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Abstract

Dialogue State Tracking (DST), a crucial com-
ponent of task-oriented dialogue (ToD) sys-
tems, keeps track of all important information
pertaining to dialogue history: filling slots with
the most probable values throughout the con-
versation. Existing methods generally rely on
a predefined set of values and struggle to gen-
eralise to previously unseen slots in new do-
mains. To overcome these challenges, we pro-
pose a domain-agnostic extractive question an-
swering (QA) approach with shared weights
across domains. To disentangle the complex
domain information in ToDs, we train our DST
with a novel domain filtering strategy by ex-
cluding out-of-domain question samples. With
an independent classifier that predicts the pres-
ence of multiple domains given the context, our
model tackles DST by extracting spans in ac-
tive domains. Empirical results demonstrate
that our model can efficiently leverage domain-
agnostic QA datasets by two-stage fine-tuning
while being both domain-scalable and open-
vocabulary in DST. It shows strong transferabil-
ity by achieving zero-shot domain-adaptation
results on MultiWOZ 2.1 with an average JGA
of 36.7%. It further achieves cross-lingual
transfer with state-of-the-art zero-shot results,
66.2% JGA from English to German and 75.7%
JGA from English to Italian on WOZ 2.0.

1 Introduction

Task-oriented dialogue systems are designed to
provide natural conversation with users and assist
them in achieving daily goals. With the growth of
task-oriented dialogue systems, there is an increas-
ing interest in supporting dialogues among many
domains and languages to fit the users’ demands.
However, either modelling a multi-domain or multi-
lingual dialogue system requires substantial data
collected in real scenarios. This data acquisition
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procedure is extremely expensive, and it motivates
us to resolve this challenge by leveraging dialogue
data in rich-resource domains and languages via
zero-shot transfer learning.

Dialogue State Tracking (DST) is crucial for
accurately extracting user intents and goals over
multiple turns within the dialogue. Based on
the tracked dialogue states, the dialogue manager
makes corresponding next actions with back-end
results, where the accuracy of the DST becomes
absolutely vital. With a fully predefined ontology,
traditional approaches tackle the DST as a classifi-
cation problem by enumerating every combination
of slot-value pairs (Mrkšić et al., 2017; Zhong et al.,
2018). Those approaches are strongly limited by
their scalability, as some slots (e.g. name) have an
unbounded set of slot values. Secondly, they are
generally not flexible to unseen slot-value pairs,
making them more difficult to adapt to zero-shot
transfer learning. Moreover, a completely prede-
fined ontology is hard to acquire and not scalable
for ToD systems in real applications.

To overcome those challenges, we take inspira-
tion from Gao et al. (2020) and investigate how
DST can be tackled by extracting slot values from
user utterances directly. In this paper, we propose
a domain-independent and transferable dialogue
state tracker within an extractive question answer-
ing architecture. Our model is responsible for fill-
ing the slot value by recognising specially designed
domain-slot prompts by span prediction, which ex-
tracts answers from the input utterance by predict-
ing the token positions. In addition, we introduce a
novel domain filtering strategy in training and an
independent multi-domain classifier in evaluation
such that we only ask slot questions that appear
in predicted domains. For example, given hotel
as the current turn domain, all questions under the
train domain are filtered out as there is no overlap
between them. This simple but effective filtering
strategy significantly reduces the noise from unnec-
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essary questions in both the training and evaluation
phases. Furthermore, we study unexplored impacts
of two-stage fine-tuning on DST transfer learning
with mono-lingual and multi-lingual question an-
swering datasets.

We call the final model XQA-DST:
XLM-R based Dialogue State Tracker in
Question Answering. Our main contributions are
summarised below:

• We introduce XQA-DST, a novel domain-
independent and transferable dialogue state
tracker inspired by extractive question answer-
ing models. The model is able to recognise
slot values by reformulating the task as an
answer to a designed domain-slot question
prompt by span prediction, which extracts an-
swers from the input utterance by predicting
the token positions.

• We enable XQA-DST on question answer-
ing by zero-shot domain adaptation scenarios,
showing its transferability capabilities. The fi-
nal model shows state-of-the-art domain adap-
tation performance with an average JGA of
36.7% for five domains on MultiWOZ 2.1.

