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Abstract

Recent literature has shown that large language
models (LLMs) are generally excellent few-
shot reasoners to solve text reasoning tasks.
However, the capability of LLMs on table rea-
soning tasks is yet to be explored. In this pa-
per, we aim at understanding how well LLMs
can perform table-related tasks with few-shot
in-context learning. Specifically, we evalu-
ated LLMs on popular table QA and fact ver-
ification datasets like WikiTableQuestion, Fe-
taQA, TabFact, and FEVEROUS and found
that LLMs are competent at complex reason-
ing over table structures, though these models
are not pre-trained on any table corpus. When
combined with ‘chain of thoughts’ prompting,
LLMs can achieve very strong performance
with only a 1-shot demonstration, even on par
with some SoTA models. We show that LLMs
are even more competent at generating com-
prehensive long-form answers on FetaQA than
tuned T5-large. We further manually studied
the reasoning chains elicited from LLMs and
found that these reasoning chains are highly
consistent with the underlying semantic form.
We believe that LLMs can serve as a simple
yet generic baseline for future research. The
code and data are released in https://github.
com/wenhuchen/TableCoT.

1 Introduction

The problem of structured knowledge grounding
has been extensively studied for many years. Ta-
bles, as one of the most popular (semi)-structured
forms to store world knowledge receive signifi-
cant attention from the natural language processing
(NLP) community. Traditional approaches mostly
rely on synthesizing executable languages like SQL
or SPARQL to access the information inside the ta-
ble. However, these symbolic languages normally
make a rigid assumption about the table and can-
not capture the semantics of text chunks inside the
table. Such issues are even more pronounced with
web tables due to their irregular forms. To fully

understand web tables, both structured reasoning
and textual reasoning are required. Such challenges
have attracted many researchers to work in the field.
Recently, a wide range of table-based tasks have
been proposed like table question answering (Pasu-
pat and Liang, 2015; Chen et al., 2020c; Zhu et al.,
2021; Chen et al., 2021b; Talmor et al., 2020; Chen
et al., 2020a; Nan et al., 2022), table fact verifi-
cation (Chen et al., 2019; Aly et al., 2021), table-
based generation (Chen et al., 2020b; Parikh et al.,
2020; Nan et al., 2021), and table-grounded con-
versation (Budzianowski et al., 2018; Nakamura
et al., 2022). This wide range of table-based tasks
all come with different input-output formats and
domains. Due to the heterogeneity of these tasks,
models achieving the best results on these tasks
normally need to be fully fine-tuned on the specific
downstream dataset with 10K-100K examples to
achieve reasonable performance.

Recently, there have been efforts like Unified-
SKG (Xie et al., 2022) aiming to unify these het-
erogeneous table-based tasks as a generic text-to-
text format. UnifiedSKG has shown that using
T5-3B (Raffel et al., 2020) with the text-to-text
format can already achieve state-of-the-art perfor-
mance on almost all the table-based tasks without
task-specific designs. However, the proposed text-
to-text models still need to be fully fine-tuned on
the downstream tasks. UnifiedSKG also identified
that T0-style (Sanh et al., 2022) cross-task transfer
can only achieve almost random performance.

Wei et al. (2022); Wang et al. (2022); Zhou et al.
(2022); Drozdov et al. (2022) have recently dis-
covered that large language models (Brown et al.,
2020; Chowdhery et al., 2022; Ouyang et al., 2022)
can be used to solve complex mathematical and
commonsense reasoning tasks with few-shot in-
context learning. Inspired by this discovery, we
aim at understanding whether these LLMs can also
solve complex table-based reasoning tasks. Though
the LLMs are not specifically designed to encode ta-

1120

https://github.com/wenhuchen/TableCoT
https://github.com/wenhuchen/TableCoT


Figure 1: In-context learning for table-related tasks with
chain-of-thoughts reasoning.

bles, given the enormous number of tables present
in the pre-training corpus, we believe they are also
competent at reasoning over table information.

