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Abstract
When upgrading neural models to a newer ver-
sion, new errors that were not encountered in
the legacy version can be introduced, known as
regression1errors. This inconsistent behavior
during model upgrade often outweighs the ben-
efits of accuracy gain and hinders the adoption
of new models. To mitigate regression errors
from model upgrade, distillation and ensemble
have proven to be viable solutions without sig-
nificant compromise in performance. Despite
the progress, these approaches attained an in-
cremental reduction in regression which is still
far from achieving backward-compatible model
upgrade. In this work, we propose a novel
method, Gated Fusion, that promotes backward
compatibility via learning to mix predictions
between old and new models. Empirical results
on two distinct model upgrade scenarios show
that our method reduces the number of regres-
sion errors by 62% on average, outperforming
the strongest baseline by an average of 25%.

1 Introduction

In order to achieve a smooth continuous improve-
ment of NLP applications, it is critical to guarantee
consistent operation of the system after an upgrade.
New errors introduced during the model upgrade
interfere with the existing user experience and are
considered to be a regression in the quality. Due to
the difficulty of modularizing or explaining the be-
havior of deep neural networks, traditional software
regression tests are inapplicable to neural based
systems. The cost of arduous error analysis and
model patching often exceeds the benefits of model
upgrades. Developing methods that ensure back-
ward compatibility during model upgrades without
compromise in performance becomes a valuable re-
search direction (Yan et al., 2021; Xie et al., 2021;
Träuble et al., 2021; Cai et al., 2022).

∗Work done during author’s internship at AWS AI Labs.
1Within this work, regression denotes performance degra-

dation in software systems, instead of the statistical technique
for estimating relationships among variables.
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Figure 1: Illustration of regression errors when up-
grading from BERT (Devlin et al., 2019) to ELEC-
TRA (Clark et al., 2020) for classification. Red circles
and green squares denote examples of different classes.
Dashed lines represent decision boundaries.

The prediction backward-compatible model up-
grade problem aims to improve consistency of cor-
rect classification predictions between legacy and
upgraded models without accuracy loss. Yan et al.
(2021) first studied backward compatibility during
model upgrade on image classification tasks. They
proposed to enforce the positive congruence of the
new model with the old one by applying a knowl-
edge distillation objective (Hinton et al., 2015) ob-
jective with re-weighting of training samples. Later,
Xie et al. (2021) extended the work of Yan et al.
(2021) by investigating the backward compatibility
in NLP classification tasks. They found that their
proposed distillation-based approach can help de-
crease the regression errors of specific linguistic
phenomena in NLP classification tasks.

Despite progress with both distillation- and
ensemble-based regression-mitigation approaches,
there are limitations that prevent them from broad
practical adoption in ML operations. Distillation-
based methods attempt to transfer the prediction
power of the old model to the new one on potential
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regression instances (Hinton et al., 2015). How-
ever, given the huge complexity of current neural
architectures and relatively scarce training data in
downstream tasks, models could have insufficient
data to reliably estimate the probable regression
cases and carry out the transfer on them (Xie et al.,
2021; Cai et al., 2022). On the other hand, model
ensemble aggregates predictions from differently-
trained new models but bears no connection with
the legacy version (Yan et al., 2021). These limita-
tions reveal the two major challenges when striving
to ensure backward compatibility. First, the new
model could have distinct inductive bias and predic-
tion behavior than the old system, rooted from in-
herent differences such as architecture, model size,
and pretraining procedure (Liu et al., 2021). Sec-
ond, during new model training, a reliable mecha-
nism is needed in place to bridge the gap between
two models and mitigate potential inconsistencies.

Inspired by the strength and weakness of prior
approaches, we propose Gated Fusion to integrate
old and new models via gating mechanism (Hochre-
iter and Schmidhuber, 1997; Chung et al., 2014; Gu
et al., 2016), essentially a light-weight ensemble of
legacy and upgrade models connected via a learned
fusion gate. Specifically, we add a learned gate
on top of the new model. We combine the logits
from old and new models according to the weight
from the gate. We train our Gated Fusion model by
minimizing the standard cross-entropy error. The
intuition is that the gate could learn to put more
weights on the old model when the new model can-
not produce correct predictions, effectively doing
fall-backs that optimizes backward compatibility.

Empirical results demonstrate that our proposed
approach outperforms other competing methods
significantly, where we can obtain on average 62%
reduction of total negative flips, i.e. new errors
caused by the model upgrade, without any degrada-
tion in accuracy performance. The effectiveness of
Gated Fusion is validated across three diverse clas-
sification tasks and two distinct model upgrade sce-
narios (a) upgrade to larger model size (b) upgrade
to advanced pretrained model, where consistent
results are attained across the board.

Our main contributions are as follows:

• We propose Gated Fusion that integrates old
and new models via gating mechanism for
backward-compatible model upgrade;

• We evaluate competing methods on two dis-
tinct and challenging model upgrade scenarios

across three diverse classification tasks;

• Empirical results show that our proposed ap-
proach significantly outperforms competing
methods and achieves regression reductions
by a large margin across the board.

2 The Backward-Compatible Model
Upgrade Problem

The goal of backward-compatible model upgrade
is to minimize regression errors without compro-
mising the accuracy performance during model up-
grade (Yan et al., 2021; Xie et al., 2021). In this
work, we aim to improve the backward compatibil-
ity of model predictions in the NLP classification
tasks. Following Xie et al. (2021), we study the
scenario where the underlying pretrained language
model (LM) is being upgraded.

