ RH×W×C ⇒ y ∈ RH′×W ′×C ,
(1)

where x is the input image and y is the output
image, conforming

Ŷ = argmax
Y

P (Y |X), (2)

where X is the text in the image x and Y is the
translated text in the image y, and Ŷ is the text in
the decoded image.

3 Data Construction

To our knowledge, there is no publicly available
dataset for IIMT. Since collecting real image pairs
with aligned parallel texts for IIMT is costly, it is
more practical to generate image pairs by rendering
the texts from a parallel corpus. Therefore, we
build datasets containing images with black font
and white background of one-line text.

Specifically, we render texts in the parallel cor-
pora into images with white background2 to build
the image pairs, replacing the text pair ⟨X,Y ⟩ in
parallel corpus to the image pair ⟨x, y⟩. For an
image x ∈ RH×W×C , we set height H = 32, and
width W is proportional to the length of the text
X . An image pair that contains parallel German-
English (De-En) text in the IIMT dataset is shown
in Figure 2.

Figure 2: An example of image pair in our IIMT dataset.

Our method can be used to construct IIMT
datasets for existing parallel corpora, making it
easier to expand data. Besides, the font of texts
in images can be changed by changing the font

2We render texts into images using the Python library
Pillow, and the font for De and En texts is Times New Ro-
man.
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file, and the size or color of texts in images can be
changed by adjusting parameters in the program,
which means our method has strong scalability.

We perform inspections on the constructed
datasets to ensure the quality, specifically verifying
the integrity of text within the images and ensuring
the absence of garbled characters.

4 Method

4.1 Model Architecture

Transformer (Vaswani et al., 2017) is a widely used
sequence-to-sequence model in machine transla-
tion. Recent researches (Dosovitskiy et al., 2021;
Liu et al., 2021) demonstrates the efficacy of the
Transformer model in the field of computer vision.
These findings demonstrate the capability of the
Transformer model for the IIMT task. We use a
vanilla Transformer as the backbone to build an
end-to-end IIMT model as shown in Figure 3.

We regard images as segmented pixel sequences
for IIMT. In our end-to-end IIMT model, the input
image is converted into a pixel sequence, and then
segmentation on the pixel sequence is applied to
build a token sequence, which is converted to em-
beddings by the embedding layer. The embedding
of the token sequence is the input of the Trans-
former encoder. Another token sequence is gen-
erated by auto-regressive decoding of the Trans-
former decoder, and then the sequence is recovered
to the output image.

4.2 Image-To-PixelSequence

The Image-To-PixelSequence (ITS) refers to a pro-
cedure of converting images into pixel sequences
which is an image tokenization method:

FITS(x) : x ∈ RH×W×C ⇒ xtok ∈ RT×1,
(3)

where x is the input image with shape H×W ×C,
and xtok is the pixel sequence of x with length T .

Given input image x and output image y, after
applying ITS, we can regard the IIMT task as a
sequence-to-sequence translation task:

P (ytok|xtok, θ) =
|ytok|∏

i=1

p(yitok|xtok, y<i
tok, θ), (4)

where xtok = FITS(x), ytok = FITS(y) and θ is
the model parameters.

Figure 3: The architecture of our end-to-end IIMT
model, including ITS, Transformer, and STI. The im-
age is converted into a pixel sequence according to ITS,
and segmented to the token sequence which is the input
of the Transformer. The output of the Transformer is
another token sequence that can be converted into the
image with target text by STI.

The first step of ITS is converting an RGB im-
age x ∈ RH×W×C into a grayscale map3 xg ∈
RH×W×1, and each value in the grayscale map is a
float number ranging between 0 and 1. If each float
number is regarded as a token, the type of token
is too much. To solve this problem, we can quan-
tize them into several discrete buckets and each
bucket is represented by a character. A value v in
the grayscale map is converted into a character c

3Converted by transforms.Grayscale() of torchvision pack-
age.
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with the following equation:

c = char(⌊ v

0.1
⌋) (5)

The function char() refers to converting the in-
teger to a character. For example, the integer 1 is
converted to “1”, and the integer 2 is converted
to “2” ...... and the integer 10 is converted to “X”.
After applying this method, the grayscale map is
converted into a character map, and arrange the
character map into a sequence of length T , where
T = H ×W .

