
Findings of the Association for Computational Linguistics: EACL 2023, pages 984–998
May 2-6, 2023 ©2023 Association for Computational Linguistics

Exploring Enhanced Code-Switched Noising for Pretraining in Neural
Machine Translation

Vivek Iyer
School of Informatics

University of Edinburgh
v.iyer@sms.ed.ac.uk

Arturo Oncevay
School of Informatics

University of Edinburgh
aoncevay@ed.ac.uk

Alexandra Birch
School of Informatics

University of Edinburgh
a.birch@ed.ac.uk

Abstract

Multilingual pretraining approaches in Neu-
ral Machine Translation (NMT) have shown
that training models to denoise synthetic code-
switched data can yield impressive performance
gains — owing to better multilingual semantic
representations and transfer learning. However,
they generated the synthetic code-switched data
using non-contextual, one-to-one word transla-
tions obtained from lexicons - which can lead
to significant noise in a variety of cases, in-
cluding the poor handling of polysemes and
multi-word expressions, violation of linguistic
agreement and inability to scale to agglutinative
languages. To overcome these limitations, we
propose an approach called Contextual Code-
Switching (CCS), where contextual, many-to-
many word translations are generated using a
`base' NMTmodel. We conduct experiments on
3 different language families - Romance, Uralic,
and Indo-Aryan - and show significant improve-
ments (by up to 5.5 spBLEU points) over the
previous lexicon-based SOTA approaches. We
also observe that small CCS models can per-
form comparably or better than massive models
like mBART50 and mRASP2, depending on the
size of data provided. Lastly, through ablation
studies, we highlight the major code-switching
aspects (including context, many-to-many sub-
stitutions, code-switching language count etc.)
that contribute to the enhanced pretraining of
multilingual NMT models.

1 Introduction

Recent research in Neural Machine Translation
(NMT) has focused on the pretraining of massively
multilingual models (Aharoni et al., 2019; Siddhant
et al., 2022; Costa-jussà et al., 2022) - due to their
high scalability, easy deployability and state-of-the-
art (SOTA) performances (Tran et al., 2021; Yang
et al., 2021). One of the most common pretrain-
ing approaches trains a model to reconstruct (or
``denoise") a sentence noised using one or more
mechanisms. Followingmasking (Song et al., 2019;

(a) Example sentences (Pan et al., 2021, Figure. 6)

(b) Translation Errors in the noised sentence generated
using AA. Parentheses indicate code-switching language.

Figure 1: Example of the errors induced by Aligned
Augmentation (AA). GT refers to `Ground Truth' trans-
lations, as provided by native speakers.

Lewis et al., 2020), synthetic code-switching1 has
emerged as a more effective noising mechanism
(Yang et al., 2020b; Pan et al., 2021). With the mo-
tive of moving the denoising task from language
modeling to machine translation, these works pro-
pose to randomly code-switch input sentences, and
then to train the MT model to denoise these sen-
tences to the original monolingual ones.

The most noteworthy system in this line of
research is the massively multilingual model
mRASP2 (Pan et al., 2021). It was pretrained using
an algorithm called Aligned Augmentation (AA) -
that constructs a synthetic code-switched sentence
using dictionary-based word-level translations, fol-
lowed by contrastive learning to semantically align
this sentence with the reference sentence. Pan et al.
(2021) showed that AA enablesmRASP2 to achieve
SOTA results across varied high, medium, and low-
resource language pairs, and verified that this was
due to improved multilingual semantic representa-
tions and enhanced cross-lingual transfer.

1In this paper (and related others), code-switching refers
exclusively to `synthetic' code-switching - which is employed
as a pretraining approach for enhancing cross-lingual transfer
learning. This is very different from the larger body of MT re-
search that studies authentic, human-generated code-switching
- as employed by bilingual speakers in informal contexts.