In this paper, we experimented with few-shot
in-context learning for LLMs as depicted in Fig-
ure 1. Instead of fine-tuning the model, we only
provide a few examples to showcase the desired
input-output format as the condition for the model
to follow to solve unseen test examples. We ex-
periment with several prompting variants including
(1) direct prediction, (2) Chain of Thoughts (Wei
et al., 2022) (CoT), (3) Chains of thoughts with
self-consistency (Wang et al., 2022) (CoT+SC).
We evaluate these methods on WikiTableQA (Pa-
supat and Liang, 2015), FetaQA (Nan et al., 2022),
TabFact (Chen et al., 2019) and FEVEROUS (Aly
et al., 2021). Our results reveal that LLMs (Ouyang
et al., 2022; Chen et al., 2021a; Chowdhery et al.,
2022) can achieve striking performance with only
1 or 2 demonstrations, e.g. 48.8% on WikiTable-
Questions and 78.8% on TabFact, which are on par
some near-SoTA models (Yu et al., 2021; Eisen-

schlos et al., 2020). On other datasets like FetaQA
with long-form answers, our human evaluation re-
veals that GPT-3 can significantly outperform the
fine-tuned T5-large by more than 30% in terms of
correctness and adequacy.

Furthermore, we manually studied the chain of
thoughts elicited from LLMs and found that the ra-
tionale is highly consistent with the ‘ground truth’
semantic forms when the model predictions are
correct. We found that these models are surpris-
ingly competent at performing symbolic operations
over the table, like maximum, minimum, counting,
comparison, addition, and difference. However, we
also identify several issues of the LLMs on these ta-
ble reasoning tasks: (1) due to the token limitation,
the model is unable to generalize to ‘huge’ tables
with 30+ rows, which is the major error source, (2)
LLMs can sometimes make simple mistakes when
performing symbolic operations.

Due to the simplicity and generality, we believe
LLMs with CoT should be used as an important
baseline for any future table-related research.

2 Related Work

2.1 Reasoning over Tables

Table-based reasoning is traditionally accom-
plished by semantic parsing to execute commands
on tables like WikiTableQuestions (Pasupat and
Liang, 2015), WikiSQL (Zhong et al., 2017), and
Spider (Yu et al., 2018). These models aim to
synthesize SQL/SPARQL to interact with tables.
However, these machine languages have a rigorous
requirement regarding the tables, e.g. the value
in the same column should follow the same data
type. Such rigorous assumptions are frequently vi-
olated by web tables containing unnormalized free-
form text in cells. Therefore, language understand-
ing inside the table is essential to achieve a better
score. Recently, Yin et al. (2020); Herzig et al.
(2020); Liu et al. (2021); Deng et al. (2022) have
proposed to pre-train table and text to learn joint
representation. These pre-trained models can use
joint representation to perform reasoning implicitly
without relying on symbolic execution. By pre-
training the model on large-scale crawled or syn-
thesized data, these models can normally achieve
the best-known performance on table tasks. How-
ever, these models still require a significant amount
of fine-tuning on the downstream datasets. Un-
like these methods, we are interested in in-context
learning, where the model can only learn with a
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few examples (demonstration) without any fine-
tuning. One contemporary work similar to ours
is BINDER (Cheng et al., 2022), which utilizes
Codex to synthesize SQL to execute logical forms
against tables for question answering. One big
difference is that BINDER (Cheng et al., 2022) in-
volves logical form execution, if the execution fails,
BINDER will fall back to using language models
to answer the question, which is more similar to
ours.

