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Abstract

Extreme Multi-label Text Classification
(XMTC) has been a tough challenge in
machine learning research and applications
due to the sheer sizes of the label spaces and
the severe data scarcity problem associated
with the long tail of rare labels in highly
skewed distributions. This paper addresses the
challenge of tail label prediction by leveraging
the power of dense neural retrieval model
in mapping input documents (as queries) to
relevant label descriptions. To further enhance
the quality of label descriptions, we propose
to generate pseudo label descriptions from a
trained bag-of-words (BoW) classifier, which
demonstrates better classification performance
under severe scarce data conditions. The
proposed approach achieves the state-of-the-art
(SOTA) performance of overall label prediction
on XMTC benchmark datasets and especially
outperforms the SOTA models in the tail label
prediction. We also provide a theoretical
analysis for relating the BoW and neural
models w.r.t. performance lower bound.

1 Introduction

Extreme multi-label text classification (XMTC) is
the task of tagging documents with relevant labels
in a very large and often skewed candidate space.
It has a wide range of applications, such as assign-
ing subject topics to news or Wikipedia articles,
tagging keywords for online shopping items, clas-
sifying industrial products for tax purposes, etc.

The most difficult part in solving the XMTC
problem is to train classification models effectively
for the rare labels in the long tail of highly skewed
distributions, which suffers severely from the lack
of sufficient training instances. Efforts addressing
this challenge by the text classification community
include Bayesian modeling of graphical dependen-
cies among labels (Gopal and Yang, 2010; Gopal
et al., 2012), novel loss or regularization of label
embeddings (Babbar and Schölkopf, 2019a; Wei
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Figure 1: The classification performance of X-
Transformer and DEPL (ours) measured in macro-
averaged F1@19 on the Wiki10-31K dataset.

et al., 2021), clustering-based algorithms (Chang
et al., 2020; Khandagale et al., 2019; Prabhu et al.,
2018), and so on. Despite the remarkable pro-
gresses made so far, the problem is still very far
from being well solved. Figure 1 shows the per-
formance of X-Transformer (Chang et al., 2020),
one of the state-of-the-art (SOTA) XMTC models,
on the Wiki10-31K benchmark dataset (with over
31k labels). The horizontal axis is the ranks of the
labels sorted from rare to common and the vertical
axis is the text classification performance measured
in macro-averaged F1@19 (higher the better) for
binned labels (100 labels per bin). The blue curve
is the result of X-Transformer, which has the scores
close to 0 (worst possible score) for nearly half of
the total labels. In other words, SOTA methods in
XMTC still perform poorly in tail label prediction.

In this paper, we seek solutions for tail label pre-
diction from a new angle: we introduce a novel
framework, namely the Dual Encoder with Pseudo
Label (DEPL). It treats each input document as a
query and uses a neural network model to retrieve
relevant labels from the candidate space based on
the textual descriptions of the labels. The under-
lying assumption is, if the label descriptions are
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highly informative for text-based matching, then
the retrieval system should be able to find relevant
labels. The system would be particularly helpful
for tail label prediction as the retrieval effective-
ness does not necessarily rely on the availability of
a large number of training instances, which is what
the tail labels are lacking.

The next research question that we tackle is how
to obtain highly informative descriptions for each
label without human annotation. In reality, class
names are often available but they are typically
one or two words, which cannot be sufficient for
retrieval-based label prediction. Therefore, we pro-
pose to augment the label description with statis-
tical learning algorithms. Specifically, we train
linear support vector machine (SVM) model with
the bag-of-words (BoW) features, such as tf-idf, to
automatically generate informative keywords for
each label, which we call the pseudo description
of the label. Since the learned label embeddings of
the BoW classifier encode token importance infor-
mation, it is natural and efficient to leverage them
for keywords extraction. In sections 4 and 6, we
further provide theoretical motivations and empiri-
cal evidence to show the advantage of unsupervised
statistical features for classification under extreme
scarce data conditions.

The result of our approach (DEPL) is shown
as the red curve in Figure 1, which significantly
outperforms the blue curve of X-Transformer not
only in the tail-label region but also in all other
regions. We also observed similar improvements by
DEPL over strong baselines on other benchmark
datasets (see section 6). Our main contributions are
summarized as the following:

1. We propose DEPL, a retrieval-based model
to alleviate the difficulty in tail label pre-
diction by matching the semantics between
documents and augmented label descriptions
which are generated automatically by a statis-
tical model with BoW features.

2. We provide theoretical analyses to motivate
the usage of BoW feature for classification
under scarce data setting, and prove a perfor-
mance lower bound of the neural model.

3. We did extensive experiments with different
tail label evaluation metrics to show that our
method significantly and consistently outper-
forms strong baselines on multiple challeng-
ing benchmark datasets.

2 Related Work

XMTC Classifier Traditional BoW classifiers
rely on the bag-of-words features such as one-hot
vector with tf-idf weights, which capture the word
importance in a document. Examples include one-
vs-all SVM models such as DiSMEC (Babbar and
Schölkopf, 2017), ProXML (Babbar and Schölkopf,
2019b), PPDSparse (Yen et al., 2017), tree-based
models such as Parabel (Prabhu et al., 2018) and
Bonsai (Khandagale et al., 2019).

To compensate for the lack of semantics in BoW
features, deep learning models were proposed for
XMTC. Examples include CNN-based models such
as XML-CNN (Liu et al., 2017) and SLICE (Jain
et al., 2019), RNN-based models such as Atten-
tionXML (You et al., 2018) and Transformer-based
models such as X-Transformer (Chang et al., 2020),
LightXML (Jiang et al., 2021) and APLC-XLNet
(Ye et al., 2020).