• We show that our model is capable of both
domain adaptation and cross-lingual transfer
learning. We demonstrate its cross-lingual
transferability by achieving state-of-the-art
zero-shot results, 66.2% JGA from English
to German and 75.7% JGA from English to
Italian on WOZ 2.0.

2 Related Work

Traditional dialogue state tracking approaches
mostly rely on a predefined ontology. Lee et al.
(2019) implement a slot-utterance matching mod-
ule that computes the similarity between the utter-
ance and each slot-value pair. Lai et al. (2020) use
BERT (Devlin et al., 2019) as the context encoder
and generate the relevance score for every pair. Re-
cently, Lin et al. (2021a) and Feng et al. (2022)
include schema graph networks to utilise inter-slot
relationships. However, their scalability is strongly
limited by the availability of the predefined ontol-
ogy and schema graphs.

To improve efficiency, span prediction methods
have been proposed to tackle DST so that the slot
can be filled by directly addressing values in the
context. Heck et al. (2020) implement copy mech-
anisms, but they use independent span projection

layers for each slot, which make their model inca-
pable of inference in new domains. Zhou and Small
(2019) and Gao et al. (2020) formulate the DST
as a question answering problem, and they prepare
questions for asking the model to answer values for
every slot. We differentiate from these approaches
by disentangling the complex domain information
from domain filtering and domain classification
strategies.

Generative approaches (Wu et al., 2019; Kumar
et al., 2020) provide an alternative way to handle
DST. Li et al. (2021) introduce a generative ques-
tion answering approach, GPT2-m, that leverages
an autoregressive language model. Similarly, Lin
et al. (2021b,c) propose T5DST, and they study the
impacts of slot descriptions and cross-task transfer
on domain adaptation. Lee et al. (2021) reformu-
late DST as prompting states via schema descrip-
tions from language models. Recent end-to-end
dialogue models (Peng et al., 2021; Su et al., 2022)
also show strong supervised performance on DST.

Cross-lingual transfer learning for DST aims
to leverage the labelled data in rich-resource lan-
guages and transfer learned knowledge to low-
resource languages. Chen et al. (2018) study
this problem and propose the XL-NBT teacher-
student framework. Liu et al. (2020) introduce
an Attention-informed Mixed-Language Training
(AMLT) method to build code-switching training
sentences. They study the effectiveness of multi-
lingual pretrained language models, XLM (Con-
neau and Lample, 2019) and mBERT (Devlin et al.,
2019), with their AMLT approach. Qin et al. (2020)
propose a data augmentation framework, which en-
courages cross-lingual alignment by fine-tuning
mBERT on generated code-switching data. Moghe
et al. (2021) introduce intermediate fine-tuning on
parallel sentences to improve the cross-lingual DST.
To the best of our knowledge, we are the first work
that studies the effectiveness of a multi-lingual pre-
trained language model, XLM-R (Conneau et al.,
2020), on DST without implementing additional
cross-lingual alignment strategies.

3 Multi-Domain and Multi-Lingual DST

To tackle the task of dialogue state tracking, our
model reads the current user utterance Ut, preced-
ing system utterance Mt, dialogue history Ht, and
the domain-slot prompt Qt as inputs for each turn.
Followed by that, our model is responsible for
firstly determining the dialogue domains Dt from
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Figure 1: The model architecture of our XQA-DST for multi-domain and multi-lingual DST, where the right part is
the independently trained multi-domain classifier that outputs active domains.

the input sequence. Then, it predicts the presence
of the answer span in predicted domains given the
question. If an answer is present in utterances, the
model will predict the value for that domain-slot
question using span extraction. Otherwise, its value
will be filled in accordance with other predicted
types. Finally, our model tracks the dialogue states
by a rule-based update mechanism along with the
progress of the dialogue across turns.

3.1 Context and Domain-Slot Questions

In extractive question answering, the context is
used to provide the background information, and
the answer is usually contained in the context.
When it comes to DST, it is equivalent to modelling
the system message and the user response together
as the context for the current turn. The complete
context Ct is then collected by concatenating the
current user utterance Ut and the preceding system
utterance Mt with dialogue history Ht at turn t.
We implement XLM-R as the context encoder for
the purpose of cross-lingual transfer learning.