2.2 In-context Learning with LLMs
GPT-3 (Brown et al., 2020) and other large lan-
guage models demonstrated strong abilities to
perform few-shot predictions without fine-tuning,
where the model is given a description of the task
in natural language with few examples. Scaling
model size, data, and computing are crucial to en-
able this learning ability. Recently, (Rae et al.,
2021; Smith et al., 2022; Chowdhery et al., 2022;
Du et al., 2022) have proposed to train different
types of large language models with different train-
ing recipes. The LLMs have demonstrated a strik-
ing capability utilizing the few-shot prompts to
accomplish unseen tasks without any fine-tuning,
which is found to be an emergent capability not
presented in smaller language models.

2.3 Chain of Thoughts Reasoning
Although LLMs (Brown et al., 2020; Chowdhery
et al., 2022) have demonstrated remarkable success
across a range of NLP tasks, their ability to demon-
strate reasoning is often seen as a limitation. Such
capability cannot be acquired simply by scaling up
the model size. Recently, the ‘chain of thoughts’
prompting (Wei et al., 2022) has been discovered to
empower LLMs to perform complex reasoning over
text. By providing the model with several exem-
plars of reasoning chains, LLMs can learn to follow
the template to solve difficult unseen tasks. Later,
Wang et al. (2022) propose to use self-consistency
with CoT to further improve performance. Later
on, Kojima et al. (2022) discovered that LLMs can
even perform reasoning without any demonstra-
tion by using appropriate prompts. These recent
findings reveal the strong capability of LLMs to
perform complex reasoning. However, the current
studies are still heavily focused on text-based tasks
like question answering, common sense reasoning,
etc. The models’ capability to reason over tables
is yet unknown. In this paper, we are specifically
interested in understanding LLMs’ capability to

Figure 2: Prompts used for question answering and fact
verification tasks.

reason over web tables with CoT prompting.

3 Method

We experiment with different in-context learning
methods to solve the table-based reasoning tasks.
To formulate the prompt, we linearize the table
and concatenate it with a few examples as demon-
strations of the language model to predict the out-
put from an unseen test example. The format
is described in Figure 2. We mainly investigate
three different variants for language model prompt-
ing, including (1) Direct Prediction, (2) Chain
of Thoughts (CoT), and (3) Chain of Thoughts
+ Celf-Consistentcy decoding (CoT+SC). For self-
consistency methods, we use LLMs to generate
five diverse reasoning paths and then use majority
voting to select the most voted answer.

To limit the budget and constrain the input token
length, we truncate the input tables to contain only
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the first 22 rows and the first 8 columns. For each
cell, we truncate the word length to contain only
the first 10 words. Through such truncation, we
can restrict the input token length to within 2000
tokens. We will talk about the impact of input token
length on the final performance.

4 Experimental Results

For the GPT-3 experiments, we used the four
provided models, Ada, Babbage, Curie, and
Davinci with 350M, 1.3B, 6.7B, and 175B param-
eters respectively. We mainly use Davinci-text-
002 (Ouyang et al., 2022) in our experiments. We
also report results for Codex (Chen et al., 2021a)
(Davinci-code-002) on some datasets. We use a
temperature of 0.7 without any frequency penalty
and without top-k truncation. We found that the
model performance is robust to the sampling strate-
gies and the hyper-parameters. These models are
mainly trained on web-crawled data and code data,
without any specialized training on table corpus.

4.1 Datasets

Here we list all of our datasets as follows:

WikiTableQuestions Pasupat and Liang (2015)
consists of complex questions annotated based on
Wikipedia tables. Crowd Workers are asked to
compose a series of complex questions that include
comparisons, superlatives, aggregation, or arith-
metic operations. The annotated dataset is cross-
validated by other crowd workers. In our exper-
iments, we use the unseen test set for evaluation.
We evaluate the standard test set with roughly 4000
questions. In this dataset, we adopt the answer
exact match as our evaluation metric.

FetaQA Nan et al. (2022) consists of free-form
table questions. These questions are mostly com-
plex questions that require integrating information
from discontinuous chunks in the table. Instead of
having short answers, the dataset annotates long
free-form answers. Unlike other datasets using
copies of short text spans from the source, the ques-
tions in FetaQA require a high-level understanding.
We adopt sacre-BLEU and human evaluation as
our evaluation metrics. The evaluation set contains
a total of 2003 examples.