4.3 PixelSequence-To-Image
The PixelSequence-To-Image (STI) refers to a pro-
cedure of converting pixel sequences into images
which is an image detokenization method:

FSTI(xtok) : xtok ∈ RT×1 ⇒ x ∈ RH×W×C

(6)
The output of the Transformer decoder is also a

sequence decoded by auto-regressive which can be
recovered to the image using STI.

Assume the length of the output sequence is L,
and remove several characters from the end of the
sequence so that its length L′ is divisible by H .
Reshape the output sequence to character map with
shape H × W where W = L′

H , and recover the
character map to the grayscale map. A character c
in the character map is converted into a grayscale
value v with the following equation:

v = int(c)× 0.1 (7)

The function int() refers to converting the char-
acter to an integer. For example, “1” is converted
to 1, “2” is converted to 2 ...... and ‘X” is converted
to 10. Following this process, the character map
is converted to a grayscale map. For each value in
the grayscale map v, replace it with the RGB value
of (v× 255, v× 255, v× 255). And finally get the
output image y ∈ RH×W×C .

4.4 PixelSequence Segmentation
For an image x ∈ RH×W×C , the length of the pixel
sequence is H ×W which is much larger than the
length of the token sequence of text-to-text MT.
The cost of the self-attention in a Transformer for
a sequence of length N has O(N2) complexity,
and the auto-regressive decoding also requires N
steps to generate the total output sequence. Which
means the computational effectiveness is directly
impacted by the sequence length.

We conduct segmentation on pixel sequences
to build token sequences which can decrease the
sequence length. One of the most widely used seg-
mentation methods is BPE (byte pair encoding)
(Sennrich et al., 2016). At each iteration of the
BPE algorithm, the most frequent bi-gram in the
sequences is merged together to build new token
sequences. Generally, more iteration times cor-
respond to a larger granularity and shorter token
sequence.

We explore the use of BPE to pixel sequences
and build token sequences which is called pixel
sequence segmentation. Specifically, the most fre-
quent appearance characters in the sequence will
be merged at each iteration, which can increase the
granularity and reduce the sequence length. Af-
ter applying segmentation to pixel sequences with
several times of iterations, the length of token se-
quences is close to text-to-text machine translation,
which will have a similar computational complex-
ity.

5 Experiments

5.1 Datasets

De-En IIMT Dataset We build an IIMT dataset
(4M image pairs) with WMT14 De-En parallel cor-
pus4 to train our end-to-end IIMT model. The par-
allel corpus is filtered by the clean-corpus-n.perl
of mosesdecoder5 with a ratio 1.5, min 1 and max
250. Two in-domain test sets are built by newstest-
2013 (3,000 image pairs) and newstest-2014 (3,003
image pairs).

In addition, we build two out-of-domain test
sets to evaluate the domain adaption ability of our
end-to-end model. We use tst-COMMON6, which
includes ASR transcriptions and translations of
TED speech to build test sets in the spoken lan-
guage domain (2,581 image pairs). We also use
the Himl 2017 test set7 which includes the health
information texts and translations from NHS 24
and Cochrane to build test sets in the biomedical
domain (1,512 image pairs).

5.2 Metrics

Since the outputs of IIMT models are images, it is
hard to evaluate the translation quality with images
directly. In order to employ evaluation metrics for

4https://www.statmt.org/wmt14
5https://github.com/moses-smt/mosesdecoder
6https://ict.fbk.eu/must-c-release-v2-0/
7https://www.himl.eu/test-sets
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Systems
In-Domain Out-Domain

newstest-2013 newstest-2014 tst-COMMON Himl
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Cascade 27.1 78.3 27.3 75.8 30.1 79.7 34.3 80.7
Our E2E 28.1 81.9 28.2 80.4 30.7 83.1 36.0 84.3

Table 1: Experimental results on in-domain (news) and out-domain (spoken language and biomedical) IIMT datasets.

Systems BLEU
Conv Baseline (Mansimov et al., 2020) 0.5

AttnConv (Mansimov et al., 2020) 7.7
Our E2E 28.1

Table 2: Experimental results of end-to-end models on
newstest-2013 IIMT dataset.

machine translation, we use OCR model to recog-
nize text in the image, and evaluate the translation
quality with the output of OCR model and refer-
ence.