Label Description The SiameseXML (Dahiya
et al., 2021) for XMTC encodes both input docu-
ments and label descriptions with pretrained word
embeddings with shallow networks and leverages
the embedding matching. The SOTA pretrained
Transformer-based models (Chang et al., 2020;
Jiang et al., 2021) leverage the label descriptions to
build label clusters. To generate label descriptions,
Chai et al. (2020) adopt reinforcement learning to
produce extended label descriptions from prede-
fined label descriptions. However, the algorithm
can not scale to the extreme label space and relies
on the availability of sufficient training data.

3 Proposed Method

3.1 Preliminaries
Let D = {(xi,yi)

Ntrain
i=1 } be the training data where

xi is the input text and yi ∈ {0, 1}L are the binary
ground truth labels of size L. Given an instance
x and a label l, a classification system produces a
matching score of the text and label:

f(x, l) = ⟨ϕ(x),wl⟩

where ϕ(x) represent the document feature vector
and wl represents the label embedding of l. The
dot product ⟨·, ·⟩ is used as the similarity function.

Typically, the label embedding wl is randomly
initialized and trained from the supervised signal.
While learning the embedding as free parameters is
expressive when data is abundant, it could be diffi-
cult to be optimized under the scarce data situation.
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Figure 2: The proposed DEPL framework. First, we train a BoW classifier (SVM) and extract the top keywords
from the label embeddings according to the learned token importance. Then, we concatenate the keywords with the
original label names to form pseudo descriptions. Finally, we leverage the neural retrieval model to rank the labels
according to semantic matching between document text and label descriptions.

Sketch of Method DEPL tackles the long-tailed
XMTC by neural retrieval with generated pseudo
label descriptions, as shown in figure 2. Instead
of learning the label embedding from scratch, the
retrieval module directly leverages the semantic
matching between the document and label text,
providing a strong inductive bias on tail label pre-
diction. Next, we introduce the components of our
system in details.

3.2 Generated Pseudo Label Description
As the provided label names are usually short and
noisy, we augment it with generated pseudo label
description from a SVM model. As the tf-idf fea-
tures ϕt(x) used by SVM are sparse, we also call
the statistical model a sparse model:

fsparse(x, l) = ⟨ϕt(x),w
svm
l ⟩

The label embedding weight wsvm
l is optimized

with the hinge loss:

Lhinge =
1

LB

B∑

i=1

L∑

l=1

max(0, 1− ỹl ·fsparse(xi, l))

where ỹl = 2yl − 1 ∈ {−1, 1}, B is the batch size.
For a trained SVM model, wsvm

l has the dimen-
sion equal to the vocabulary size and each value

wsvm
li of the label embedding denotes the learned

importance of the token i w.r.t label l. We select
the top k most important tokens (ranked according
to the importance score) as keywords, which are
appended to the original label name to form the
pseudo label description:

pseudo_label(l) = label_name(l)⊕keywords(l)

where ⊕ is the append operation.

3.3 Retrieval Model with Label Text
DEPL leverages the semantic matching of doc-
ument and label texts via a dual encoder model
(Gao and Callan, 2021; Xiong et al., 2020; Luan
et al., 2020; Karpukhin et al., 2020). We use the
BERT (Devlin et al., 2018) model as the backbone
of our neural encoder, which is shared for both the
document and label text encoding. Since a neural
model encodes textual inputs into condensed vector
representations, we call them dense models.

The similarity between text and label representa-
tion is measured by:

fdual(x, l) = ⟨ϕdoc(x), ϕlabel(text(l))⟩

where text(l) is the textual information of the label
l. When the textual information only includes the
label name given in the dataset, we call the model
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DE-ret. Otherwise, when the textual information
includes the generated pseudo label description, we
call the model DEPL.

The document embedding ϕdoc(x) is obtained
from the CLS embedding of the BERT model fol-
lowed by a linear pooling layer:

ϕdoc(x) = Wdoc · BERT(x, CLS) + bdoc

where BERT(x, CLS) represents the contextual-
ized embedding of the special CLS token. Wdoc

and bdoc are the weights and biases for the docu-
ment pooler layer.

For the label embedding ϕlabel(text(l)), we take
an average of the last hidden layer of BERT fol-
lowed by a linear pooler layer:

ϕlabel(text(l)) = Wlabel · ψbert(text(l)) + blabel (1)

ψbert(text(l)) =
1

| text(l)|

| text(l)|∑

j=1

BERT(text(l), j) (2)

where BERT(text(l), j) represents the contextual-
ized embedding of the j-th token in text(l) ob-
tained from the last hidden layer of the BERT
model. Wlabel and blabel are the weights and bi-
ases for the label pooler layer. In the equation 2,
the average embedding of label tokens yields better
performance empirically than the CLS embedding
possibly because the keywords are not natural lan-
guage, and BERT may not effectively aggregate
such type of information into CLS.

Learning with Negative Sampling Since cal-
culating all the label embeddings for each batch
is both expensive and prohibitive by the memory
limit, we resort to negative sampling strategies for
in-batch optimization. Specifically, we sample a
fixed-sized subset of labels for each batch contain-
ing: 1) all the positive labels of the instances in the
batch, 2) the top negative predictions by the sparse
classifier as the hard negatives, and 3) the rest of
the batch is filled with uniformly random sampled
negatives labels.

Let Sb be the subset of labels sampled for a batch.
The objective for the dual encoder is:

Ldual = −
1

B|Sb|
B∑

i=1

( ∑

p∈y+
i

log σ(fdual(xi, p))

+
∑

n∈Sb\y+
i

log σ((1− fdual(xi, n)))

)

where B is the batch size, y+
i is the positive labels

for instance i, and σ is the sigmoid function.