984

Despite being highly effective, a common weak-
ness of this family of approaches is that they syn-
thesize code-switched sentences using word lexi-
cons - opening up several potential quality issues
in the pretraining data. For instance, the SOTA
algorithm AA as well as other related works (Lin
et al., 2020; Li et al., 2022a) use non-contextual,
one-to-one word translations obtained from MUSE
lexicons (Lample et al., 2018) -- which can be prob-
lematic in a variety of cases. Firstly, failing to
factor sentence-level context can cause violations
in linguistic agreement, such as gender, case, tense
and verb agreement. Secondly, AA cannot ade-
quately handle contextual synonyms or polysemes
(often estimated to constitute up to 80% of English
words (Miller, 1998; Geeraerts, 1993)), with Lin
et al. (2020) and Pan et al. (2021) assigning random
word senses (and thus, translations) for polysemes
-- regardless of context. Thirdly, one-to-one word
translations create further issues, including the han-
dling of multi-word expressions (eg. ``get out")
and multi-word entities (eg. ``New York") -- with
these problems aggravating for agglutinative lan-
guages. Finally, the bilingual MUSE lexicons them-
selves have been shown to be of dubious quality
across a variety of languages (Kementchedjhieva
et al., 2019), and using these for multilingual code-
switching can propagate such errors manifold. This
is illustrated in Figure 1, which shows an example
of AA noising taken directly from Pan et al. (2021).
With 6 errors in a sentence of 14 words (refer Ap-
pendix A.1 for a detailed examination of these er-
rors), we contend that these limitations could cause
significant corruption in the pretraining corpus.

We, thus, hypothesize that although AA has been
effective in a variety of scenarios, the raised issues
could lead mRASP2 to underperform. For this
reason, we propose Contextual Code-Switching
(CCS) - a novel approach for extracting contex-
tual, many-to-many word translations, leveraging
massive2 NMT models, and then using these for
noising the pretraining corpus. We conduct experi-
ments on 3 different language families: Romance,
Uralic, and Indo-Aryan, and report significant aver-
age improvements across the board, with gains of
up to +5.5 spBLEU. We also find that CCS models
narrow the gap with or outperform massively mul-
tilingual models like mBART50 (Tang et al., 2021)

2`massive' in this work signifies the size of pretraining data,
while `large' refers to the large Transformer architecture (with
12 encoders and 12 decoders)

and mRASP2, despite using a tiny fraction of the
data and compute. Lastly, we conduct ablation stud-
ies to analyze some of the most important factors to
consider when synthesizing code-switched text for
multilingual NMT pretraining - which constitutes
another key, novel contribution of this work.
Our major contributions are, thus, as follows:
1. Firstly, we show that improving the quality of

synthetic code-switching can significantly en-
hance pretraining of multilingual NMT mod-
els across various high, medium, low-resource
and agglutinative language pairs (3.4.1).

2. Secondly, we demonstrate how massively mul-
tilingual NMTmodels can be harnessed to pre-
train smaller models that yield comparable or
better performance -- all while using a fraction
of the training data and compute (3.4.2).

3. Thirdly, we empirically analyze and discuss
some of the key factors that can enhance NMT
pretraining on code-switched data - including
context, many-to-many substitutions, code-
switching language count, and fine-tuning -
furthering scientific understanding (3.5)

4. Finally, for greater scalability of our approach,
we propose useful variations of CCS that
could alleviate potential resource dependen-
cies (3.4.3) and increase efficiency (8.1) -- all
while maintaining comparable performance.

2 Approach
2.1 Definitions
Given a set of N languages L = L1, L2 . . . LN ,
multilingual NMT is defined as the task of learning
a many-to-many mapping function θ from source
languageLa to target languageLb. Code-switching
refers to the phenomenon of shifting between two or
more languages in a sentence. This work explores
functions C that can synthetically code-switch cor-
pora for pretraining multilingual NMT models.

2.2 Aligned Augmentation
Aligned Augmentation constructs synthetically
code-switched datasets using multilingual lexicons.
These lexicons are generated by interlinking bilin-
gual MUSE dictionaries through a pivot language,
English. Given a sentence S, a code-switched sen-
tence CAA(S) is created by looking up word trans-
lations in the lexicon and, if available, substituting
with replacement ratio r. A bilingual lexicon is
used to code-switch parallel corpora and the multi-
lingual one for monolingual data, with r = 0.9.