5.3 Experimental Settings

We utilize the OCR model in PaddleOCR8 which
is a commonly-used OCR toolkit containing mod-
els of different languages to recognize texts in the
generated images. We compute BLEU score (Pap-
ineni et al., 2002) by SacreBLEU9 (Post, 2018) and
COMET10 (Rei et al., 2020) to evaluate translation
quality.

We conduct experiments on the following sys-
tems:

Conv Baseline An end-to-end model for IIMT
(Mansimov et al., 2020) which is based on UNet
architecture.

AttnConv An end-to-end model for IIMT
(Mansimov et al., 2020) which contains a Covo-
lutional Encoder, a Convolutional Decoder, and a
Self-Attention Encoder.

Cascade The IIMT cascade method, includ-
ing an OCR model, an NMT model, and text ren-
dering, is the same as the cascade method in Figure
1. We use the OCR model in the PaddleOCR toolkit
to recognize German texts in images. The NMT
model is Transformer Big, trained with the same
parallel corpora which are used to construct the
IIMT dataset. Both German and English texts are
applied 32K BPE. Beam search is applied to the
decoding stage of the NMT model, and the beam

8https://github.com/PaddlePaddle/PaddleOCR
9https://github.com/mjpost/sacrebleu

10https://github.com/Unbabel/COMET

size is 5.
Our E2E Our end-to-end IIMT model which

is introduced in Section 4. We apply the Trans-
former Big model implemented by Fairseq toolkit
(Ott et al., 2019) to build our end-to-end model. We
use the training set to learn the order of pixel se-
quence segmentation and apply the segmentation to
the total dataset. The iteration times for both pixel
sequences converted from German and English im-
ages is 50,000. The token sequence is decoded by
beam search, and the beam size is 5.

5.4 Main Results

The experimental results are shown in Table 1, in-
cluding the BLEU score and COMET of in-domain
and out-domain datasets. On both in-domain and
out-domain datasets, the performance of our end-to-
end model is better than the cascade method. This
phenomenon is mainly caused by error propagation
of the cascade method, especially the error of the
OCR model.

Besides, the translation quality of our end-to-end
model has an improvement compared with the cur-
rent end-to-end models (Conv baseline, AttnConv)
(Mansimov et al., 2020), which is shown in Table
2. The reason why our end-to-end model performs
better is mainly that our model uses ITS and STI,
converting images into pixel sequences and apply-
ing pixel sequence segmentation to enhance the
utilization of textual information within images.
But the current end-to-end models can not fully use
the textual information in the image.

6 Analysis

In this section, we focus on the following research
questions (RQs): (1) Does the segmentation of
different iterations influence the translation qual-
ity? (2) Compared to the cascade method, does our
model has better translation quality for images with
incomplete texts? (3) Does the position of texts in
images influence the performance of our model?
(4) Is our method effective on datasets with mul-
tiple font sizes or font types? (5) How does error
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propagation influence the translation quality of the
cascade method?

6.1 RQ1: Translation Quality of Different
Segmentation

We conduct different segmentation to pixel se-
quences, building token sequences with different
lengths and granularity. Figure 4 shows the relation-
ship between the iteration times of pixel sequence
segmentation and the BLEU score. The results
demonstrate that with the increasing iteration times
of segmentation, the length of the token sequence
is decreased, and the granularity of the token is
increased.

Figure 4: The relationship between BLEU score and
iteration times of segmentation. Larger segmentation
iterations refers to a larger granularity.

We also find that pixel sequences representing
images containing specific characters or subwords
will be merged together as segments after several
iterations, and different iteration times correspond-
ing to different segmentation, as shown in Figure 5.
Therefore, the token contains more textual informa-
tion with clearer semantic boundaries after more
iteration times of segmentation, leading to better
translation quality.

Besides, with the decreasing length of the token
sequence, the decoding time is firstly decreased.
However, too many iteration times cause a larger to-
ken vocabulary, with more parameters in the model,
which may cause a longer decoding time. The
numerical experimental results are shown in Ap-
pendix A.