3.4 Connection of Sparse and Dense Model

Complementary features: the sparse model uses the
tf-idf feature based on corpus-level token statistics,
while the dense model relies on the knowledge of
the language learned during pretraining. The two
types of features focus on different aspects of the
text corpus and the combination of the two brings
gains in performance.
Difference from ensemble: utilizing the augmented
text for retrieval is better than a pure ensem-
ble of sparse and dense methods such as in X-
Transformer. In the ensemble method, the semantic
meaning of important tokens in a label embedding
learned from sparse classifier is not leveraged. By
extracting the keywords from the sparse label em-
bedding and presenting them as pseudo label de-
scriptions, our model can additionally exploit the
value of those key token semantics.

3.5 Enhance Classification with Retrieval

Our introduced retrieval model can be combined
with a neural classifier for a performance boost
on overall label classification (since our retrieval
model is primarily targeted on improving tail label
performance). In a neural classification system, the
label embedding is treated as free parameters to be
learned from supervised data, which is more ex-
pressive for labels with abundant training instances.
The neural classifier learns the function:

fcls(x, l) = ⟨ϕdoc(x),w
cls
l ⟩ (3)

We propose to enhance the classification model
with the retrieval mechanism by jointly fine-tuning:

fdual-cls(x, l) =
σ(fdual(x, l)) + σ(fcls(x, l))

2
(4)

The classification and retrieval modules share the
same BERT encoder. We refer to the system as
DEPL+cls. The object function Ldual-cls is similar
to Ldual except for replacing fdual with fdual-cls.

The DEPL+cls model looks like an ensemble of
the two systems at first sight, but there are two ma-
jor differences: 1) As the BERT encoder is shared
between the classification and retrieval modules,
it doesn’t significantly increase the number of pa-
rameters as in (Chang et al., 2020; Jiang et al.,
2021); and 2) when the two modules are optimized
together, the system can take advantages of both
units according to the situation of head or tail label
predictions.
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4 Theoretical Analyses of DEPL

4.1 Rethinking Dense and Sparse Model for
Imbalanced Text Classification

We analyze dense and sparse models from a gra-
dient perspective for classification problems with
skewed label distribution.
Preliminary: The predicted probability optimized
by the binary cross entropy (BCE) loss is:

LBCE = −
L∑

l=1

yl log pl + (1− yl) log(1− pl)

The derivative of LBCE w.r.t the logits sl is:

∂LBCE

∂sl
=

{
pl − 1 if yl = 1

pl otherwise
(5)

Q1: Why would sparse model with BOW feature
benefit tail label prediction?

Applying the chain rule to equation 5, the gradi-
ent of LBCE w.r.t the document feature ϕn(x) is:

∂LBCE(yl, pl)

∂ϕn(x)
=

{
(pl − 1)wl if yl = 1

plwl otherwise

By optimizing parameters θ of feature extractor,
the document representation is encourage to move
away from the negative label representation, that
is:

ϕn(x; θ
′)← ϕn(x; θ)− ηplwl

where η is the learning rate.
For a dense model, the parameter θ of the fea-

ture extractor (such as BERT) is shared for all the
data, so the optimization of the feature extractor is
affected by the distribution of labels in the train-
ing data. Since a tail label appears more often
as a negative target, the feature extractor is likely
to under-represent the tail label information, mak-
ing a tail label more difficult to be predicted. In
comparison, the sparse feature like tf-idf is derived
in an unsupervised manner from corpus statistics,
which is independent of training label distribution.
Therefore, the sparse feature may maintain better
representation power to separate the tail labels.

Q2: What is the advantage of a retrieval system on
tail label prediction?

In a typical classification system, labels are
treated as indices whose embeddings are randomly

initialized and learned from supervised signals.
The gradients of LBCE w.r.t the label feature is:

∂LBCE(yl, pl)

∂wl
=

{
(pl − 1)ϕn(x) if yl = 1

plϕn(x) otherwise

The label embedding is updated by:

w′
l = wl +

η

Ntrain

∑

i:yil=1

(1− pil)ϕn(xi)

− η

Ntrain

∑

i:yil=0

pilϕn(xi)

As most of the instances are negative for a tail la-
bel, the update of tail label embedding is inundated
with the aggregation of negative features, making it
hard to encode distinctive feature reflecting its iden-
tity. Therefore, learning the tail label embedding
from supervised signals alone can be distracting.
Although previous works leverage negative sam-
pling to alleviate the problem (Jiang et al., 2021;
Chang et al., 2020), we argue that a fundamental
solution is to inject the label information into the
embedding. Our proposed retrieval system presents
a natural way to incorporate label text for enhanced
performance of tail label prediction.

4.2 Analysis on Performance Lower Bound
We will show the connection between DEPL and a
sparse SVM classifier (for pseudo label extraction)
by a performance lower bound. Specifically, DEPL
outperforms a sparse model with high probability
given that the selected keywords are important and
the sparse classifier can separate the positive from
the negative instances with non-trivial margin.
Notation: Let ϕt(x) be the normalized tf-idf fea-
ture vector of text with ∥ϕt(x)∥2 = 1. The
sparse label embeddings {w1, . . . ,wL} satisfies
∥wl∥2 ≤ 1, wli > 0. In fact, label embeddings
can be transformed to satisfy the condition without
affecting the prediction rank. Let zl be the top se-
lected keywords from the sparse classifier, which
is treated as the pseudo label. Define the sparse
keyword embedding vl with vli = wli if i is an
index of selected keywords and 0 otherwise.