985

Figure 2: a) The pipeline of, and b) an example illustrating our approach. Alignments between punctuation marks
have been omitted for ease of illustration. Color coding signifies language in the code-switched sentence CCCS(S).
CCCS(S) is later fed to a Transformer and trained using Cross Entropy and Contrastive Loss (Section 2.4).

2.3 Contextual Code-Switching
Contextual Code-Switching (CCS) seeks to obtain
contextual, many-to-many word translations, later
used for code-switching parallel and monolingual
corpora. Given a source sentence S, we generate
the code-switched sentence CCCS(S) as follows:

1. Use a `base' NMT model M to translate S
in n languages (n ≥ 1) to obtain transla-
tions {T1 . . . Tn}. Here, MLi(S) = Ti where
MLi(S) is translation of S by M to Li

2. Use word aligner W to align S with transla-
tions {T1 . . . Tn} and obtain word alignments
{A1 . . . An}; where W (S, Ti) = Ai

3. Generate the `noised' code-switched sentence
CCCS(S) using the CCS algorithm, with S,
{T1 . . . Tn} and {Ai . . . An} as inputs

The CCS algorithm works by generating ``con-
nected components" of aligned words. For a given
translation Ti and word alignment Ai, we iterate
over each source word wi in S, extract target words
from Ti which are aligned with wi (as specified by
Ai), and then iteratively extract the source words
aligned to these target words and vice versa, un-
til convergence. This yields all possible many-to-
many word alignment combinations, from which
code-switching is carried out through random, iter-
ative substitutions in S until the replacement ratio
is reached -- yielding the final sentence CCCS(S).
CCCS(S) could be code-switched in one (n = 1) or
more (n ≥ 1) languages, which we term Bilingual
(BLCS) and Multilingual Code-Switching (MLCS)
respectively. Although mRASP2 uses MLCS, we
show in Section 3.5 that BLCS mostly performs
better and is also more efficient. We illustrate our
approach in Figure 3 and provide an example where
the many-to-many substitution enables CCS to cor-
rectly translate the word moreover as en outre.
Finally, we provide pseudo-code (containing finer

technical details) in Algorithm 1 of Appendix A.2.

2.4 Training
To ensure a fair comparison, we replicate the train-
ing conditions proposed by Pan et al. (2021) while
training our AA and CCS models. Our training
dataset D consists of shuffled parallel and mono-
lingual sentences, noised using the respective code-
switching approaches. These code-switched sen-
tences are input to the encoder. Meanwhile, the tar-
get sentences are the reference sentences for parallel
corpora and the denoised (original) sentences for
monolingual corpora. A special token indicating
language ID is prepended to all source and target
sentences. Finally, the model is trained using a loss
function L that jointly optimizes Contrastive Loss
LCON and Cross Entropy Loss LCE as follows:

L = LCE + |s| ∗ LCON

where: LCE =
∑

x,y∈D
Pθ(y|x), and

LCON = −
∑

x,y∈D
log

esim
+(E(x),E(y))/τ

∑
a,b∈B esim

−(E(x),E(b))/τ

Here, E denotes the average pooled encoder out-
put, `sim' computes positive and negative semantic
similarity for a pair of sentences, as denoted by
sim+ and sim− respectively. Temperature τ con-
trols the strength of penalties during contrastive
learning and is set to 0.1. B denotes the mini-batch
in datasetD that (x, y) belong to. As shown by Pan
et al. (2021), Contrastive Learning aligns semantic
representations of source and reference sentences
(x, y) while pushing away all `negative' targets --
approximated to other reference sentences in the
mini-batch for convenience. Finally, |s| is the aver-
age sentence length (token count) that balances the
token-level cross entropy loss and sentence-level
contrastive loss.