Each context is paired with N questions, which
iterate through every slot that we are interested in.
We append the domain-slot prompt at the end of the
context as an analogue question for each domain-
slot pair. Hence, the model can learn to correlate
different questions to the same context and provide
corresponding answers to fill the slot. For the same
context with nth question Qn

t at turn t, the input

sequence Sn
t can be written as:

Sn
t =[CLS]⊕ Ut ⊕ [SEP]⊕Mt ⊕ [SEP]

⊕Ht ⊕ [SEP]⊕Qn
t ⊕ [SEP],

(1)

where ⊕ is the string concatenation, and Ht repre-
sents the dialogue history collected in a reversed
order, and it is defined as follows:

Ht =Ut−1 ⊕Mt−1 ⊕ . . .

⊕ U1 ⊕M1 for t > 1.
(2)

To utilise the question as a distinct feature for
each slot, we propose the analogue question in the
format of a domain-slot prompt. Here, additional
special tokens are introduced to assist the model in
recognising the domain-slot pair as distinct parts.
Moreover, they provide clear signals for the start
and end positions for each domain-slot pair. The
equation for constructing the domain-slot prompt
Qn

t is defined below:

Qn
t =⟨dom.⟩ ⊕ dnt ⊕ ⟨/dom.⟩

⊕ ⟨slot⟩ ⊕ snt ⊕ ⟨/slot⟩, (3)

where dnt refers to the name of the domain and snt
is the slot name for n-th question at turn t.

3.2 Shared Classification Gate
Our model contains a shared classification gate
θgate for every domain-slot question as shown in
Fig. 1. This shared gate provides shared knowledge
among various domain-slot pairs, as it is neither
domain-specific nor slot-specific.
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For each input sentence St, this shared gate clas-
sifies it to one of six classes as described in three
main categories. Special cases, none/dontcare, in-
dicate that there is either no observable value from
the input sequence St or any value that can become
the answer for that slot question. Copy mecha-
nism, span, indicates that the answer can be ex-
tracted from the current user utterance Ut by the
span prediction module. Similarly, Inform is to
copy from the system inform memory that tracks
values mentioned in the preceding system utterance
Mt. Boolean values true/false are used to deal with
binary categorical values for Boolean slots where
the value cannot be extracted from the utterance.

With these designed classes, it takes the output
rCLS
t from the encoder as its only input. It gener-

ates a probability distribution pgatet ∈ R6 over six
classes as in the following equation:

pgatet = softmax(Wgate · rCLS
t + bgate), (4)

where Wgate represents the weights for our shared
gate that is achieved by a linear classification layer,
and bgate is the corresponding bias term. The class
is then determined by taking the maximal argument
of argmax(pgatet ).

3.3 Shared Span Prediction Layer
If the predicted class for the current input sequence
St is span, the answer for that domain-slot question
Qt will be filled by predicting the start and end po-
sitions of the value from the input sequence. We im-
plement the shared span prediction layer for every
domain-slot question for the purpose of domain-
adaptable design. This is achieved by constructing
a linear layer that takes the entire token representa-
tions from r1t to r

seqmax
t as inputs, and it generates

two outputs with two parallel softmax layers for
token positions, the start and end position distribu-
tion, pstart

t and pend
t .

[pstart
t , pend

t ] = softmax(Wspan · rit + bspan) (5a)

startt = argmax(pstart
t ) (5b)

endt = argmax(pend
t ). (5c)

The start and end positions of the predicted value
are then determined by picking the largest proba-
bility from distributions pstart

t and pend
t . Followed

by that, we sequentially collect the tokens from
the predicted startt position to endt position, treat-
ing any reversed sequence prediction as an empty
value. We then detokenize them to form the final
predicted value for that domain-slot question.