In the following, we define the keyword impor-
tance and the classification error margin.
Definition 1. For label l and δ ≥ 0, the sparse key-
word embedding vl is δ-bounded if ⟨ϕt(x),vl⟩ ≥
⟨ϕt(x),wl⟩ − δ.
Definition 2. For two labels p and n, the error
margin µ is the difference between the predicted
scores µ(ϕ(x),wp,wn) = ⟨ϕ(x),wp −wn⟩.
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The main theorem is stated as below:

Theorem 3. Let ϕt(x) and ϕn(x) be the sparse
and dense (dimension d) document feature, wl

be the label embedding and zl be the δ-
bounded keywords. For a positive label p, let
Np = {n1, . . . , nMp} be a set of negative labels
ranked lower than p. The error margin ϵi =
µ(ϕt(x),wp,wni) and ϵ = min({ϵ1, . . . , ϵMp}).
An error Ei of the neural classifier occurs when

µ(ϕn(x), ϕn(zp), ϕn(zni)) ≤ 0 (6)

The probability of any such error happening satis-
fies

P (E1 ∪ . . . ∪ EMp) ≤ 4Mp exp(−
(ϵ− δ)2d

50
)

When (ϵ − δ) ≥ 10
√

logMp

d , the probability is
bounded by 1

Mp
.

Discussion: An error event occurs when the sparse
model makes a correct prediction but the neural
model doesn’t. If the neural model avoids all such
errors, the performance should be at least as good
as the sparse model, and Theorem 3 gives a bound
of that probability.

The term δ measures the importance of selected
keywords (smaller the more important), the error
margin ϵ measures the difficulty the correctly pre-
dicted positive and negative pairs by the sparse
model. The theorem states that the model achieves
a lower bound performance as sparse classifier if
the keywords are informative and error margin is
non-trivial. Proofs are in section A.2 for interested
readers and limitations are discussed in section 8.

5 Evaluation Design

Dataset Ntrain Ntest L̄d L |Ltail|
EURLex-4K 15,539 3,809 5.30 3,956 2,413
AmazonCat-13K 1,186,239 306,782 5.04 13,330 3,936
Wiki10-31K 14,146 6,616 18.64 30,938 26,545
Wiki-500K 1,779,881 769,421 4.75 501,070 338,719

Table 1: Corpus Statistics: Ntrain and Ntest are the num-
ber of training and testing instances respectively; L̄d is
the average number of labels per document, and L is
the number of unique labels. |Ltail| is the number of tail
labels with 1 ∼ 9 positive training instances.

5.1 Datasets
We conduct our experiments on 4 benchmark
datasets: EURLex-4K, AmazonCat-13K, Wiki10-
31K and Wiki-500K. The statistics of the datasets

are shown in Table 1. An unstemmed version of
EURLex-4K is obtained from the APLC-XLNet
github1 and the rest are from the Extreme classifi-
cation Repository2.

For comparative evaluation of methods in tail la-
bel prediction, we consider the subset of labels with
1 ∼ 9 positive training instances. Those tail-label
subsets correspond to 63.48%, 29.53%, 88.65%
and 67.60% of the total labels in the 4 datasets
respectively. With mostly more than half of the
labels as tail labels, the distributions are indeed
highly skewed.

5.2 Tail Label Evaluation Metrics

Micro-averaged PSP@k: The PSP (Jain et al.,
2016a) metric re-weights the score of each instance
according to the label frequency:

PSP@k =
1

k

k∑

l=1

1y(pl)

prop(pl)

where the propensity score prop(pl) in the denom-
inator gives higher weights to tail labels.

Since the micro-averaged metric gives an equal
weight to the per-instance scores, it can still be
dominated by the system’s performance on the head
labels but not the tail labels. As an alternative, we
adopt a macro-averaged metric to evaluate tail label
performance.
Macro-averaged F1@k: The macro-averaged
metric (Yang and Liu, 1999) gives an equal weight
to all the labels (we apply it to tail labels specif-
ically). It is defined as the average of the label-
specific F1@k values, calculated based on a con-
tingency table for each label, as shown in table 2.
The precision, recall and F1 for a predicted ranked
list of length k are computed as P = TP

TP+FP ,R =
TP

TP+FN , and F1 = 2 P ·R
P+R .

Table 2: Contingency table for label l.

l is true label l is not true label
l predicted True Positive (TPl) False Positive (FPl)

l not predicted False Negative (FNl) True Negative (TNl)

For micro-averaged PSP@k, we choose k =
1, 3, 5 as in previous works. For macro-averaged
F1@k, we choose k = 19 for Wiki10-31K because
it has an average of 18.64 labels and k = 5 for the
rest datasets.

1https://github.com/huiyegit/APLC_XLNet.git
2http://manikvarma.org/downloads/XC/

XMLRepository.html
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5.3 Baselines

For the tail label evaluation, our method is com-
pared with the SOTA deep learning models includ-
ing X-Transformer (Chang et al., 2020), XLNet-
APLC (Ye et al., 2020), LightXML (Jiang et al.,
2021), and AttentionXML (You et al., 2018). X-
Transformer, LightXML, and XLNet-APLC em-
ploy pre-trained Transformers for document rep-
resentation. We reproduced the results of sin-
gle model (given in their implementation) predic-
tions with BERT as the base model for LightXML,
BERT-large for X-Transformer, XLNet for XLNet-
APLC, and LSTM for AttentionXML. The Atten-
tionXML utilizes label-word attention to generate
label-aware document embeddings, while the other
models generate fixed document embedding.

We use the SVM model with tf-idf feature as our
choice of sparse classifier and BERT-base as our
dense model for neural retrival and classification.
Implementation details, more baselines and settings
are discussed in appendix A.1.

6 Evaluation Results

Our experiments reveal the effectiveness of our
model on the tail label prediction and we also in-
clude and discuss the performance on the overall
prediction in appendix A.1.4.