Let x be a natural language input with a class
label y ∈ {1, 2, ..., C}. D = {xi, yi}Ni=1 denotes
a set of N examples with corresponding labels. A
classifier f estimates the class probabilities given
the input f⃗(x) = (p(y = 1|x), ..., p(y = C|x))⊤.
When upgrading from an old model fold to a new
model fnew, normally with distinct architectures
and trained on the same data, an improved model
f∗ is produced based on fold and fnew. Our goal
is for f∗ to minimize regression errors as an addi-
tional objective, while still achieving comparable
performance to fo

new, the new model trained in
the vanilla setting. Note that f∗ could be multiple
times larger than fo

new, with model ensemble of
fo
new as one example (Yan et al., 2021).

Measuring Backward Compatibility. The back-
ward compatibility is measured via quantifying re-
gression errors on a given regression measurement
set Dreg = {xi, yi}Mi=1. Dreg could be a hidden
customer test set comprising critical use cases, a
set of behavioral testing examples for targeted eval-
uation (Ribeiro et al., 2020), or the development
split from the dataset of interest. In this work, we
take the development set as our Dreg for evaluation.

For classification, regression errors are charac-
terized by negative flips, denoted as RNF – the
portion of samples in Dreg that flip from cor-
rect prediction fold(xi) = yi to incorrect output
fnew(xi) ̸= yi during model upgrade:

RNF (Dreg, f⃗old, f⃗new) =
|{x|fold = y, fnew ̸= y}|

|Dreg|
.

(1)
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Figure 2: Methods to improve prediction backward compatibility during model upgrade. (a) Distillation-based
approach to align predicted logits on potential regression instances (Xie et al., 2021). (b) Ensemble of old and new
models via weighted sum of either predicted logits or probabilities. (c) Our proposed Gated Fusion that learns a
gate as a soft switch to dynamically determine whether to fall back to previous predictions.

One thing to emphasize is that maximizing classi-
fier performance does not necessarily help in mini-
mizing RNF (Yan et al., 2021; Xie et al., 2021).

3 Gated Fusion: Methodology

3.1 Method Overview

To improve backward compatibility in model up-
grade, it’s crucial to have a mechanism that de-
tects potential regression errors and mitigates them
when making predictions. We propose Gated Fu-
sion (GF) to achieve this by learning a gate as a soft
switch to choose between generating predictions
by the new model or resorting to outputs of the
old model. Gated Fusion is inspired by the gating
mechanism widely used in other applications. For
example, mixing word copying mode with word
generation mode for language modeling (Merity
et al., 2016) and summarization (See et al., 2017).

Our proposed Gated Fusion f∗
GF consists of the

old model fold, the new model fnew, and a gating
network gθ. The old model fold is the legacy ver-
sion before upgrade where the parameters are fixed.
The new model fnew has the same architecture as
fo
new and is randomly initialized. The gating net-

work gθ is a multi-layer feed-forward network with
sigmoid function. It produces a scalar weight αgate

in the range [0, 1] from the output layer of fnew,
denoted as Enew:

αgate(x) = gθ(Enew(x)). (2)

We use αgate to combine the logits of old and new

models as our final outputs:

l∗GF (y|x) = (1−αgate) ·
lold(y|x)

T
+αgate · lnew(y|x),

(3)
where l(y|x) denotes predicted logits from models
and T is the temperature scaling to regularize the
magnitude of old model’s logits. fnew and gθ are
then jointly trained end-to-end with cross-entropy
loss between our output logits l∗GF (y|x) and label
distributions on downstream tasks.

The intuition behind Gated Fusion is that when
fnew makes a mistake while fold produces the cor-
rect output, the gate gθ will learn to put more
weight on fold in order to minimize the final clas-
sification loss. This process effectively mitigates
potential negative flips introduced by the model
upgrade and thus improves the backward compati-
bility of final predictions.

3.2 Training and Inference
In practice, training Gated Fusion with randomly
initialized fnew would make the shallow gating
network quickly converge to favor the fully-trained
fold. To prevent this, we only train fnew for the first
few epochs to ensure its competence before jointly
training gθ and fnew using l∗GF (x). In addition, we
found that stopping gradient flow from gθ to fnew
can further prevent the performance decrease of the
new model within Gated Fusion:

αgate(x) = gθ(stop_grad(Enew(x))). (4)

At inference time, Gated Fusion produces logits
from fold and fnew as well as the gate value αgate
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to make output predictions:

f∗
GF (x) = Softmax

(
(1−αgate) ·

lold
T

+αgate · lnew
)
.

(5)

3.3 Inference with Cache

Our proposed Gated Fusion requires fold to be
hosted together with the new model. In reality,
one could have a resource-constrained setting and
request the old model to be discarded at inference.
We note that in real applications, repetitive inputs
are commonly seen in live traffic (Batrinca and Tre-
leaven, 2015) and the backward compatibility of
model upgrade entails that correct predictions can
be preserved on the legacy instances already seen
and predicted by the old model.

To simulate real scenarios, we randomly cache
old model’s logits on a portion of test inputs. When
getting out-of-cache instances, we use new model’s
output embedding Enew(x) as key and euclidean
distance as metric to search for the nearest cached
instance. The cached old-model logits can then be
used for Gated Fusion to make predictions without
hosting fold at inference.