3.4 Turn-Domain Filtering
For a task-oriented dialogue, the user may shift
the domain of conversation across turns so that a
dialogue can have multiple domains. We introduce
a novel turn-domain filtering strategy that puts a
strict constraint and only allows the model to pay
attention to currently active domains. Turn-domain
filtering indicates that only the slots within the cur-
rent domains Dt are used to prepare training fea-
tures since slots are domain-specific. Hence, turn-
domain filtering can reduce the potential noises in-
troduced by unnecessary domains. Mathematically,
this filtering strategy puts an additional constraint
for slot domain dnt in Eq. 3:

dnt ∈ Dt. (6)

3.5 Independent Multi-Domain Classifier
Turn-domain filtering allows the model to answer
questions only within the interested domains. How-
ever, the domain information is no longer a given
feature in the evaluation stage. Here, we propose a
multi-domain sequence classifier as shown in Fig.
1. The input sequence is the complete dialogue
context Ct without domain-slot questions. We then
collect the entire sequence representation rCLS

t by
the context encoders as XLM-R(Ct). Followed by
that, rCLS

t is fed into |D| softmax layers, thereby
allowing a binary prediction that decides whether
each domain dt is present in the input context or
not. Finally, we collect the domains that have been
assigned to the ‘True’ class, which indicates the
presence of that domain in the context.

pdt = softmax(W d
MSC · rCLS

t + bdMSC) (7a)

dt = argmax(pdt ) (7b)

Dt = {d1, . . . , d|D|}. (7c)

3.6 System Inform Memory and Update Rules
To further reduce the error of our span extractor, we
have employed the same inform copy mechanism
as Heck et al. (2020). This memory is a simple
dictionary that records all values informed by the
preceding system utterance Mt into a system in-
form memory It={I1t , ..., INt }. Then, the value
answer An

t for nth question Qn
t asked at turn t can

be predicted by the following copy mechanism,
given that inform = argmax(pgate

t ):

An
t = Int for Qn

t . (8)

We implement a simple rule-based mechanism
that is used to update dialogue states across turns
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as same as Chao and Lane (2019). In each turn,
if the model assigned class for the current input
sequence Sn

t with Qn
t is not none, the dialogue

state will be updated by obtaining An
t from our

value prediction modules. On the other hand, if the
classification gate predicts that there is no value for
Sn
t , the dialogue state will be kept unchanged.

3.7 Two-Stage Fine-Tuning

Our model is designed to be capable of not only
DST tasks but also general question answering
tasks. Therefore, the transfer learning ability of our
base model can be enhanced by firstly fine-tuning
it on mono-lingual and multi-lingual question an-
swering datasets as the first-stage fine-tuning. Then,
we initialise its weights on DST shared gates and
further fine-tune the model on DST datasets as
the second-stage fine-tuning. This two-stage fine-
tuning strategy maximally brings domain-agnostic
knowledge into the field of DST.

4 Experimental Setup

4.1 Dataset

The datasets that we carry out experiments on
are WOZ 2.0 (Wen et al., 2017) and MultiWOZ
2.1 (Eric et al., 2020) for single-domain and
multi-domain task-oriented dialogues, respectively.
WOZ 2.0 is a restaurant reservation dataset, and it
contains three slots: area, food, and price range. It
provides the conversation in three languages: En-
glish, German, and Italian. MultiWOZ 2.1 con-
tains multi-domain conversations for more than
10000 dialogues over seven domains. The dialogue
domain can change across turns, thereby making
MultiWOZ 2.1 the most challenging dataset for
task-oriented dialogue systems. We exclude hos-
pital and police domains with very few dialogues,
and the remaining dataset contains five domains
(hotel, train, attraction, restaurant, and taxi) with
30 domain-slot pairs in total. For domain adapta-
tion experiments, we use an extractive QA dataset,
SQuAD 2.0 (Rajpurkar et al., 2018), to provide the
intermediate fine-tuning. In cross-lingual experi-
ments, we further use the multilingual QA dataset,
XQuAD (Artetxe et al., 2020), to study the effec-
tiveness of multi-lingual intermediate fine-tuning.