6.1 Results in Tail Label Prediction

SVM on Tail Label Prediction The results eval-
uated with the F1 metric averaged on the tail la-
bels are shown in figure 3. Surprisingly, a simple
statistical SVM baseline achieves competitive re-
sults on the tail label predictions. We observe that
SVM model can outperform most of the pretrained
Transformer-based models on the tail label pre-
diction, and outperform the AttentionXML on the
Wiki10-31K dataset. This provides an empirical
evidence for the robust performance of a sparse
model on tail label prediction. As we analyzed
in section 4, the SVM model utilizes the unsuper-
vised statistical feature as document representation,
which potentially suffers less from the data scarcity
issue. The empirical result serves as an evidence
for our theoretical analysis that the joint optimiza-
tion of feature extractor and label embedding is
difficult when data is limited.

Neural Classifier on Tail Label Prediction
The neural classifiers include LightXML, X-
Transformer, XLNet-APLC and AttentionXML.

Specifically, the AttentionXML model leverages
a label-word attention to calculate a label spe-
cific document representation. As we observe in
figure 3, among the baseline models, the Atten-
tionXML performs the best on the tail label predic-
tions, beating the other baselines on 3 out of the
4 benchmark datasets. The superior performance
could come from the local word and label matching
which benefits the tail label prediction.

As mentioned in section 3, X-Transformer model
ensembles a neural classifier and a SVM model by
directly summing the prediction scores. Although
X-Transformer outperforms SVM on the overall la-
bel prediction, it underperforms SVM on 3 out of 4
benchmark datasets. This shows that model perfor-
mance on tail label is dragged down by the neural
model prediction, and a simple ensemble does fully
exploit the advantage of the sparse model. Com-
pared with the X-Transformer, our model achieves
better performance on both macro-F1 and micro-
PSP metrics, showing the advantage of leveraging
the retrieval of augmented label descriptions rather
than a pure ensemble.

DEPL Performance On the 3 smaller scale
benchmark datasets, EURLex-4K, AmazonCat-
13K and Wiki10-31K, our model directly ranks
all the labels. On the large Wiki-500K dataset, our
model leverages the prediction of cluster-based al-
gorithm in X-Transformer and replaces the reranker
with our retrieval model.

Our proposed models perform the best on the
Macro-F1 metric with the DEPL model consis-
tently and significantly showing the best perfor-
mance on all the benchmark datasets. A macro
t-test (Yang and Liu, 1999) is conducted to jus-
tify the significance of improvement over the SVM
and previous best neural model. The significant
performance gains over the SVM model shows
that our retrieval framework can outperform the
sparse model which serves as label keywords ex-
tractor. We attribute the success of model on tail
label prediction to the retrieval module that focuses
on the semantic matching between the document
and label text. The DEPL performs better than the
DEPL+cls as it is less affected by the large amount
of training instances for head labels and thus more
biased on the tail label prediction.

According to the evaluation with the PSP metric
shown in table 3, it also confirms that our proposed
models DEPL and DEPL+cls improves over the
previous SOTA neural models on all the benchmark
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Figure 3: Tail-label prediction results in F1@k on the labels with 1 ∼ 9 positive training instances, with k = 19
for the Wiki10-31K dataset and k = 5 for the rest. ∗ and † indicates the macro t-test is significant (p < 0.05) over
SVM and previous best neural model respectively.

Table 3: Tail label prediction results of methods in PSP@k, with ∗ indicating significant improvement (p < 0.05)
over the previous best model on the micro sign test.

EURLex-4K Wiki10-31K AmazonCat-13K Wiki-500K

Methods PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5

X-Transformer 37.85 47.05 51.81 13.52 14.62 15.63 51.42 66.14 75.57 31.20 36.78 40.21
XLNet-APLC 42.21 49.83 52.88 14.43 15.38 16.47 52.55 65.11 71.36 29.73 30.26 30.59

LightXML 40.54 47.56 50.50 14.09 14.87 15.52 50.70 63.14 70.13 31.01 37.10 39.28
AttentionXML 44.20 50.85 53.87 14.49 15.65 16.54 53.94 68.48 76.43 30.05 37.31 41.74

SVM 39.18 48.31 53.37 11.84 14.00 15.81 51.83 65.41 72.82 32.12 32.75 35.20

DEPL 45.60* 52.28* 53.52 17.20* 16.90* 16.95 55.94* 70.01* 76.87* 32.07 40.60* 43.74*
DEPL+cls 44.60 52.74* 54.64 16.73* 16.84* 16.67 55.21* 69.73* 75.94 32.18 39.89* 41.46

Table 4: Examples of SVM generated keywords from Wiki10-31K. The classifier is trained with only 1 positive
training instance per label. The top 20 keywords are shown. with meaningful words highlighted in red manually.

Label Text #training instance Top Keywords

phase4 1 trials clinical protection personal directive processed data trial drug phase eu
processing patients sponsor controller legislation regulation art investigator study

ensemble 1 boosting kurtz ferrell weak algorithms learners misclassified learner kearns ensemble
charges bioterrorism indictment doj indict cae correlated 2004 reweighted boost

kakuro 1 nikoli kakuro puzzles crossword clues entries entry values sums cells
cross digits dell solvers racehorse guineas aa3aa digit clue kaji

datasets, with ∗ indicates significant improvement
(p < 0.05) over the previous best model on the
micro sign test (Yang and Liu, 1999). The Wiki10-
31K dataset has the most skewed distribution as
the most frequent label covers more than 85% of
the training instances, resulting in a low PSP score.
Since DEPL relies on the semantic matching be-
tween the document and label text, it is less af-
fected by the dominating training pairs, and thus
the PSP@1, PSP@3 beats the SOTA models by a
larger margin. The DEPL+cls achieves worse per-
formance on this dataset, because the classification
counterpart of the model would benefit more on

the head label predictions and tend to rank the head
labels at the top.