6.2 RQ2: Incomplete Texts in Images

Some of the texts in the images from the real world
may be incomplete because of the occlusion of

Figure 5: Visualization of segmentation with different
iteration times. The iteration times for each segmen-
tation are indicated in the upper-left corner. With the
increasing of iteration times, the granularity of the to-
ken is increased and the length of the token sequence is
decreased.

obstacles. We simulate this type of data to build
test sets with images of incomplete texts.

We randomly mask 20×20 for each image in the
origin test sets to build new test sets with incom-
plete images, and Figure 6 shows an example of
incomplete image. Experimental result in Table 3
shows that our end-to-end model has a better trans-
lation quality compared with the cascade method
on this type of test set. The result is benefiting
to our approach of converting images as pixel se-
quences. Since there is no need to explicitly recog-
nize texts within images, our model is less affected
by the problem of incomplete texts.

Figure 6: An example of an incomplete image. The
figure above represents the original image, while the
figure below is the image after masking the areas within
the dashed box of the original image.

Incomplete texts in images affect the OCR out-
puts in the cascade method and directly impact
the subsequent results. We conduct experiments
to calculate the WER (word error rate)11 of the
OCR model for each type of images. For the origin
images, the WER of newstest-2013 and newstest-
2014 are 1.6% and 1.4%. For the incomplete im-
ages, the WER of newstest-2013 and newstest-
2014 are 3.7% and 3.6%.

11Computed by nltk.edit_distance()
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Types Systems
newstest-2013 newstest-2014 tst-COMON Himl

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Origin
Cascade 27.1 78.3 27.3 75.8 30.1 79.7 34.3 80.7
Our E2E 28.1 81.9 28.2 80.4 30.7 83.1 36.0 84.3

RQ2
Cascade 24.2 71.2 24.5 69.1 26.4 71.7 30.5 72.4
Our E2E 25.0 72.3 24.7 71.6 26.9 72.1 31.1 73.6

RQ3
Cascade 27.1 78.3 27.3 75.8 30.1 79.7 34.3 80.7
Our E2E 27.8 81.5 27.8 80.0 30.5 82.7 35.5 84.1

Table 3: Experimental results on different types of test sets, including the origin test sets, the test sets with incomplete
texts in images (RQ2) and the test sets with different positions of texts in images (RQ3).

6.3 RQ3: Influence of Texts Position in
Images

Since the OCR model usually contains a text detec-
tion module, the cascade method is not sensitive
to the position of texts in images. However, our
end-to-end model does not conduct OCR and text
detection explicitly.

To validate whether our model is influenced by
the texts position in images, we render texts with
a shifting position compared with the origin test
sets, and Figure 7 shows an example of an image
containing text with shifting position.

Figure 7: An example of an image with shifting position
of text. The figure above represents the original image,
while the text in the figure below is vertically and hori-
zontally shifting by 5 pixels.

As the experimental results shown in Table 3,
although there is a certain decrease in translation
quality, it is still obtaining better translation quality
compared with the cascade method. This result
is attributed to our ITS method. For the pixel se-
quence of an image with a different position of text,
it is equivalent to adding a prefix with character “X”
representing several white pixels, and the length
of the prefix is dependent on the shifting distance
of text. This means the rest of the pixel sequence
remained unchanged and different position of text
in the image influences ITS slightly, leading to the
minimal decrease of translation quality.

6.4 RQ4: Mutiple Font Sizes and Font Types

We also construct IIMT datasets with multiple font
sizes and font types, as shown in Figure 8. The

TNR15 is constructed with Times New Roman,
and the font size is 15. The TNR25 is constructed
with Times New Roman, and the font size is 25.
The Arial20 is constructed with Arial, and the font
size is 20.

Figure 8: Datasets with multiple font sizes and font
types.

We train several models with these datasets, and
compute the BLEU score with the same method in
Section 5.2. The BLEU scores are shown in Table
4. The BLEU scores of TNR25 and Arial20 are
similar to the results in Table 1, indicating that our
method is still effective on datasets with multiple
font sizes and font types.

Datasets newstest-2013 newstest-2014
TNR15 22.3 22.6
TNR25 27.5 27.7
Arial20 27.9 28.1

Table 4: BLEU scores of models trained on different
datasets.