TabFact Chen et al. (2019) consists of both
simple and complex claims annotated by crowd
workers based on Wikipedia tables. In the simple

subset, the claims normally do not involve higher-
order operations like max/min/count, etc. While
the complex subset mainly contains claims involv-
ing higher-order operations. We evaluate the origi-
nal test set containing 12,779 examples. We report
binary classification accuracy on the set.

FEVEROUS Aly et al. (2021) consists of com-
positional claims annotated by crowd workers
regarding Wikipedia tables. Since the dataset
contains both table-supported and text-supported
claims. We filter out text-supported claims and only
keep the 2,295 table-supported claims as our test
set. Different from TabFact, FEVEROUS consists
of more complex tables with irregular structures
like multi-row, multi-column, multi-table, etc. We
report dev-set accuracy.

4.2 Baselines
In these experiments, we mainly consider the fol-
lowing baseline models.

Pre-trained Encoder-Decoder Model Pre-
trained encoder-decoder model is one of our
competitors, which aims to encode the table as a
plain sequence into the encoder, and then apply
the decoder to generate either an answer or a
verdict. In this paper, we mainly compare against
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020) as our baselines.

Pre-trained Table Understanding Model This
family of models is specifically pre-trained on the
table-related corpus, which utilizes specific archi-
tecture to encode table structure and handle sym-
bolic computation. In this paper, we mainly con-
sider TAPAS (Herzig et al., 2020), TABERT (Yin
et al., 2020), and TAPEX (Liu et al., 2021).

Neural Symbolic Model This family of models
includes a non-pre-trained neural symbolic model,
which can synthesize machine language to interact
with the table. This line of work includes Logic-
FactChecker (Zhong et al., 2020), Neural-Symbolic
Machine (Liang et al., 2018), etc.

4.3 Main Results
Here we show our main results for different
datasets as follows.

WikiTableQuestions As can be seen from Ta-
ble 1, directly asking GPT-3 to generate answers
can only lead to 26% EM score. However, if we
prompt the model with the CoT demonstrations,
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Type Model Test EM

Train Pasupat and Liang (2015) 37.1
Train Zhang et al. (2017) 43.7
Train Liang et al. (2018) 43.7
Train Agarwal et al. (2019) 44.1
Train Wang et al. (2019) 44.5

PT + FT Herzig et al. (2020) 48.8
PT + FT Yu et al. (2021) 52.7

1-shot GPT-3 Direct 24.0
2-shot GPT-3 Direct 27.3
1-shot GPT-3 CoT 44.2
2-shot GPT-3 CoT 45.7
2-shot Codex CoT 48.8

Table 1: Experimental Results on WikiTableQuestions.
PT means pre-training and FT means fine-tuning.

GPT-3 is more likely to follow the logical operation
to derive the answers. With two demonstrations,
GPT-3 can achieve roughly 46% EM score. By
switching from GPT-3 to Codex, we are able to fur-
ther improve the EM score to over 48.8%. These
results are particularly surprising given that TAPAS
has a built-in module to complete symbolic oper-
ations, while GPT-3 was not trained on any table-
specific dataset. These results demonstrate GPT-3’s
built-in capabilities to perform diverse types of rea-
soning over tables.