Metric Comparison Although the PSP metric
gives higher weight to the tail labels, it is a micro-
averaged metric over the scores of each instance,
which can still be affected by the performance on
the more common categories that cover most of
the instances. For example, SVM model doesn’t
stand out under the PSP metric, which has lower
overall label performance. Since the F1 metric is
calculated specifically on the set of tail labels, we
argue that it provides a more accurate and fine-
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grained evaluation on tail label prediction, which
better reveals the success of XMTC models on
predicting rare categories.
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Figure 4: The ablation-test results of DEPL in Macro-
averaged F1@k metric with varying length of pseudo
label descriptions.

6.2 Ablation on Generated Pseudo Label

Table 4 shows examples of the SVM generated
keywords trained on the Wiki10-31K dataset for
labels with only 1 training example. We manually
highlight the meaningful terms related to the label
meaning. For example, the label name phase4 is
ambiguous, whose meaning needs to be inferred
from the corresponding document. From the key-
words trial, clinical, drug, etc, we deduce that the
topic is about medical testing phase. In another
example, kakuro is a Japanese logic puzzle known
as a mathematical crossword and the game play
involves in adding number in the cells. Generating
a description for kakuro requires the background
knowledge, but the keywords automatically learned
from the sparse classifier provide the key concepts.
Although not all the keywords can provide rich
semantics to complement the original label name,
they may serve as a context for the label to make it
more distinguishable from others.

In figure 4, we conduct an ablation test on the
length of the pseudo label and the performance is
measured by Macro-avg F1@k. The BERT clas-
sifier is included as a baseline with no label text
information. As we observe that the longer de-
scription of length 16 performs the better, but when
length is 32, the performance doesn’t increase as
the text may become noisy with more unrelated
keywords.

The DE-ret model is a pure retrieval baseline
(avg length 3) with only the label name. While it
achieves good performance on the EURLex-4K and
AmazonCat-13K datasets, it still performs poorly
on the Wiki10-31K dataset. This shows that gen-
erating the keywords from the sparse classifier can
enhance the text quality. Furthermore, the gener-

ated text allows DEPL to use the semantic infor-
mation of the label keywords, which is ignored in
the SVM model. This could be another reason why
our model performs better than the SVM baseline
on the Wiki10-31K dataset.

7 Conclusion

In this paper, we propose a novel neural retrieval
framework (DEPL) for the open challenge of tail-
label prediction in XMTC. By formulating the prob-
lem as to capture the semantic mapping between
input documents and system-enhanced label de-
scriptions, DEPL combines the strengths of neural
embedding based retrieval and the effectiveness of
a large-marge BoW classifier in generating informa-
tive label descriptions under severe data sparse con-
ditions. Our extensive experiments on very large
benchmark datasets show significant performance
improvements by DEPL over strong baseline meth-
ods, especially in tail label description.

8 Limitations

Our paper mainly focuses on the evaluation and im-
provement over the pretrained Transformer-based
models such as X-Transformer, LightXML and
APLC-XLNet by leveraging the recent advances
in dense retrieval with BERT model. However,
there are other works such as proposing reranking
losses (Wei et al., 2021), regularization (Babbar
and Schölkopf, 2019a) with other architectures are
not included for comparison.

As pointed out by the reviewers, the performance
bound analysis in section 4 adopts a strong assump-
tion that the neural embeddings are random matri-
ces. This could be very different in real application
because the random matrices do not encode any
semantic information. We acknowledge this lim-
itation and provide more references on that. We
rely on the mathematical tool based on random ma-
trix theory, namely the Johnson-Lindenstrauss (JL)
lemma. This tool was also adopted by Luan et al.
(2020) under information retrieval setting, which
provides the connection between dense and sparse
retrievers. The bound is on its loose end because
embeddings from BERT are more meaningful than
random matrices (also verified from their empirical
study). In our work, we study use the JL lemma to
connect sparse and dense classifiers. The bound is
reasonable considering that it is on its loose end,
but, still, there is no guarantee when applied with
real BERT embeddings.
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A Appendix

A.1 Experiments

A.1.1 All-label Evaluation Metric
We introduce the micro-averaged P@k as the met-
ric for all-label prediction. Given a ranked list of
the predicted labels for each test document, the
micro-averaged P@k is:

P@k =
1

k

k∑

i=1

1y+
i
(pi) (7)

where pi is the i-th label in the list p and 1y+
i

is
the indicator function.

A.1.2 More Baseline
For the overall prediction of all labels, we
also include the baselines of sparse classifiers:
DisMEC (Babbar and Schölkopf, 2017), Pfas-
treXML (Jain et al., 2016b), Parabel (Prabhu et al.,
2018), Bonsai (Khandagale et al., 2019), and we

use the published results for comparison. We pro-
vide an implementation of linear SVM model with
our extracted tf-idf features as another sparse base-
line, and a BERT-base classifier as another dense
classifier (used to initialize DEPL).

A.1.3 Implementation Details
For the sparse model, since the public available
BoW feature doesn’t have a vocabulary dictio-
nary, we generate the tf-idf feature by ourselves.
We tokenize and lemmatize the raw text with the
spaCy (Honnibal and Montani, 2017) library and
extract the tf-idf feature with the Sklearn (Pe-
dregosa et al., 2011) library, with unigram whose
df count is >= 2 and df frequency <= 70% of the
total documents.

We use the BERT model as the contextualize
function for our retrieval model, which is initial-
ized with a pretrained dense classifier. Specifi-
cally, we fine-tune a 12 layer BERT-base model
with different learning rates for the BERT encoder,
BERT pooler and the classifier. The learning
rates are (1e − 5, 1e − 4, 1e − 3) for Wiki10-
31K and (5e − 5, 1e − 4, 2e − 3) for the rest
datasets. For the negative sampling, we sample
batch of 500 instances for Wiki10-31K, and 300 for
EURLex-4K and AmazonCat-13K. For Wiki-500K
dataset, we leverage the cluster-based algorithm in
X-Transformer, and perform label re-ranking using
our DEPL model to replace the linear model in X-
Transformer. We use a negative batch size of 500
for to train the re-ranker.