However, the BLEU score of TNR15 is much
lower than that in Table 1, and the reason is that
the WER of the target-side OCR model is higher
while recognizing English texts with smaller font
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Systems
newstest-2013 newstest-2014

BLEU COMET BLEU COMET
Golden NMT 29.8 83.0 29.7 81.5

Cascade 27.1 (-2.7) 78.3 (-4.7) 27.3 (-2.4) 75.8 (-5.7)
tst-COMMON Himl

BLEU COMET BLEU COMET
Golden NMT 33.0 84.0 37.8 84.7

Cascade 30.1 (-2.9) 79.7 (-4.3) 34.3 (-3.5) 80.7 (-4.0)

Table 5: Comparison of translation quality of golden NMT (w/o OCR error) and cascade method.

size. The WER of newstest-2013 and newstest-
2014 with font size 20 (same setting as Table 1)
are 1.4% and 1.6%. The WER of newstest-2013
and newstest-2014 with font size 15 are 4.2% and
4.0%.

6.5 RQ5: Error Propagation of Cascade
Method

In our experiments, we observe that the OCR model
may recognize some characters incorrectly. For
example, the character ‘ü’ may be recognized as
‘u’ and ‘ß’ as ‘B’ because of their similar shapes.
The incorrectly recognized results are transferred
to following stages, leading to error propagation of
the cascade method.

To analyze the influence of error propagation, we
first use the OCR model to recognize images con-
taining German texts in the datasets, and then cal-
culate WER of recognized results. For images built
by newstest-2013 and newstest-2014, the WER is
1.6% and 1.4% separately.

We also compute the BLEU score and COMET
of the NMT model using the origin text as input
(namely golden NMT), which is without errors
caused by the OCR model. In order to mitigate
the influence of OCR errors on the evaluation of
the cascade method, we render the output of the
golden NMT into images with the same method and
recognize the texts using the same OCR. As shown
in Table 5, both the BLEU score and COMET of the
cascade method are lower than the golden NMT
because of the errors in the outputs of the OCR
model.

The reason why errors in OCR outputs influence
the performance of the NMT model obviously is
because the OCR model recognizes the text with
character level which means there may be an error
occurring with one letter in a word while other
letters in the same word are correct. It will result in
the word with the wrong letter and the tokenization

method on the text such as BPE will give wrong
subwords, which will damage the performance of
NMT a lot.

An example of error propagation in the cascade
method is shown in Table 6. The OCR model recog-
nizes the word “außerdem” as “auBerdem”, and the
BPE result changes from “außerdem” to “au@@
Ber@@ dem”, resulting in the wrong translation
“Berdem”.

The result of our end-to-end model with the same
input image is shown in Table 7, and we can ob-
serve that our end-to-end model mitigates the prob-
lem of error propagation in the cascade method.

7 Related Work

7.1 In-Image Machine Translation

There are mainly two difficulties to build an end-to-
end model for IIMT: Firstly, there is no dataset for
IIMT publicly available. Secondly, although there
are several researches on image synthesis such as
UNet (Ronneberger et al., 2015), GAN (Goodfel-
low et al., 2014), VAE (Kingma and Welling, 2022),
Diffusion Models (Ho et al., 2020), and the Sta-
ble Diffusion Model (Rombach et al., 2022) has
made great progress in generating high-resolution
images, all of them have limitation on generating
text within images. Liu et al. (2022) and Ma et al.
(2023) focus on image synthesis with characters,
and achieve an improvement compared with the
previous models. But there is still a certain gap to
implement end-to-end IIMT.

Current end-to-end models (Mansimov et al.,
2020) include a Conv baseline and an AttnConv.
The Conv baseline is based on UNet architecture,
which can only generate the image with one or
two words, and it quickly devolves into noise. The
AttnConv contains a Convolutional Encoder, a Con-
volutional Decoder, and a Self-Attention Encoder.

15053



Cascade Method (w/ OCR error) Golden (w/o OCR error)

Input Image

OCR
Die Täter schossen auBerdem

auf eine Bushaltestelle.
Die Täter schossen außerdem

auf eine Bushaltestelle.

BPE
Die Täter scho@@ ssen au@@ Ber@@ dem

auf eine Bushaltestelle .
Die Täter scho@@ ssen außerdem

auf eine Bushaltestelle .

NMT
The perpetrators shot Berdem

on a bus stop .
The perpetrators also

shot at a bus stop .