4 Experiments Setup

4.1 Model Upgrade Scenarios

We conduct experiments on two representative
model upgrade scenarios: (a) upgrade to a larger
pretrained model of the same type, where we use
BERTbase to BERTlarge. (b) upgrade to a dis-
tinct pretrained model with the same size. We
use BERTbase to ELECTRAbase (Clark et al.,
2020) as this challenging model upgrade sce-
nario for backward-compatibility, as they are pre-
trained under different self-supervised learning
paradigms. The former uses masked language mod-
eling (MLM) with reconstruction loss, while the
latter is pretrained in generative-contrastive (adver-
sarial) fashion with distributional divergence as the
loss (Liu et al., 2021).

4.2 Datasets and Implementation

We evaluate our approach across three datasets.
They represent different sentence-level classifica-
tion tasks, from single-sentence to sentence-pair
classification, with varying dataset sizes. We use:
(a) Stanford Sentiment Treebank (SST-2), a single-
sentence task to classify movie review sentiment,
with 67k train and 0.9k dev set (Socher et al., 2013).
(b) Microsoft Research Paraphrase Corpus (MRPC)

(Dolan and Brockett, 2005), a sentence-pair classi-
fication task for identifying paraphrases, with 3.7k
train and 0.4k dev set. (c) Question Natural Lan-
guage Inference (QNLI), a question-paragraph pair
task to determine whether the paragraph contains
the answer to the question, with 100k train and 5.5k
dev set. Datasets are taken from GLUE Benchmark
(Wang et al., 2018) and processed with scripts from
Hugging Face2.

For implementation, we use the sequence clas-
sification and pre-trained model parameters from
Hugging Face Transformers3. Experiments are
done in PyTorch (Paszke et al., 2019) with Tesla
V100 GPUs and results are averaged over 5 random
seeds. Learning rate, batch size, and train epoch
are tuned during training new model alone on given
tasks and then fixed for all backward-compatible
solutions. In Gated Fusion, we first train fnew
alone for first (N −1) epochs and then jointly train
gθ and fnew with Gated Fusion logits l∗GF in the
last epoch. Further implementation details can be
found in the Appendix.

4.3 Baselines

We compare our approach with several strong base-
lines. (a) Train the new model directly on the tar-
get task without any adjustment, i.e. fo

new. (b)
The specialized distillation method proposed in
Xie et al. (2021), where the KL-divergence of pre-
diction probabilities between old and new mod-
els is applied when pold(y = yi|xi) > pnew(y =
yi|xi). (c) Model ensemble via majority-voting
that was shown to be very effective (Yan et al.,
2021; Xie et al., 2021). Similarly, we use 5-seed
new model ensemble as a strong baseline. (d) The
ensemble of the old and new models probabilities,
p∗(y|x) = (1− α) · pold(y|x) + α · pnew(y|x), as
well as ensemble of the old and new models log-
its, l∗(y|x) = (1 − α) · lold(y|x) + α · lnew(y|x),
where α is searched among [0.5, 0.6, 0.7, 0.8, 0.9]
to maximize backward-compatibility while achiev-
ing accuracy on par with the vanilla fo

new.

5 Results and Analysis

5.1 Upgrade to a Larger Pretrained Model

Our first model upgrade scenario scales up the size
of underlying pretrained language models. We
experiment with BERTbase to BERTlarge, where

2
https://huggingface.co/datasets/glue

3
https://huggingface.co/docs/transformers/index
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SST-2 MRPC QNLI
BERTbase → BERTlarge RNF Accuracy RNF Accuracy RNF Accuracy

Old Model - 92.000.27 - 85.690.90 - 90.740.09
New Model 2.180.21 93.120.29 4.121.04 87.401.02 2.720.13 92.220.16

Distillation (Xie et al., 2021) 1.970.22 93.330.20 3.530.77 87.701.34 2.310.14 92.600.19
New Model Ensemble 2.000.31 93.300.24 2.250.61 88.870.77 1.980.21 92.970.22
Old-New Probs Ensemble 1.060.27 93.120.38 1.670.78 87.161.12 1.040.26 92.440.23
Old-New Logits Ensemble 1.060.27 93.120.38 1.670.78 87.161.12 1.040.26 92.440.23
Gated Fusion 0.780.20 93.050.09 1.180.52 87.450.52 0.730.13 92.240.24

Table 1: Negative flip rate RNF and model accuracy (%) of competing methods to optimize backward-compatibility
without performance degradation during BERTbase → BERTlarge model upgrade.

SST-2 MRPC QNLI
BERTbase → ELECTRAbase RNF Accuracy RNF Accuracy RNF Accuracy

Old Model - 92.000.27 - 85.690.90 - 90.740.09
New Model 1.630.20 95.000.06 3.730.36 88.580.57 2.820.32 92.900.26

Distillation (Xie et al., 2021) 1.490.24 95.020.21 3.680.79 88.820.94 2.580.17 93.030.16
New Model Ensemble 1.120.09 95.390.09 3.240.24 89.020.48 2.260.08 93.490.07
Old-New Probs Ensemble 1.400.17 95.070.15 3.140.42 88.530.48 0.980.20 93.040.21
Old-New Logits Ensemble 0.890.17 94.950.13 3.280.43 88.480.51 0.980.20 93.040.21
Gated Fusion 0.710.18 95.020.16 2.400.50 88.680.68 0.810.16 92.980.17

Table 2: Negative flip rate RNF and model accuracy (%) of competing methods to optimize backward-compatibility
without performance degradation during BERTbase → ELECTRAbase model upgrade.

the model size is tripled (110M vs 340M) and the
model depth is doubled (12 vs 24 layers).