4.2 Implementation Details

We employ the pretrained XLM-RoBERTa-base
model from the Huggingface library of Transform-
ers (Wolf et al., 2020), which consists of 12 hidden

layers of 768 units. We also employ the BERT-base-
uncased model for ablation study and fine-tuned
models on SQuAD 2.0 and XQuAD for adaptation
experiments. For all implementations, we limit the
maximal input sequence length to 180 tokens to
save the cost while keeping a reasonable length for
including dialogue history. We truncate from the
earliest dialogue history when the input sequence
length exceeds the limit. The training objective
is to minimise the summations of individual loss
functions for each module, where each loss is de-
fined as the cross-entropy loss. The loss for each
domain module in the multi-domain classifier is
equally weighted, where the coefficient for each
part of the joint loss of our main model is:

Ltotal = 0.8 · Lgate + 0.2 · Lspan. (9)

During the training process, we implement the
Adam optimiser (Kingma and Ba, 2015) with an
initial learning rate of 10−5. Then, we employ a
linear scheduler with a warm-up proportion of 10%
so that the learning rate will decay linearly until
reaching zero after the warm-up steps. We put a
dropout layer with a rate of 30% at the output of
our context encoders. We use an early stopping
strategy by monitoring the accuracy of the valida-
tion dataset until it stops increasing for at least 3
epochs. The batch size is fixed at 16. The multi-
domain classifier is trained independently with the
same experimental setting, and it is only involved
in the evaluation stage. We report the mean of su-
pervised DST and zero-shot experimental results
for three runs with different random seeds.

5 Experimental Results

5.1 Zero-Shot Domain Adaptation
We rank our XQA-DST model with prior methods
capable of zero-shot domain adaptation. The exper-
iment is used to evaluate the transfer performance
of models when tested with dialogues in a com-
pletely unseen domain. We train our model on the
other four domains by excluding the target domains.
We follow the experimental steps reported by Ku-
mar et al. (2020). Since there is a single domain
defined in the target domain, the domain classifier
is not utilised here because the dialogue domain
is given information. Table 1 shows a comparison
of our XQA-DST model to baselines and recent
approaches, where the JGA is defined as the ratio
of dialogue turns that have been perfectly predicted
over the number of turns for all dialogues. It is
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Models Type Hotel Train Att. Res. Taxi Avg.
MA-DST (Kumar et al., 2020) G 16.3 22.8 22.5 13.6 59.3 26.9
SUMBT (Lee et al., 2019) C 19.8 22.5 22.6 16.5 59.5 28.2
TRADE (Wu et al., 2019) G 19.5 22.9 22.8 16.4 59.2 28.2
GPT2-m (Li et al., 2021) G 24.4 29.1 31.3 26.2 59.6 34.1
T5DST* (Lin et al., 2021c) G 21.2 35.4 33.1 21.7 64.6 35.2
TransferQA (Lin et al., 2021b) G 22.7 36.7 31.3 26.3 61.9 35.8
XQA-DST w/o two-stage S 22.9 37.0 24.0 25.7 62.2 34.4
XQA-DST w. SQuAD2 S 24.3 40.0 27.9 28.2 63.2 36.7

Table 1: The joint goal accuracy (%) of zero-shot domain adaptation experiments on each domain with recent models
on MultiWOZ 2.1. The abbreviations for model types are: G: Generative; C: Classification; S: Span prediction.
*Results from MultiWOZ 2.0 are reported by Lin et al. (2021c).

clear that our model has generated more accurate
results than both MA-DST (Kumar et al., 2020)
and SUMBT (Lee et al., 2019) baselines by at least
6.2% JGA on average in domain adaptation even
without two-stage fine-tuning. SUMBT tracks the
dialogue states by classifying every slot-value pair.
Hence, it is a classification-based method, whereas
our approach is mainly relying on the value filling
by the span prediction module. It can be seen that
our model has outperformed baselines by a signif-
icant (3-9%) margin in the hotel, restaurant, and
taxi domains. This is because the classification-
based method requires a predefined ontology for
its enumeration of values, which inevitably makes
it not robust to unseen values in new domains and
results in relatively low performance for domain
adaptation.

There is another class of methods that utilises
generative value filling to handle the DST, includ-
ing TRADE, GPT2-m, and TransferQA. Given
GPT2-m as an example, it is in the framework
of generative question answering, which also co-
incides with the underlying idea of our XQA-DST
model but has a decoder to generate candidate val-
ues. With the two-stage fine-tuning strategy on
the SQuAD 2.0 dataset, our model shows improve-
ments in all domains of 2.3% on average. It shows
the highest JGA in both train and restaurant do-
mains (40.0% and 28.2%, respectively). It also
outperforms the TransferQA approach that imple-
ments the cross-task transfer learning, which is
similar to our two-stage fine-tuning that includes
multi-task knowledge. Our results appear as the
state-of-the-art results at 36.7% JGA on average
for zero-shot domain adaptation experiments.