986

3 Experiments

In this section, we seek to answer the following
Research Questions:
1. How does CCS perform against the SOTA

non-contextual algorithm, AA, and how does
this vary across language pairs? (3.4.1)

2. How do small CCS models compare against
SOTA massively multilingual models? (3.4.2)

3. How can CCS alleviate its potential resource
dependencies and scale beyond? (3.4.3)

4. What are the key factors to consider when
pretraining on code-switched text? (3.5)

As part of 3 Case Studies, we evaluate CCS on
3 different language families - namely, the high-
resourced Romance, the agglutinative Uralic, and
the low-resourced Indo-Aryan - in order to test its
efficacy under different scenarios. For each fam-
ily, we train from scratch small multilingual AA
and CCS baselines on its languages. Small models
have the benefit of minimizing negative interfer-
ence, while also satisfying our resource constraints.

3.1 Corpora

Tables 1a and 1b show the training corpora statistics
used per language family. We use this data for
training all AA and CCS models in this work. For
a fair comparison, only languages from each family
that are present in the training set of mRASP2 and
mBART50, and contain MUSE dictionaries are
chosen for training. Portuguese (Pt) is taken as the
zero-shot case, explored in Section 3.4.3, so no
parallel corpus is used. The datasets constituting
the training corpora are detailed in Section A.4.3.

For validation, we choose the last 1000 sentences
from the bitext for each language. For testing, we
use the latest available WMT test sets for each lan-
guage into and out of English. Table 2 specifies
these test sets, which are used for all experiments
in this work. Regarding metrics, following related
work, we use spBLEU-1013 (Goyal et al., 2022) to
evaluate all baselines in this work, but also provide
ChrF++ (Popović, 2017) and COMET (Rei et al.,
2020) results in Appendix A.5.1. We observe that
these metrics largely agree with each other.

3.2 Preprocessing (CCS)

In order to apply the CCS algorithm (Section 2.3),
we first generate `base' model translations and word
alignments using the fine-tuned mBART50 and

3referred to as spBLEU in this work for brevity

Romance Uralic Indo-Aryan

En 7.5M It 7.5M En 20M En 20M
Es 7.5M Ro 7.5M Fi 16M Hi 6.25M
Fr 7.5M Pt 7.5M Et 8.1M Gu 650K

(a) Monolingual data

Romance Uralic Indo-Aryan

En-Es 1.8M En-It 1.7M En-Fi 4M En-Hi 1.6M
En-Fr 1.8M En-Ro 364K En-Et 2.3M En-Gu 12K

(b) Parallel data

Table 1: Statistics of training corpora used in this work

awesome-align (Dou and Neubig, 2021) models
respectively. For the former, we use the corre-
sponding multilingual 1-n, n-1, and n-n models
(based on the language pair) and generate trans-
lations with a beam size of 5. For the latter, we
fine-tune awesome-align with a subset (300K par-
allel sentences) from our training corpus using the
Translation Language Modeling and Self-Training
objectives, as suggested by Dou and Neubig (2021).
Where possible, we attempt to have this subset uni-
formly distributed across all languages (except in
low-resourced Indo-Aryan, where 12K En-Gu and
288K En-Hi sentences are used). This setup of
`base' and word alignment models is used for train-
ing all CCS baselines in this work unless otherwise
specified (such as in Section 3.4.3).

3.3 Experimental Settings

We use the vanilla Transformer (Vaswani et al.,
2017) with 6 encoder and 6 decoder (6e6d) layers
to train all models in this work, except in Table
3 - where `large' CCS baselines with 12 of each
(12e12d) are used for fair comparison against mas-
sively multilingual models. We use a batch size of
4000 and a learning rate of 0.0001, with a polyno-
mial decay scheduler and 5000 warm-up updates.
We use an Adam optimizer with ε = 1e−6. For reg-
ularization, we use dropout of 0.1 and weight decay
of 0.001. We use automatic mixed precision and
an update frequency of 4 to speed up training. We
conduct validation every 1000 updates and use a pa-
tience value of 10 for early stopping. We train each
model only once since a random seed of 0 is set ev-
erywhere. For tokenization, we use sentencepiece
(Kudo and Richardson, 2018). Sentencepiece mod-
els using a unigram language model are trained on
the corresponding corpora with a vocabulary size
of 32000 and character coverage of 1.0. Following
Pan et al. (2021), we use a replacement ratio of 0.9
in AA models while for CCS, we use 0.55, 0.75,
and 0.1 for the Romance, Uralic and Indo-Aryan

987

families after grid-search optimization. We detail
infrastructure and training costs in Section A.4.