Table 1 shows the results. For fo
new, we can

observe that the negative flip rates RNF are usu-
ally much larger than the accuracy gains across
tasks, which could be the reason to hinder new
model adoptions in real-world applications. Be-
sides, when dividing RNF over the error rate
(1 − accuracy), we can observe that around 30%
to 40% of all fo

new prediction errors are in fact the
new errors introduced during model upgrade. For
improving prediction backward-compatibility, our
proposed Gated Fusion outperforms other compet-
ing methods to considerably reduce RNF without
degradation on accuracy. Note that best α values
found for the two variants of old-new ensemble are
both 0.5, hence producing identical results.

Compared to the vanilla new model, gated fu-
sion obtains absolute RNF reductions of −1.40%
on SST-2, −2.94% on MRPC, and −1.99% on
QNLI. These translate to reducing the total neg-
ative flip cases by 64.2%, 71.4%, 73.2%, respec-
tively. Compared to the strongest baseline (old-new
ensemble), we obtain further absolute RNF reduc-
tions of −0.28% on SST-2, −0.49% on MRPC, and

−0.31% on QNLI, which translate to further re-
ducing 12.8%, 11.9%, and 11.4% of negative flip
cases. These results show the effectiveness of our
method to mitigate a significant amount of regres-
sion errors during model upgrade.

5.2 Upgrade to a Different Pretrained Model
A more challenging upgrade scenario is when old
and new models are pretrained under distinctive
paradigms, producing two representation spaces
of fairly different characteristics (Meng et al.,
2021b). We experiment with BERTbase to ELEC-
TRAbase in this scenario, where two models have
the same size but are pretrained under utterly dif-
ferent schemes, i.e. generative versus adversarial.

Table 2 shows the results. For fo
new, compared

with upgrading to BERTlarge, we observe larger ac-
curacy gains and lower RNF on SST-2 and MRPC.
However, on QNLI, upgrading to ELECTRAbase

achieves a higher accuracy gain but an even a
higher RNF . This implies that boosting accuracy
and improving backward compatibility could be
two related but different objectives.

For mitigation strategies, Gated Fusion achieves
the lowest negative flip rates across datasets with-
out any accuracy loss. We obtain absolute RNF re-
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SST-2 MRPC QNLI
RNF Accuracy RNF Accuracy RNF Accuracy

Old Model: BERTbase - 92.000.27 - 85.690.90 - 90.740.09

New Model: BERTlarge 2.180.21 93.120.29 4.121.04 87.401.02 2.720.13 92.220.16
Model Ensemble: 5 seeds 2.000.31 93.300.24 2.250.61 88.870.77 1.980.21 92.970.22
Model Ensemble: 10 seeds 1.790.17 93.690.15 2.010.29 89.460.51 2.010.14 92.970.19
Model Ensemble: 20 seeds 1.790.25 93.620.16 1.760.50 89.560.48 1.820.15 93.130.08
Gated Fusion 0.780.20 93.050.09 1.180.52 87.450.52 0.730.13 92.240.24

New Model: ELECTRAbase 1.630.20 95.000.06 3.730.36 88.580.57 2.820.32 92.900.26
Model Ensemble: 5 seeds 1.120.09 95.390.09 3.240.24 89.020.48 2.260.08 93.490.07
Model Ensemble: 10 seeds 1.240.18 95.300.16 3.630.50 88.580.20 2.210.12 93.570.15
Model Ensemble: 20 seeds 1.190.16 95.320.17 3.430.51 88.920.48 2.150.17 93.630.11
Gated Fusion 0.710.18 95.020.16 2.400.50 88.680.68 0.810.16 92.980.17

Table 3: Negative flip rate RNF and model accuracy (%) when increasing number of seeds used in new model
ensemble, comparing with our proposed method (Gated Fusion).

SST-2 MRPC QNLI

Old: BERTbase 92.000.27 85.690.90 90.740.09

to BERTlarge 93.120.29 87.401.02 92.220.16
Gated Fusion 93.050.09 87.450.52 92.240.24

- drop old model 93.170.61 87.751.14 92.220.44

to ELECTRAbase 95.000.06 88.580.57 92.900.26
Gated Fusion 95.020.16 88.680.68 92.980.17

- drop old model 95.160.09 88.630.94 93.060.13

Table 4: Accuracy (%) when dropping the old model
within Gated Fusion at inference time.

ductions of −0.92% on SST-2, −1.33% on MRPC,
and −2.01% on QNLI over the vanilla setup, re-
ducing 56.4%, 35.7%, and 71.3% of overall neg-
ative flips, respectively. Compared with upgrad-
ing to BERTlarge, we observe that upgrading to
ELECTRAbase has much smaller relative negative
flip reductions on SST-2 and MRPC, showing that
it could be indeed harder to improve backward-
compatibility when upgrading to a distinct pre-
trained model. In contrast, similar relative negative
flip reductions are observed on QNLI across two
upgrade scenarios. This could be attributed to the
abundant training data of the downstream task.