Furthermore, our approach is designed to be
applicable for both domain adaptation and cross-
lingual transfer learning, whereas all generative
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Figure 2: The categorical plot of slot accuracy (%) for
each slot over 5 domains for the zero-shot domain adap-
tation experiment by XQA-DST.

methods listed above can only do mono-lingual
learning. Therefore, our XQA-DST model has
shown very competitive results in the zero-shot do-
main adaptation, and we can conclude that it is able
to effectively generalise to task-oriented dialogues
in new domains by understanding the linguistics
behind our domain-slot questions.

5.2 Domain Adaptation Analysis
We analyse the individual slot accuracy for every
domain-slot pair in 5 domains to study the impact
of shared slots over domains on the performance
of domain adaptation. The results are obtained by
computing the slot accuracy on each target domain
by XQA-DST. The slot accuracy is defined as the
ratio of dialogue turns where the value for that slot
is correctly predicted. Fig. 2 shows the slot accu-
racy for 16 slots over 5 domains, where multiple
domain bars for the same slot indicate that the slot
is shared across these domains.

It is observable that slots that have been shared
among multiple domains lead to a relatively higher
domain adaptation performance. By contrast, it is
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Models Joint Goal Accuracy (%)
GE IT

XLM-R-DST 20.78 25.39

XL-NBT 30.80 41.20
MUSE + AMLT 36.51 39.35
XLM+CLCSA 48.70 -
mBERT+CLCSA 63.20 61.30
TLM+CLCSA 65.80 66.90

Ours w/o two-stage 64.88 68.63
w. XQuAD 66.16 72.84
w. SQuAD2 66.12 75.66

Table 2: The zero-shot cross-lingual DST results for tar-
get languages, German (GE) and Italian (IT), on WOZ
2.0. There are no results on Italian by XLM due to the
absence of Italian in its pretraining (Liu et al., 2020).

also distinctive that slots that have not been shared
among multiple domains have much lower accu-
racy. For instance, most slots in the hotel domain
are not shared with other domains, so the slot accu-
racy for ‘parking’ and ‘internet’ slots (66.4% and
64.5%, respectively) are reasonably lower than oth-
ers. The same rule applies to the ‘time’ and ‘food’
slots in the restaurant domain. Therefore, the num-
ber of shared domains for the slot is the foremost
factor in achieving a good domain adaptation result.
Secondly, we notice that slots with digital values
such as ‘people’ and ‘day’ have very high slot accu-
racy (91.3% and 92.0% in the restaurant domain)
even in the zero-shot setting. It validates the ef-
fectiveness of our model to domain adaptation for
successfully extracting candidate values from the
message. Last but not least, due to the wide surface
form of location values, it is naturally hard to pre-
dict location slots, ‘departure’ and ‘destination’,
that are not categorical with unseen values. Hence,
even though they are shared in both train and taxi
domains, they give relatively lower slot accuracy in
the set of shared slots. Overall speaking, our XQA-
DST model has generated reasonably well domain
adaptation results on most domain-slot pairs and
has shown a certain level of common knowledge
across domains.

5.3 Zero-Shot Cross-Lingual DST

The zero-shot cross-lingual transfer learning is to
train our XQA-DST on the source language, En-
glish. Then, it is sequentially evaluated on the test
sets in German and Italian with labels that are kept
in English. Since WOZ 2.0 is a single domain
dataset with relatively short dialogues, the dialogue

history is not included as inputs, and the domain
classifier is deactivated. To provide a fair com-
parison to the ground truth, we implement Google
Translator (Wu et al., 2016) to translate the values
filled by span prediction in the target language back
to the source language.