FetaQA As demonstrated in Table 2, we compare
GPT-3 with different fine-tuned models from Nan
et al. (2022). Unlike the other datasets with short
phrase answers, the goal of this dataset is to gen-
erate a complete long-form answer. Unlike Wik-
iTableQuestion, the questions normally do not in-
volve complex operations like max, min, compare,
average, etc. The long-form answer is similar to
the role of CoT. Therefore, we only applied ‘di-
rect generation’ in this experiment. In terms of
BLEU score (Papineni et al., 2002), GPT-3 is still
a bit behind the fine-tuned T5-large. However, the
BLEU score cannot reflect the faithfulness and cor-
rectness of the model generation. Thus, we fol-
low Nan et al. (2021) to do human evaluation over
the four aspects: (1) fluency (whether the generated
sentence contains the linguistic error), (2) correct-
ness (whether the generated sentence answers the
question correctly), (3) faithfulness (whether the
generated sentence is grounded on the input table),
and (4) adequacy (whether the generated sentence
is comprehensive enough to cover all the answers).
We list our results in Table 3. Similarly, we also
sample 100 model predictions and manually evalu-
ate their quality and adopt binary scores for each

Type Model sacreBLEU

zero-shot Pipeline (Nan et al., 2022) 9.16
FT Pipeline (Nan et al., 2022) 11.00
FT T5-small (Nan et al., 2022) 21.60
FT T5-base (Nan et al., 2022) 28.14
FT T5-large (Nan et al., 2022) 30.54

1-shot GPT-3 Direct 26.88
2-shot GPT-3 Direct 27.02

Table 2: Experimental Results on FetaQA. PT means
pre-training and FT means fine-tuning.

Source Fluency Correct Adequate Faithful

Pipeline 85.2 25.4 23.6 23.6
T5-large 94.6 54.8 50.4 50.4
Human 95.0 92.4 95.6 95.6

GPT-3 98.0 84.0 78.0 90.0

Table 3: Human Evaluation Results on FetaQA.

example. As can be seen, GPT-3 can significantly
outperform T5-large over all the aspects, i.e. more
than 30% improvement over correctness, adequacy,
and faithfulness. The evaluation indicates that the
model output is almost on par with the average
human performance on this dataset.

TabFact As demonstrated in Table 4, we com-
pare GPT-3 against the other pre-trained and fine-
tuned models including TAPAS (Eisenschlos et al.,
2020), TAPEX (Liu et al., 2021), etc. We show
that GPT-3 direct prediction is already getting a de-
cent accuracy of 72%, which is slightly higher than
Logic FactChecker (Zhong et al., 2020). When
combined with CoT reasoning, the model accu-
racy increases to over 77%. Similar to before, we
found that Codex can generate more accurate rea-
soning chains, thus achieving better accuracy of
78.8%, which is only 2% lower than pre-trained
table understanding model TAPAS (Eisenschlos
et al., 2020). The more intriguing property about
LLM + CoT is that the intermediate rationale can
be produced without any training. All the existing
trained models do not have the capability to pro-
duce the intermediate reasoning steps due to the
lack of annotation in the dataset.

FEVEROUS We demonstrate our results on
FEVEROUS dev-set in Table 5 and compare
different-sized UnifiedSKG models (built with T5).
We found that GPT-3’s performance with direct
prediction is similar to UnifiedSKG-base. Similar
to TabFact, we found that the model performance
can be boosted with ‘chain of thoughts’ prompt-
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Type Model Overall

FT Chen et al. (2019) 65.1
FT Zhong et al. (2020) 71.1
FT Zhang et al. (2020) 73.2
FT Yang et al. (2020) 74.4
FT Lewis et al. (2020) 82.5

PT + FT Eisenschlos et al. (2020) 81.0
PT + FT Liu et al. (2021) 84.2

1-shot GPT-3 Direct 72.0
2-shot GPT-3 Direct 73.9
1-shot GPT-3 CoT 75.5
2-shot GPT-3 CoT 76.0
1-shot GPT-3 CoT+SC 77.3
2-shot Codex CoT 78.8

Table 4: Experimental Results on TabFact. PT means
pre-training and FT means fine-tuning.