5.3 Drop Old Model at Inference Time

Our proposed method requires the old model to
be hosted together with the new model. A natural
question is whether we could train Gated Fusion
with the old model and then discard it at inference
time to host the new model only.

We first experiment with directly dropping the
old model within Gated Fusion at inference time.

SST-2
RNF Accuracy

Old Model: BERTbase - 92.000.27

New Model: ELECTRAbase 1.630.20 95.000.06
Gated Fusion - 50% cache 1.260.10 94.860.27
Gated Fusion - 75% cache 0.990.25 94.910.12
Gated Fusion 0.710.18 95.020.16

Table 5: Negative flip rate RNF and model accuracy
(%) of Gated Fusion with X% cache of old model logits
at inference time.

Results in Table 4 show that dropping old model
in Gated Fusion can still achieve comparable accu-
racy across the board, suggesting no performance
degradation. Nonetheless, we observe that the neg-
ative flip rates also fall back to similar positions as
training the new model in the vanilla setting.

However, in real application scenario, live in-
puts are often repetitively seen across time and en-
suring backward-compatibility means that correct
predictions on same instances can be preserved
after model upgrade. We experiment with the
caching method introduced in section 3.3 to store
old model’s logits on random X% of test instances
where Gated Fusion can later access them for in-
ference. Results in Table 5 show that with higher
percentage of cache, RNF is gradually reduced to-
wards RNF of the original Gated Fusion, which
is equivalent to 100% cache. Still, we observe a
notable gap in RNF between the partial caching
and full settings. We leave the examination of ways
to achieve the upper bound in reduction in RNF

with smaller cache to the future work.
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(Task, Label) Examples
B
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R

T
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→

B
E

R
T
la
r
g
e (SST-2, Positive) [Sentence] A study in shades of gray, offering itself up in subtle plot maneuvers ...

(SST-2, Negative) [Sentence] Manages to be both repulsively sadistic and mundane.
(MRPC, Not Equivalent) [Sentence 1] Vivace was founded in 1999 and has raised over $118 million in three rounds of

venture financing. [Sentence 2] During difficult times for technology venture capital, Vivace raised
over $118 million in three rounds of venture financing.

(QNLI, Entailment) [Question] Why was there a depreciation of the industrialized nations dollars? [Sentence] Antic-
ipating that currency values would fluctuate unpredictably for a time, the industrialized nations
increased their reserves (by expanding their money supplies) in amounts far greater than before.

B
E

R
T
ba

se
→

E
L

E
C

T
R

A
ba

se

(SST-2, Positive) [Sentence] Aside from minor tinkering , this is the same movie you probably loved in 1994, except
that it looks even better.

(SST-2, Negative) [Sentence] It showcases carvey’s talent for voices, but not nearly enough and not without taxing
every drop of one’s patience to get to the good stuff .

(MRPC, Equivalent) [Sentence 1] Blair’s Foreign Secretary Jack Straw was to take his place on Monday to give a
statement to parliament on the European Union. [Sentence 2] Blair’s office said his Foreign
Secretary Jack Straw would take his place on Monday to give a statement to parliament on the EU
meeting the prime minister attended last week.

(QNLI, Not Entailment) [Question] What is the main executive body of the EU? [Sentence] This means that the Commission
has a monopoly on initiating the legislative procedure, although the Council is the "de facto catalyst
of many legislative initiatives".

Table 6: Examples of regression errors present when upgrading to the vanilla new model fo
new but fixed by our

Gated Fusion approach, i.e. predictions of (fold, fo
new, f

∗
GF ) are (correct, incorrect, correct), respectively.

5.4 Limitations of New Model Ensemble

In previous works (Yan et al., 2021; Xie et al.,
2021), new model ensemble via majority voting
is shown to effectively reduce negative flips and
posed as a difficult-to-beat baseline. Here, we in-
crease the number of models in ensemble to exam-
ine its limitations. Results in Table 3 show that en-
semble with more models generally help to obtain
lower RNF . However, RNF converges quickly as
number of models increased, where a notable gap
remains between new model ensemble and Gated
Fusion. Moreover, the results show once more that
boosting accuracy does not necessarily improve the
backward compatibility in model upgrade.

In principle, two sources could cause negative
flips during model upgrade (a) the stochasticity dur-
ing model training, including initializations, data
loading order, and optimization process (Somepalli
et al., 2022). (b) the distinctions between old and
new model hypotheses, including architecture and
pretraining data and procedure, leading to different
representation space structures and prediction be-
haviors in terms of decision boundaries. Without
an explicit connection to fold, new model ensem-
ble can only reduce negative flips primarily caused
by the first factor, while our proposed Gated Fu-
sion directly learns to mitigate regression errors
regardless of their causes.

Besides, as large-scale generative models be-
come more and more powerful and popular (Raffel

et al., 2020; Brown et al., 2020; Su et al., 2021), it
would be difficult to fine-tune them multiple times
on a target task for ensemble.

5.5 Analysis of Gated Fusion

Comparing fo
new with f∗

GF , we can calculate the fix
rate and new fault rate of our Gated Fusion method.
During an upgrade, if there are 20 negative flips
with fo

new and 16 out of them can be mitigated by
f∗
GF , we obtain the fix rate to be 16/20 = 80%.