In Table 2, our XQA-DST model with two-
stage fine-tuning gives strong zero-shot results in
both German and Italian languages (66.2% and
75.7% JGA, respectively). In comparison to re-
cent approaches for cross-lingual DST, our XQA-
DST model has generated results that significantly
increase the margin by an absolute 8% on Ital-
ian. It is worth noting that both XLM+CLCSA
and mBERT+CLCSA (Qin et al., 2020) are data
augmentation-based approaches on multi-lingual
models with the same model architecture as XL-
NBT (Chen et al., 2018). TLM+CLCSA (Moghe
et al., 2021) also implements two-stage fine-tuning
with data augmentation. Even without two-stage
fine-tuning, our model in extractive QA still outper-
forms most of them and appears as the state-of-the-
art results in the zero-shot cross-lingual transfer
learning on WOZ 2.0.

Besides the above approaches, we include XLM-
R-DST as a baseline that we replace the context
encoder of BERT-DST (Lai et al., 2020) with XLM-
R. Then, we can study the effectiveness of different
model architectures in cross-lingual transfer learn-
ing. We recall that XLM-R-DST fills the slot val-
ues by iterating through every candidate slot value
with a relevance scorer. Table 2 shows a huge
improvement in our approach by increasing the av-
erage JGA on target domains from 23.1% to 66.8%
by more than 40%. It indicates that our specially
designed extractive QA framework has a strong
generalisation ability across languages, whereas
the XLM-R-DST appears as only recognising each
value as distinct features without understanding the
deep semantics behind them. Lastly, we notice that
the cross-lingual result on Italian has a higher joint
goal accuracy than German in our experiments. We
suppose that this is because of the declension in
German, which leads to more diverse word forms
with the same semantics and introduces noises to
the translation process.

5.4 Supervised DST

We perform experiments on the supervised DST
configuration and compare our XQA-DST model
with prior methods capable of monolingual zero-
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Models tested on MultiWOZ 2.1 JGA (%)
TRADE (Wu et al., 2019) 45.60
SUBMT (Lee et al., 2019) 46.70
STARC (Gao et al., 2020) 49.48
MA-DST (Kumar et al., 2020) 51.88
T5DST (Lin et al., 2021c) 52.21
GPT2-m (Li et al., 2021) 52.58
SDP-DST (Lee et al., 2021) 56.66
SOLOIST (Peng et al., 2021) 56.85
PPTOD (Su et al., 2022) 57.10
XQA-DST (our work) 53.21

Table 3: The performance of Supervised DST for our
proposed XQA-DST model with prior methods capable
of zero-shot inference on MultiWOZ 2.1.

shot domain adaptation on MultiWOZ 2.1. Table
3 comprises the JGA for each method, and we
implement the same label mapping as TripPy (Heck
et al., 2020) for a fair evaluation. In Table 3, our
approach has outperformed most prior methods
capable of zero-shot generalisation, including many
generative approaches such as TRADE, T5DST,
and GPT2-m. Though it is less competitive than
the prompt-based SDP-DST model and end-to-end
models in the supervised DST setting, its language
transferability is still distinctive.

Based on the shared span prediction module, our
model is able to extract values from the dialogue
context directly, thereby being open-vocabulary
and domain scalable. At the same time, it has
successfully overcome the challenge of an unavail-
able ontology set. Moreover, it presents as the
best-performed model in any framework with span
prediction modules, where it has improved the mar-
gin of JGA by more than 3.5% from the STARC
approach. None of the other approaches has ever
studied their DST with multi-lingual pretrained
models. By utilising the pretrained XLM-R model
as the context encoder, our approach is the only
method with cross-lingual transferability. Given
its distinct advantages of being domain-adaptable
and language transferable, a promising result in
multi-domain DST at 53.2% is still competitive in
the supervised setting.

To study the impact of essential designs in our
model, we first analyse the performance of a mono-
lingual model, BERT, and ablate it over different
choices of domain classifiers. In Table 4, the vanilla
model with undersampling of negative samples has
the lowest JGA at 38.2%. This is because the
shared span prediction layer lacks domain knowl-

Ablation JGA (%)
BERT-base

w. undersampling 38.23
w. joint domain classifier 41.10
w. independent domain classifier 49.04
+ dialogue history 51.11

XLM-RoBERTa-base
w. independent domain classifier 51.67
+ dialogue history 53.21

Table 4: Ablation study of XQA-DST with different
base models and training strategies on MultiWOZ 2.1.