Type Model Dev Set

FT Aly et al. (2021) 82.23
FT UnifiedSKG-base (Xie et al., 2022) 75.05
FT UnifiedSKG-large (Xie et al., 2022) 79.81
FT UnifiedSKG-3B (Xie et al., 2022) 82.40

1-shot GPT-3 Direct 74.20
2-shot GPT-3 Direct 75.22
1-shot GPT-3 CoT 75.70
2-shot GPT-3 CoT 76.44
1-shot GPT-3 CoT+SC 77.22

Table 5: Experimental Results on FEVEROUS. PT
means pre-training and FT means fine-tuning.

ing. The best-performing model is roughly between
UnifiedSKG-base and UnifiedSKG-large. Com-
pared to TabFact, the model’s overall performance
is weaker mainly because the table structure in
FEVEROUS is more irregular, containing lots of
segments and subtables. Such structural difficulties
pose great challenges to GPT-3.

Model Scaling We investigate the model scal-
ing’s impact on the final performance and plot our
findings in Figure 3. On the WebTableQuestions
dataset, we found that model size is essential for
achieving the best performance. As can be seen,
the 6.7B GPT-3 model is only achieving half of the
performance of the 175B GPT-3 model. Similarly,
on TabFact, we found that the smaller models with
6.7B or fewer parameters are almost getting ran-
dom accuracy, which is even worse than QA tasks.
This again suggests that LLMs’ reasoning ability
over web tables is emergent as the model scales up.

4.4 Case Study

We demonstrate a few examples in Figure 4 where
GPT-3 makes correct predictions. In the first exam-
ple, GPT-3 is able to first identify all the Belgian

0.35B 1.3B 6.7B 175B

14.5
20.2 22

46.4
50.7 50.3 52.6

77.2
WikiTableQuestions TabFact

Figure 3: The model performance with respect to model
size on WikiTableQuestions and TabFact.

riders from the table and then perform the addi-
tion of 3+3+1=7 precisely. In the second example,
GPT-3 can identify the players with the position
of ‘d’ and count the number correctly to refute a
false claim. In the third example, we can see that
GPT-3 is able to associate multiple blocks of in-
formation to generate a comprehensive long-form
answer. The elicited ‘chain of thoughts’ in these
examples are highly aligned with the underlying
semantic forms. These findings suggest that LLMs
like GPT-3 can provide high-quality explanations
to justify their decision-making.

We also provide a few mistakes made by GPT-3
in Figure 5. In the first example, GPT-3 miscounts
the ‘number of countries above 1 billion box office’
because it misidentifies ‘world’ also as a country.
In the second example, GPT-3 misunderstood ‘2nd
highest’ as ‘highest’, which leads to prediction er-
ror. In the last example, GPT-3 misunderstands the
semantics of the question and answers ‘left office
time’ instead of ‘took office time’. These examples
show the typical errors of grounding the inputs to
the wrong rows or columns of the table.

4.5 Analysis

Impact of Number of Shots First of all, we con-
duct an ablation study to understand the impact
of a number of shots in the final performance. In
order to control the budget, we only sample 200
samples from WikiTableQuestions, TabFact and
FEVEROUS for this ablation study. As can be seen
from Figure 7, GPT-3 is not quite sensitive to the
number of provided demonstrations. Increasing
from 1-shot to 2-shot can often benefit the model,
however, increasing the shot number further does
not yield more performance gain. We conjecture
that instruct fine-tuning used in GPT-3 (Ouyang
et al., 2022) can easily extrapolate the task mean-
ing, thus, having a single demonstration is already
enough for the model to understand the task.
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Figure 4: ‘Correct’ predictions from WikiTableQues-
tions, TabFact, and FetaQA datasets, where the ‘blue’
text are the outputs from the GPT-3, ‘red’ means the
correct rows to reference.