Similarly, if f∗
GF introduces another 4 new nega-

tive flips which are not present with fo
new, the new

fault rate is computed to be 4/20 = 20%. We cal-
culate the 5-seed average of these two rates across
different classification tasks and upgrade scenar-
ios. In BERTbase to BERTlarge, the averaged fix
rates by Gated Fusion are 68.4% on SST-2, 83.8%
on MRPC, and 82.9% on QNLI, with new fault
rates being 4.1% on SST-2, 11.3% on MRPC, and
9.7% on QNLI. In BERTbase to ELECTRAbase,
Gated Fusion achieves the averaged fix rates 58.0%
on SST-2, 50.8% on MRPC, and 75.6% on QNLI,
with new fault rates being 2.8% on SST-2, 15.2%
on MRPC, and 4.0% on QNLI. These results show
that, on average, Gated Fusion is able to eliminate
69.9% of total regression errors while adding only
7.9% new ones, comparing with doing model up-
grade without any treatment, i.e. fo

new.
Table 6 shows a few regression error cases fixed

by our proposed approach. In general, Gated Fu-
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sion can mitigate negative flips happened on dif-
ferent classes across diverse tasks as well as on
inputs with variable lengths. With closer inspec-
tions of f∗

GF , we found that when fnew produces
incorrect predictions and fold gives correct outputs,
gθ is capable of putting larger weights on fold to
ensure the backward compatibility. We also ob-
served that the gate gθ is more prone to over-fitting
when the downstream tasks have smaller training
set, e.g. MRPC, or are more difficult in nature,
e.g. single-sentence task SST-2 versus sentence-
pair tasks, which causes Gated Fusion to introduce
more new errors, i.e. higher new fault rates.

6 Discussion

Gated Fusion requires to host both old and new
models at inference time, which could raise a con-
cern regarding the increased computational burden.
However, in practice, old model’s logits of previous
inference instances can be cached in storage and
later leveraged in our Gated Fusion. That is, we
only need to host the new model with the gate at
inference time and leverage old predictions from
cache. And for the out-of-cache inputs, backward-
compatibility would be less of an issue since users
have not observed such examples to make conclu-
sions on the underlying regression.

For real-world applications, there could be mul-
tiple model updates and thus multiple legacy ver-
sions. We note that in this scenario, user experience
would be primarily grounded on predictions of the
latest legacy version, which are also saved in cache.
Our Gated Fusion can hence leverage them and
make new model’s predictions compatible to those
from the latest legacy version.

In addition, we emphasize that the main chal-
lenge in the regression reduction research problem
is to find the best trade-off between model effective-
ness and backward compatibility. In this work, we
show that the weighted ensemble of old-new mod-
els with a learned gate, which we call Gated Fusion,
achieves a better negative flip rate than previously
explored methods for regression reduction, while
straight-forward ensemble approaches cannot nat-
urally weigh on this trade-off. We don’t claim to
invent the gated ensemble of old and new models
but rather that our main contribution is to show
that by repurposing the classic gating mechanism,
the gated ensemble can become the most compet-
itive approach to the challenging model-upgrade
regression reduction problem, with no overall per-

formance degradation on two realistic model up-
date scenarios across three different datasets.

Recently, more and more NLP products have
been deployed in the industry as this field matures.
We would like to stress that as better NLP mod-
els are being developed, the backward-compatible
model upgrade problem naturally emerges as the
new research topic strongly motivated by the real-
world challenges. While backward-compatibility
is currently a niche research topic, we believe that
there are many thrilling future directions worth to
be investigated.

7 Related Work

Yan et al. (2021) first studied the backward com-
patibility of predictions during model upgrade on
image classification tasks. Later, Xie et al. (2021)
investigated the similar topic in natural language
understanding and formulated it as a constrained
optimization problem. They both show that cus-
tomized variants of knowledge distillation (Hinton
et al., 2015), which align the predictions of old
and new models on potential regression errors, are
effective approaches. A model ensemble has also
shown to be surprisingly effective (Yan et al., 2021;
Xie et al., 2021), despite no explicit connection
between old and new models. This was credited to
variance reduction in model predictions, making it
less prone to over-fitting and reducing regression
errors indirectly. In this work, we leverage the gat-
ing mechanism to combine old and new models to
further reduce model upgrade regression errors by
a large margin across classification tasks.

Cai et al. (2022) analyzed and proposed back-
ward congruent re-ranking to reduce regression in
model upgrades for structured predictions tasks
such as dependency parsing and conversational se-
mantic parsing. Träuble et al. (2021) proposed an
efficient probabilistic approach to locate data in-
stances whose old predictions could be incorrect
and update them with ones from the new model.
Zhou et al. (2022) looked into forward compatibil-
ity, where new classes can be easily incorporated
without negatively impacting existing prediction
behavior. More recently, Schumann et al. (2023)
inspected classification model regression during
training data updates and mitigated the problem by
interpolating between weights of the old and new
models. On top of that, learning cross-model com-
patible embeddings has been extensively explored
in visual search (Chen et al., 2019; Hu et al., 2019;
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Wang et al., 2020). Several techniques have been
proposed to optimize cross-model interoperability
of embeddings, including metric space alignment
(Shen et al., 2020), architecture search (Duggal
et al., 2021), and aligning class centers between
models Meng et al. (2021a). In this work, we fo-
cus on improving backward compatibility during
model upgrade in terms of prediction behavior on
classification tasks, i.e. old and new models should
produce consistently correct predictions.