edge and frequently generates false positive pre-
dictions for out-of-domain questions. Introducing
a joint domain classifier at the output of the main
model in parallel with θgate improves the JGA by
about 3%, which convinces us about the effective-
ness of domain classifiers. At the cost of the model
size, the independent domain classifier significantly
improves the JGA to 49.0% by removing the inter-
ference from asking out-of-domain questions. It
encourages the model to learn to distinguish in-
domain questions rather than additionally learn-
ing the relationship between the context and do-
mains within a goal. We notice that implementing
XLM-R instead of BERT further improves the per-
formance to 51.7%. We suppose it is because of
the well-trained RoBERTa model, and the multi-
lingual pretraining does not greatly sacrifice the
per-language performance. Lastly, due to the com-
plexity of MultiWOZ dialogues, the history infor-
mation is essential in accurately predicting current
domains and extracting spans. Hence, appending
the dialogue history has led our model to outper-
form most prior methods capable of zero-shot in-
ference.

6 Conclusion

We introduce a new multi-domain and multi-lingual
dialogue state tracker, XQA-DST, within an ex-
tractive question answering framework. It gives
distinct advantages for avoiding relying on any
predefined ontology and being open-vocabulary
to new slots with unseen values. We have shown a
strong domain and cross-lingual transferable ability
of our model by outperforming famous baselines.
We have demonstrated its competitive performance
in multi-domain DST with a novel turn-domain
filtering strategy and a multi-domain classifier in
parallel. With the design of an XLM-R based multi-
domain classifier, our approach is feasible for track-
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ing states in multi-domain and multi-lingual sce-
narios. Therefore, it holds a strong potential to
overcome the challenging data scarcity problem for
either domains or languages in the real application
of task-oriented dialogue systems.

Limitations

In the supervised DST experiments, our multi-
domain classifier is effective when the range of
domains is given. However, we have fixed weights
for each domain projection layer, which inevitably
makes the classifier not domain scalable. Though
the shared span prediction layer is still scalable to
all domains, the performance of our model will de-
grade if it encounters a dialogue in multiple unseen
domains.

We recall that the independent multi-domain
classifier provides a clearer training objective and
significantly improves the JGA than the joint do-
main classifier. However, this is at the cost of
model size and requires expensive computation re-
sources. Therefore, we look forward to approaches
that wisely incorporate the domain classifier.

In the cross-lingual experiments, we test the
transfer performance for German and Italian, which
have been used as the pretraining languages for
XLM-R. Hence, we expect a degradation of cross-
lingual performance for our model on low-resource
languages that are not pretrained by XLM-R. In ad-
dition, our experiments rely on a back-translation
from the target language to the source language.
Though we have implemented a predefined label
dictionary that collects vocabulary with similar se-
mantics, it cannot perfectly handle the noise from
an external translation system.
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A Reproducibility Details

Training details We use both XLM-RoBERTa-
base (125M) and BERT-base-uncased (110M) with
pretrained weights from the Huggingface library of
Transformers. We run all experiments on a single
RTX 3080Ti with 12 GB memory. We fix the batch
size at 16 for all models during training and use
the batch size at 1 for evaluations. During train-
ing, it takes about 40 minutes to run an epoch on
MultiWOZ 2.1, and its inference time for all evalu-
ation examples is about 7 minutes. For the WOZ
2.0 dataset, it takes roughly 20 minutes to train the
model. In the cross-lingual setting, the inference
time is about 10 minutes due to the back-translation
procedure.

Hyperparameters For two-stage fine-tuning ex-
periments, we implement QA fine-tuned models

from the Huggingface library of Transformers with-
out tuning their hyperparameters. For the XQuAD
experiment, it implements the batch size at 40 and
a learning rate of 3× 10−5 for the first-stage fine-
tuning. For the SQuAD 2.0 experiment, we use
the fine-tuned weights and hyperparameters from
deepset/xlm-roberta-base-squad2.

Dataset details For the supervised DST experi-
ments, we split the datasets into train/dev/test sets
as same as Heck et al. (2020). In domain adapta-
tion experiments, the MultiWOZ 2.1 datasets are
divided into 5 domains in accordance with Lin et al.
(2021c), where the hospital and police domains
are excluded. Lastly, the multi-lingual WOZ 2.0
datasets have the same split as Moghe et al. (2021).
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