3.4 Results

3.4.1 Comparison with AA

In this section, we compare AA baselines with
vanilla CCS models, when trained from scratch
under identical conditions. Since Pan et al. (2021)
already showed AA is the SOTA pretraining al-
gorithm, we do not recreate other denoising ap-
proaches here - however, we do compare against
two of the best-performing massive models from
related work, mBART50 and mRASP2, in Section
3.4.2. Table 2 shows results for all 3 Case Studies.

We note some interesting trends. Firstly, while
significant improvements are observed across all
language families, the margin of gain varies. The
highest gains are observed for the high-resourced
Romance and the agglutinative Uralic families --
while the latter benefits greatly from many-to-many
substitutions (Table 6), the former is quite note-
worthy given that for Romance languages, MUSE
lexicons are available in all directions (not just
English-centric) so AA models would be strongest
here. Meanwhile, the low-resourced Indo-Aryan
family, which is non-agglutinative and suffers from
low-quality `base' model translations (as observed
from inspection of mBART50 translations by native
speakers), the margin is relatively lower. Nonethe-
less, on average, CCS still outperforms the SOTA
approach AA and, as we shall see in Section 3.4.2,
even massive models like mBART50 and mRASP2
- despite using far lesser data overall. Moreover,
we show in Table 7 how techniques like BiLingual
Codeswitching (BLCS) can further boost CCS by
+1 to +2 spBLEU, making the total gap against AA
+2 to +3 spBLEU points for the Indo-Aryan family.

Secondly, we observe that CCS mostly performs
equally well for En-X and X-En pairs (with few
exceptions), but AA varies considerably and per-
forms better for the latter. This could be because
X-En is generally an easier translation task than En-
X, owing to the abundance of high-quality English
target-side data. CCS bridges the gap between these
two tasks and improves consistency - likely due
to the higher quality codeswitching systematically
benefiting cross-lingual representations overall.

Lastly, we note that the spBLEU gains in Table
2 translate to comparably large improvements in
ChrF++ and COMET (Table 10)

3.4.2 Comparison with Massively
Multilingual Models

We now proceed to compare our CCS systems
against two SOTA massively multilingual models
mBART50 (Tang et al., 2021), trained on 50 lan-
guages, and mRASP2 (Pan et al., 2021), trained
on 32 languages; in Table 3. Table 3a contains
ratios of the monolingual and parallel data used
by the massive models w.r.t. ours, per language
family, and can help in a meaningful interpretation
of the results in Table 3b. While we use signifi-
cantly lesser data for the Romance family, we at-
tempt to match the parallel data used by mRASP2
for the Uralic and Indo-Aryan families. This data is
comparable to or slightly more4 than that used for
fine-tuning mBART50. As baselines, we use the
AA and CCS models from Table 2 and their large
(12e12d) variants. We also include a fine-tuned (ft)
version of CCS (large) - created by pretraining on
the code-switched monolingual data but leaving the
parallel data unnoised for subsequent multilingual
fine-tuning. We explore the impact of fine-tuning
in greater detail in Section 3.5.

However, considering mBART50 and mRASP2
are massive models designed to scale to a much
larger set of languages, we emphasize that Table 3
is not intended to be a head-to-head comparison;
rather it is meant to position our work against the
wider, popular SOTA. Our motive here is two-fold:
a) to provide a way to harness massive models for
pretraining and perform comparably or better, and
b) to estimate the potential impact of scaling up
CCS models - thus suggesting a worthy new di-
rection of future exploration for pretraining better
massive multilingual models. The first purpose
could be especially useful for academics with fewer
resources, while the second is likely better suited
to groups capable of training massive models, eg.
large industrial labs.