Reducing regression during model upgrade is
also related to continual learning (Parisi et al., 2019;
De Lange et al., 2019; Sun et al., 2019; Chuang
et al., 2020; Sachidananda et al., 2021), incremental
learning (Chaudhry et al., 2018; Shan et al., 2020)
and concept drifting (Gama et al., 2014; Žliobaitė
et al., 2016; Ganin et al., 2016; Zhuang et al., 2020;
Lazaridou et al., 2021). In these problems, models
are required to learn from and deal with continu-
ously changing data (in terms of examples, classes
or tasks), and also need to prevent the forgetting
of previously learnt knowledge. This could be one
potential cause of regression observed at inference.
However, in backward-compatible model upgrade,
a new model, usually with distinct network archi-
tecture, is trained from scratch to perform the same
task and is expected to behave similarly wherever
the previous model predicts correctly.

The gating mechanism is widely adopted by re-
current neural networks to effectively control in-
formation flows across networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014; Van Oord
et al., 2016; Dauphin et al., 2017; Lai et al., 2019)
and contextualize embeddings (Peters et al., 2018;
Lai et al., 2020). It is then repurposed to act as
a switch for the mixture of different prediction
modes, notably to combine input word copying
based on the pointer network (Vinyals et al., 2015)
with the word generation from output vocabulary
(Gu et al., 2016; Merity et al., 2016; See et al.,
2017). Our proposed approach is inspired by these
works and leverages the gating mechanism to ef-
fectively combine old and new models to improve
backward compatibility during model upgrade.

8 Conclusion

Ensuring backward compatibility during model up-
grade has become a critical topic in real-world
NLP applications. In this work, we proposed a
new approach, Gated Fusion, that achieves sig-
nificantly better backward compatibility without

compromising accuracy performance on two chal-
lenging upgrade scenarios for NLP classification.
Experiments demonstrated that our approach out-
performs competing methods and achieves nega-
tive flip rate reductions by up to 73.2%. Our future
research includes improving backward compatibil-
ity beyond classification to span detection, model
upgrades with very large language models, and up-
grades on training data or label schema. We hope
that this work can inspire further research and make
progress towards smoother transitions of prediction
powers as NLP systems evolve.

Limitations

Our proposed method mostly works on the up-
grades of underlying pretrained language models
for NLP classification tasks. Potential limitations
include applying our approach on distant tasks such
as question answering or information retrieval, up-
grade to models from different architecture families
such as recurrent neural nets, and the inapplicability
of our method to more recent learning formulation
such as in-context learning via prompting.

Ethics Statement

Prediction backward compatibility during model
upgrade is an emerging research topic to ensure
positive congruency and smoother transitions from
existing models towards more performant systems.
With primary evaluation on accuracy and negative
flips, we acknowledge that our method may also in-
herit social biases and other toxicity persisted in the
legacy models. On the other hand, we have noted
that fairness and safety have been one of principal
criteria when developing system upgrades. Inves-
tigations of the inheritance of persistent toxicity
and mitigation of it during backward-compatible
upgrades merit interests of future research.
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João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pech-
enizkiy, and Abdelhamid Bouchachia. 2014. A sur-
vey on concept drift adaptation. ACM computing
surveys (CSUR), 46(4):1–37.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–
2030.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Jie Hu, Rongrong Ji, Hong Liu, Shengchuan Zhang,
Cheng Deng, and Qi Tian. 2019. Towards visual
feature translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 3004–3013.

Yi-An Lai, Arshit Gupta, and Yi Zhang. 2019.
Goal-embedded dual hierarchical model for task-
oriented dialogue generation. arXiv preprint
arXiv:1909.09220.

Yi-An Lai, Garima Lalwani, and Yi Zhang. 2020. Con-
text analysis for pre-trained masked language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 3789–3804.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume,
Sebastian Ruder, Dani Yogatama, et al. 2021. Pit-
falls of static language modelling. arXiv preprint
arXiv:2102.01951.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu
Wang, Jing Zhang, and Jie Tang. 2021. Self-
supervised learning: Generative or contrastive. IEEE
Transactions on Knowledge and Data Engineering.

Qiang Meng, Chixiang Zhang, Xiaoqiang Xu, and Feng
Zhou. 2021a. Learning compatible embeddings. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 9939–9948.

1019

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett,
Jiawei Han, Xia Song, et al. 2021b. Coco-lm: Cor-
recting and contrasting text sequences for language
model pretraining. Advances in Neural Information
Processing Systems, 34:23102–23114.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural Networks, 113:54–71.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32, pages 8024–8035.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Vin Sachidananda, Jason S Kessler, and Yi-An Lai.
2021. Efficient domain adaptation of language
models via adaptive tokenization. arXiv preprint
arXiv:2109.07460.

Raphael Schumann, Elman Mansimov, Yi-An Lai, Niko-
laos Pappas, Xibin Gao, and Yi Zhang. 2023. Back-
ward compatibility during data updates by weight
interpolation. arXiv preprint arXiv:2301.10546.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Guangxu Shan, Shiyao Xu, Li Yang, Shengbin Jia, and
Yang Xiang. 2020. Learn#: A novel incremental
learning method for text classification. Expert Sys-
tems with Applications, 147:113198.

Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano
Soatto. 2020. Towards backward-compatible repre-
sentation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642.

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping
Yeh-Chiang, Yehuda Dar, Richard Baraniuk, Micah
Goldblum, and Tom Goldstein. 2022. Can neu-
ral nets learn the same model twice? investigating
reproducibility and double descent from the deci-
sion boundary perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13699–13708.

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta,
Deng Cai, Yi-An Lai, and Yi Zhang. 2021. Multi-task
pre-training for plug-and-play task-oriented dialogue
system. arXiv preprint arXiv:2109.14739.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. In International Conference on Learning
Representations.

Frederik Träuble, Julius Von Kügelgen, Matthäus Klein-
dessner, Francesco Locatello, Bernhard Schölkopf,
and Peter Gehler. 2021. Backward-compatible pre-
diction updates: A probabilistic approach. Advances
in Neural Information Processing Systems, 34:116–
128.

Aaron Van Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. 2016. Pixel recurrent neural networks.
In International conference on machine learning,
pages 1747–1756. PMLR.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355.

Chien-Yi Wang, Ya-Liang Chang, Shang-Ta Yang,
Dong Chen, and Shang-Hong Lai. 2020. Unified
representation learning for cross model compatibility.
arXiv preprint arXiv:2008.04821.

Yuqing Xie, Yi an Lai, Yuanjun Xiong, Yi Zhang,
and Stefano Soatto. 2021. Regression bugs are in
your model! measuring, reducing and analyzing
regressions in nlp model updates. arXiv preprint
arXiv:2105.03048.

1020

https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


Sijie Yan, Yuanjun Xiong, Kaustav Kundu, Shuo Yang,
Siqi Deng, Meng Wang, Wei Xia, and Stefano
Soatto. 2021. Positive-congruent training: Towards
regression-free model updates. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14299–14308.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma,
Shiliang Pu, and De-Chuan Zhan. 2022. Forward
compatible few-shot class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9046–
9056.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. 2020. A comprehensive survey on transfer learn-
ing. Proceedings of the IEEE, 109(1):43–76.
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A Details on Experiment Settings

A.1 Model Training Hyper-parameters

We search among following hyper-parameter space
for the training of the old model fold and the new
model in the vanilla setting fo

new across all datasets:
• Learning Rate: 5e−6, 1e−5, 3e−5, 5e−5

• Batch Size: 16, 32
• Training Epochs: 3, 5, 8.

The selected hyper-parameters for each model with
(learning rate, batch size, training epoch):

• BERTbase:
– On SST-2: (lr 1e−5, batch 16, epoch 5)

– On MRPC: (lr 3e−5, batch 16, epoch 5)

– On QNLI: (lr 3e−5, batch 32, epoch 3)

• BERTlarge:
– On SST-2: (lr 1e−5, batch 16, epoch 5)

– On MRPC: (lr 3e−5, batch 16, epoch 5)

– On QNLI: (lr 3e−5, batch 32, epoch 3)

• ELECTRAbase:
– On SST-2: (lr 1e−5, batch 16, epoch 5)

– On MRPC: (lr 5e−5, batch 32, epoch 5)

– On QNLI: (lr 3e−5, batch 32, epoch 3)

These model training hyper-parameters for a spe-
cific model on one specific dataset is then fixed and
reused for all the competing methods to improve
backward compatibility during model upgrade.

A.2 Distillation Hyper-parameters

The knowledge distillation method from Xie
et al. (2021) imposed an additional loss λ ·
KL(lold/T, lnew/T ) on potential regression in-
stances. We experimented the best possible hyper-
parameters from the following:

• λ: 0.1, 1.0, 10.0
• Temperature T : 0.5, 1.0, 2.0

A.3 Details on Gated Fusion

We initialize the gate gθ to be a two-layer feed-
forward network with the architecture (Dropout,
Linear, LayerNorm, ReLU, Dropout, Linear, Sig-
moid) and fix the hidden size to be 64 across all our
experiments.

During the training of Gated Fusion, we only
train the fnew within f∗

GF for the first (N − 1)
epochs to ensure its competence, where N is the
total training epochs. In the last training epoch, we
jointly train gθ and fnew using the Gated Fusion
logits l∗GF with the secondary learning rate lr2. To
prevent the overfitting of the gate, we also apply

drop_gate where at each training step during the
last epoch, there is D% to only train fnew within
f∗
GF and (1−D)% to train with l∗GF .

The hyper-parameter space of Gated Fusion is
listed as follows:

• Drop Gate (%): 40, 50, 60, 80
• Temperature T on old logits: 1.0, 1.2, 1.4, 1.6
• lr2: 5e−7, 1e−6, 3e−6, 1e−5, 3e−5

We found that to achieve good results, the gap
in logit magnitude of fold and fnew needs to be
bridged by the temperature when upgrading from
BERTbase to ELECTRAbase, with T being 1.6
on SST-2, 1.6 on MRPC, and 1.2 on QNLI. On
the other hand, T = 1 gives good results across
three datasets when upgrading from BERTbase to
BERTlarge. This could result from the distinct
pretraining schemes between models where MLM
seem to produce larger magnitude of output logits.
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