Output Image

Table 6: Example of error propagation of cascade method, the golden result is generated by NMT model using the
original text (w/o OCR error).

Input Image

Output Image of
Cascade Method
Output Image of

Our End-to-End Model

Table 7: Comparison of the output of the cascade method and our end-to-end model.

7.2 Text Image Translation

Text Image Translation (TIT) aims to translate im-
ages containing source language texts into the tar-
get language, which is an image-to-text machine
translation task. Compared with IIMT, TIT is a mul-
timodal machine translation (MMT) task (Elliott
et al., 2016; Calixto et al., 2017; Ive et al., 2019;
Zhang et al., 2020). TIT primarily contains two
categories of methods, namely cascade methods
including OCR and NMT, and end-to-end models.

Cascade methods of TIT also suffer from error
propagation, one of the methods is to associate
images with relevant texts, providing useful sup-
plementary information for translation (Lan et al.,
2023). Another method is to design end-to-end
models (Ma et al., 2022) which mainly contain vi-
sion encoder such as ResNet (He et al., 2016) and
text decoder.

7.3 Byte Pair Encoding (BPE)

BPE (Sennrich et al., 2016) mainly contains two
stages, learning BPE and applying BPE. During
learning BPE, the tokens will be split into the small-
est unit, and the most frequent bi-gram is merged
as a new token. This process usually involves mul-
tiple iterations and finally results in a BPE code
list that contains n pairs of bi-gram after n itera-
tions. During applying BPE, the tokens will also

be split into the smallest unit and the bi-gram will
be merged according to the BPE code list in turn.
Recent work explores the use of the BPE technique
to image modality (Razzhigaev et al., 2022). They
apply BPE on pixel sequences of iGPT (Chen et al.,
2020), increasing the performance and efficiency.

8 Conclusion

In this paper, we propose an end-to-end model for
IIMT based on segmented pixel sequences to re-
duce the influence of error propagation. Exper-
imental results on IIMT datasets show that our
model has better translation quality compared with
both the current end-to-end model and the cas-
cade method. Furthermore, we conduct analysis
to demonstrate our end-to-end model has better
performance on different types of IIMT datasets.
In future work, we will try to build more realistic
IIMT datasets, and design new model architecture
to achieve a better translation quality.

Limitations

While in-image machine translation is a new MT
task, and our end-to-end model outperforms the
previous methods, this work has certain limitations.
Firstly, our work is a preliminary study on in-image
machine translation (e.g. images with black font
and white background, converting RGB images to
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grayscale maps). And the Image-To-PixelSequence
phase of our end-to-end model requires a learning
segmentation method based on pixel sequences,
thereby demanding substantial CPU computational
resources. Besides, the application of the segmen-
tation method also requires a certain computational
cost. Consequently, there is no improvement in
decoding time compared to the cascade methods.

Furthermore, it is hard to combine our method
with vision models. The input images of recent
vision models (e.g. Vision Transformer) are fixed
size, but the images in our dataset are different
sizes, which need to crop the images. However,
the Vision Transformer is still worth trying. In the
future, we will try to combine our method with
vision models, and take both the original images
and the OCR results as inputs.

Ethics Statement

This paper proposes an end-to-end IIMT model.
We take ethical considerations seriously and ensure
that the methods used in this study are conducted
in a responsible and ethical manner. Our IIMT
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pora, which are used to support research of IIMT.
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Iterations Avg. Len (De/En)
BLEU Decoding Time (s)

newstest-2013 newstest-2014 newstest-2013 newstest-2014
1,000 679/429 15.1 13.4 2935 3344
2,000 257/190 23.5 22.4 1094 1074
3,000 137/112 25.3 24.9 566 647
4,000 102/86 25.9 25.2 449 476
5,000 86/74 26.4 25.8 368 456
6,000 76/66 26.8 26.0 334 323
7,000 70/61 26.7 26.0 311 320

10,000 60/52 26.8 26.5 260 266
30,000 42/37 27.9 27.7 244 246
50,000 37/33 28.1 28.2 187 201
100,000 33/30 27.4 27.1 214 211

Table 8: Numerical experimental results of RQ1.

A Numerical Experimental Results of
RQ1

The numerical experimental results are shown in
Table 8, and the experiments of decoding time are
conducted on 1 Tesla V100 GPU with batch 10.
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