We include 10 hard negatives predicted by the
SVM model for each instances. We used learn-
ing rate 1e − 5 for fine-tuning the BERT of our
retrieval model and 1e− 4 for the pooler and label
embeddings. For the pseudo label descriptions, we
concatenate the provided label description with the
generated the top 20 keywords. The final length is
truncated up to 32 tokens after BERT tokenization.
We use length 16 of pseudo label description as the
default setting for DEPL.

A.1.4 Results in All-label Prediction
The performance of our models evaluated on the
all-label prediction by the micro-averaged P@k
metric is reported in table 5. Our model is com-
pared against the SOTA sparse and dense classifiers.
DEPL+c achieves the best or second best perfor-
mance on all the 4 benchmark datasets, achieving
comparable results to the previous best SOTA mod-
els.
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EURLex-4K Wiki10-31K AmazonCat-13K Wiki-500K

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

DisMEC 83.21 70.39 58.73 84.13 74.72 65.94 93.81 79.08 64.06 70.21 50.57 39.68
PfastreXML 73.14 60.16 50.54 83.57 68.61 59.10 91.75 77.97 63.68 56.25 37.32 28.16
eXtremeText 79.17 66.80 56.09 83.66 73.28 64.51 92.50 78.12 63.51 65.17 46.32 36.15

Parabel 82.12 68.91 57.89 84.19 72.46 63.37 93.02 79.14 64.51 68.70 49.57 38.64
Bonsai 82.30 69.55 58.35 84.52 73.76 64.69 92.98 79.13 64.46 69.26 46.72 36.46

AttentionXML 85.12 72.80 61.01 86.46 77.22 67.98 95.53 82.03 67.00 75.20 56.42 44.10
X-Transformer 85.46 72.87 60.79 87.12 76.51 66.69 95.75 82.46 67.22 75.28 55.46 42.75
XLNet-APLC 86.83 74.34 61.94 88.99 78.79 69.79 94.56 79.78 64.59 72.95 51.23 38.64

LightXML 86.12 73.87 61.67 87.39 77.02 68.21 94.61 79.83 64.45 75.96 56.55 44.22
SVM 83.44 70.62 59.08 84.61 74.64 65.89 93.20 78.89 64.14 69.92 49.35 38.8

DEPL 85.38 71.86 59.91 84.63 74.80 65.96 94.86 80.85 64.55 74.69 55.72 42.71
DEPL+c 86.43 73.77 62.19 88.57 78.04 68.75 96.16 82.23 67.65 76.83 57.15 45.07

Table 5: The all-label prediction results of representative classification systems evaluated in the micro-avg P@k
metric. The bold phase and underscore highlight the best and second best model performance.

We argue that though our models perform sig-
nificantly better on the tail label prediction, the
improvement is not announced in the overall label
prediction. One of the problem is on the choice
of evaluation metric: the micro-averaged precision
metric is averaged over instances and can be dom-
inated by the common categories with more test
instances. Therefore, the metric is incapable of
reflecting the tail label performance. We want to
emphasis that over 26, 545 (88.65%) labels in the
Wiki10-31K dataset belong to the tail labels with
less than 10 training instances, constituting a ma-
jority of the label space. The overall classification
precision (P@k) only reflects a part of the success
of a classification system, and the tail label eval-
uation is yet another part. The results also shows
while our model improves on the tail label predic-
tion, the overall label prediction comparable to the
other dense and sparse SOTA models.

When our model is compared on the Wiki-500K
dataset, our backbone is the same as X-Transformer.
DEPL achieve on par performance with Wiki-500k
showing that the quality of overall ranking is simi-
lar. However, the DEPL+c achieves better perfor-
mance, demonstrating the enhanced performance
by combining retrieval with classification.

By comparing the DEPL+c and its retrieval-
based counterpart DEPL , we uncover a trade-off
between the head label and tail label prediction. We
observe that the DEPL outperforms the DEPL+c
on the tail label prediction, but not on the all-label
prediction. This shows that incorporating a classi-
fier with label embeddings trained from supervised

signal can boost performance on a high data regime.
The dense classifier could learn more expressive la-
bel representation from the frequent co-occurrence
of document and label pairs when the training in-
stances are abundant, while the retrieval system is
better at matching the semantic of document and
label texts when data is scarce. Each of the mod-
ules captures a certain aspect of the data heuristic
for text classification and a combination of them
by sharing the BERT encoder yields better perfor-
mance.

Lastly, the sparse classifiers generally underper-
form the neural models and are comparable to our
implement of SVM. We observe that DEPL can
outperform the sparse models, which agrees with
our theoretical analysis. Although the pseudo la-
bels are extracted from the SVM classifier, the neu-
ral retrieval model can additionally leverage the
keyword semantic information and correlation of
them, which is ignored in the SVM classifier. The
pseudo label descriptions encode both the term im-
portance and key semantics of labels.

A.1.5 More Ablation Tests
Model Pre-training We fine-tune our retrieval
model on a pre-trained neural classifier (BERT)
and table 6 shows that without using the pre-trained
model, there is a significant drop in the precision
and PSP metrics.

Negative Sampling We used the top negative pre-
dictions by the SVM model as the choice of hard
negative labels. By default, we use 10 hard nega-
tives for each instance in the batch. In table 6, we
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Table 6: Ablation-test results of DEPL under different
training conditions.