Quality Evaluation of Reasoning Chains We
conduct a human evaluation to assess whether GPT-
3 is making the correct prediction with the correct
reasons. Specifically, we sample 100 reasoning
paths from the correctly predicted examples and
manually study whether these reasoning chains are
grounded on the table or simply ‘hallucination’. As
can be seen from Figure 7, we found that around
90% of reasoning chains are faithful to the infor-

Figure 5: ‘Wrong’ predictions from WikiTableQues-
tions, TabFact, and FetaQA datasets, where ‘blue’ text
are the outputs from the GPT-3, ‘red’ means the region
of the correct cell to reference, and ‘green’ means the
reference trusted by GPT-3.

mation in the table, and only less than 10% of the
reasoning chains are hallucinated. Based on this
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Figure 6: k-shot ablation study over WikiTableQues-
tions and TabFact and FEVEROUS.
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Figure 7: human evaluation of ‘reasoning chains’ in
WikiTableQuestions, TabFact, and FEVEROUS.

evaluation, we believe that LLMs are not guessing
the answers correctly by chance.

We believe these ‘reasoning chains’ are useful
in many aspects: (1) the chains can provide a ra-
tionale to humans to justify the decision-making
process. (2) one of the notorious annotation tasks
is to annotate the ‘underlying’ semantic form for
many NLP tasks, which require expertise for hu-
man annotators, on the other hand, the annotation
cost is huge. Using GPT-3 to demonstrate useful
natural language ‘semantic forms’ could potentially
greatly lower the annotation burden of these tasks.

Impact of Table Size An important factor for
model performance is the size of the table. Here
we want to understand how relevant the model per-
formance is w.r.t the input table length. We group
the table token length into different groups like
‘0-100’, ‘100-200’, etc, and plot the group-wise ac-
curacy for WikiTables and TabFact in Figure 8. As
can be seen from the table, we found that GPT-3’s
performance is highly sensitive to the table size. As
the table size grows, the accuracy almost decreases
monotonically. After the table size exceeds 1000
tokens (e.g. 1500 word pieces), GPT-3’s perfor-
mance almost degrades to random guesses. This
ablation study reveals one of the drawbacks of us-
ing LLMs for table reasoning. To further enhance

LLMs’ performance, we need to develop better
methods to maintain more consistent performance
across different-sized tables.

0 200 400 600 800 1,000 1,200

table size in token length

TabFct WikiTQ

Figure 8: Model performance on WikiTableQuestions
and TabFact w.r.t the input table size.

Discussions In this study, we investigate the pos-
sibilities of prompting LLMs to perform complex
reasoning tasks over tables. However, we do not
believe LLM prompting can replace the existing
symbolic methods. LLMs have several favorable
properties: (1) no annotation is needed, and (2)
the functional coverage is broader than symbolic
methods. However, LLM prompting exhibits un-
predictable randomness and cannot generalize to
large tables. In contrast, symbolic models are (1)
agnostic to the table size, and (2) can reliably per-
form designed functions without much randomness.
But they in general require a significant amount of
annotated data to learn.

In conclusion, these two types of models are
complementary to each other. To push the limit
forward, we need to investigate how to combine
the merits of these two types of methods. For ex-
ample, the symbolic methods can perform certain
operations to narrow down to a targeted region in
the table, and then LLMs can be used to reason
over the limited information.

5 Conclusion

In this paper, we investigate whether the current
LLMs (GPT-3) can be directly utilized to perform
table reasoning tasks. Surprisingly, though LLMs
are not optimized for table-based tasks, we found
these models highly competent in performing com-
plex table reasoning tasks, especially when com-
bined with ‘chain of thoughts’ prompting. We be-
lieve this study can open new possibilities for LLM
application in table-related tasks to either directly
predict the output or to serve as an auxiliary tool
for annotating complex intermediate forms.
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Limitations

Our approach has several limitations: (1) the pro-
posed approach is still far from state-of-the-art
performance, and there is still room for improve
before it can be used as an alternative. (2) the
method is still costly, we show that the model can
only achieve superior performance when scaling
up. Smaller-sized models are still weak at table
reasoning. Therefore, we need to consider how
to empower smaller models with such reasoning
capabilities.
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