Methods P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

EUR-Lex

DE-ret -1.34 -1.18 -1.16 -3.2 -2.11 +0.18
w/o pre-train -6.81 -6.72 -6.16 -6.87 -7.09 -5.87
w/o neg -2.52 -2.63 -2.2 -3.59 -3.66 -1.9
5 hard negative -1.55 -1.19 -1.12 -3.57 -2.98 -1.32

Wiki10-31K

DE-ret -3.40 -7.71 -10.74 -7.63 -5.09 -1.20
w/o pre-train -4.81 -8.66 -12.1 -2.46 -2.00 -1.92
w/o hard negative -2.01 -5.89 -4.93 -1.15 -1.17 -1.37
5 hard negative -0.84 -3.03 -4.16 -1.22 -0.99 -0.92

Table 7: Ablation-test results of DEPL with CLS and
mean-pooling.

Methods PSP@1 PSP@3 PSP@5

EUR-Lex

DE-ret 44.87 52.17 53.40
DEPL with cls 42.32 47.26 47.53
DEPL with mean-pooling 45.60 52.28 53.52

Wiki10-31K

DE-ret 16.71 15.76 16.35
DEPL with cls 14.71 14.58 15.33
DEPL with mean-pooling 17.20 16.90 16.95

observe a performance drop when no hard nega-
tives or only 5 hard negatives are used for training.

CLS vs. Mean-pooling Table 7 shows an abla-
tion test for the design of label description encoder.
We observe that using a mean-pooling over the last
layer of label keyword embeddings outperforms
that using the CLS embedding by a large margin.
This could be because the label keywords are not
natural language the optimization using CLS em-
bedding is more difficult.
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A.2 Proof
We include the assumptions and proofs of Theorem 3.

Assumptions Similar to Luan et al. (2020), we treat neural embedding as fixed dense vector E ∈ Rd×v

with each entry sampled from a random Gaussian N(0, d−1/2). ϕn(x) = Eϕt(x) is weighted average of
word embeddings by the sparse vector representation of text. According to the Johnson-Lindenstrauss (JL)
Lemma (Johnson and Lindenstrauss, 1984; Ben-David et al., 2002), even if the entries of E are sampled
from a random normal distribution, with large probability, ⟨ϕt(x),v⟩ and ⟨Eϕt(x),Ev⟩ are close.

Lemma 4. Let v be the δ-bounded keyword-selected label embedding of w. For two labels p, n, the error
margins satisfy:

|µ(ϕt(x),wp,wn)− µ(ϕt(x),vp,vn)| ≤ δ

Proof. By the definition of δ-bounded keywords,

⟨ϕt(x),wp⟩ − δ ≤ ⟨ϕt(x),vp⟩ ≤ ⟨ϕt(x),wp⟩ (8)

− ⟨ϕt(x),wn⟩ ≤ −⟨ϕt(x),vn⟩ ≤ −⟨ϕt(x),wn⟩+ δ (9)

Adding equation 8 and equation 9 finishes the proof:

⟨ϕt(x),wp −wn⟩ − δ ≤ ⟨ϕt(x),vp − vn⟩ ≤ ⟨ϕt(x),wp −wn⟩+ δ (10)

Lemma 5. Let ϕt(x) and ϕn(x) be the sparse and dense (dimension d) document feature, wl be the
label embedding and zl be the δ-bounded keywords. Let p be a positive label and n be a negative label
ranked below p be the sparse classifier. The error margin is ϵ = µ(ϕt(x),wp,wn). An error E of neural
classification occurs when µ(ϕn(x), ϕn(zp), ϕn(zn)) ≤ 0. The probability P (E) ≤ 4 exp(− (ϵ−δ)2d

50 ).

Proof. By the JL Lemma (Ben-David et al., 2002): For any two vectors a, b ∈ Rv, let E ∈ Rd×v be a
random matrix such that the entries are sampled from a random Gaussian. Then for every constant γ > 0:

P
(
|⟨Ea,Eb⟩ − ⟨a, b⟩| ≥ γ

2

(
∥a∥2 + ∥b∥2

))
≤ 4 exp

(
−γ2d

8

)
(11)

Let γ = 2
5(ϵ− δ), a = ϕt(x) and b = vp − vn. Since ∥a∥2 = 1 and ∥b∥2 ≤ (∥vp∥2 + ∥vn∥2)2 ≤ 4, the

JL Lemma gives

P (|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ) (12)

≤ 4 exp(−(ϵ− δ)2d

50
) (13)

To complete the proof, we need to show P (E) ≤ Eq.12:

E =⇒ |⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩| ≥ ϵ (14)

=⇒ |⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| ≥ ϵ− δ (15)

where the equation 15 is derived by Lemma 4:

|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),vp − vn⟩| (16)

≥|⟨Eϕt(x),E(vp − vn)⟩ − ⟨ϕt(x),wp −wn⟩|− (17)

|⟨ϕt(x),wp −wn⟩ − ⟨ϕt(x),vp − vn⟩| (18)

≥ϵ− δ (19)

Therefore P (E) ≤ Eq.12, which completes the proof.
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Proof of Theorem 3

Proof. The Lemma 2 shows that

P (Ei) ≤ 4 exp(−(ϵi − δ)2d

50
) ≤ 4 exp(−(ϵ− δ)2d

50
) (20)

By an union bound on the error events {E1, E2, . . . , EMp},

P (E1 ∪ . . . ∪ EMp) ≤
Mp∑

i=1

4 exp(−(ϵi − δ)2d

50
) (21)

= 4Mp exp(−
(ϵ− δ)2d

50
) (22)

When (ϵ− δ)2 ≥ 10
√

logMp

d , we have exp(− (ϵ−δ)2d
50 ) ≤ 1

4Mp
2 and therefore P (E1∪ . . .∪EMp) ≤ 1

Mp
.
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