We achieve the first purpose by showing that
the CCS (large) model performs comparably to
mBART50 despite using substantially lesser data
(such as in the Romance family), though mRASP2
retains a larger gap. But, when comparable data is
used, as in the other families, CCS (large) models
consistently outperform massive models by signif-
icant margins, despite using lesser monolingual
data. The only exception is X-En where mBART50

4Relatively speaking here. Note that the overall data gap is
still heavily biased towards mBART50, with up to 90x more
monolingual data than our CCS models

988

En-Es En-Fr En-It En-Ro Avg ∆wmt13 wmt14 wmt09 wmt16
→ ← → ← → ← → ← → ← → ←

AA 25.0 26.2 28.8 28.7 23.8 26.8 18.7 24.1 24.1 26.5 - -
CCS 30.7 29.1 33.1 30.9 29.1 29.0 25.4 30.4 29.6 29.9 +5.5 +3.4

(a) Case Study 1: Romance languages

En-Fi En-Et Avg ∆wmt19 wmt18
→ ← → ← → ← → ←

AA 15.6 19.3 20.5 23.3 18.05 21.3 - -
CCS 21.2 21.2 25.6 25.7 23.4 23.45 +5.35 +2.15

(b) Case Study 2: Uralic languages

En-Hi En-Gu Avg ∆wmt19 wmt18
→ ← → ← → ← → ←

AA 28.4 24.6 10.2 11.5 19.3 18.05 - -
CCS 28.0 24.0 12.9 12.9 20.45 18.45 +1.15 +0.4

(c) Case Study 3: Indo-Aryan languages

Table 2: Pair-wise spBLEU results for each conducted case study. → stands for En-X while← means X-En. `Avg'
indicates average spBLEU, and ∆ signifies spBLEU improvements over AA.

Romance Uralic Indo-Aryan

Monolingual data ratios
mBART50 (ft) x91 x68 x90
mRASP2 x7 x4 x4
AA/CCS x1 x1 x1

Parallel data ratios
mBART50 (ft) x9 x0.5 x0.8
mRASP2 x8 x1 x1
AA/CCS x1 x1 x1

(a) Data Ratios

Romance Uralic Indo-Aryan
En-X X - En En - X X-En En-X X-En

Massively Multilingual Models
mBART50 (large, ft) 32.25 35.63 23.10 29.35 13.45 23.20
mRASP2 (large) 36.00 37.13 25.20 27.00 5.75 15.10

Our Models
AA 24.08 26.45 18.05 21.30 19.30 18.05
AA (large) 29.18 29.53 21.25 23.55 20.20 18.65

CCS 29.58 29.85 23.40 23.45 20.45 18.45
CCS (large) 31.30 31.10 27.60 27.25 23.30 22.00
CCS (large, ft) 31.30 31.13 27.70 28.05 25.30 23.50

(b) Results (large = 12e12d, ft = fine-tuned)

Table 3: Data and performance comparison with massively multilingual models. mBART50 (Tang et al., 2021) and
mRASP2 (Pan et al., 2021) were taken and evaluated on the given pairs. Our Models were trained and tested only on
languages from specific families (4 for Romance, 2 for Uralic and Indo-Aryan) on a much smaller dataset (Table 3a).

performs better, likely due to the wide gap in En-
glish monolingual and target-side data. However,
the fine-tuned CCS model does close the gap with
fine-tuned mBART50, performing comparably or
better. We address the second purpose by noting
that except for the low-resourced Indo-Aryan case,
mRASP2 - which is essentially a scaled-up version
of AA (large) trained on more languages - routinely
improves over the latter. While `forgetting' low-
resource languages can lead to some performance
decline, performance, in general, can be observed
to improve on scaling up - likely boosted by im-
proved cross-lingual transfer. Now, when using
comparable data, CCS (large) beats both AA (large)
and mRASP2. This suggests that scaling up CCS
to train a massive model like mRASP2 could rea-
sonably be expected to yield improvements over
the latter. We leave this exploration to future work.

Given CCS leverages massive models to pre-
train small, high-performing ones, we also explore
another interesting auxiliary application of CCS,

Knowledge Distillation (KD), in Section A.5.2, and
show how it outperforms traditional KD baselines.
3.4.3 Alleviating Resource Dependencies

Romance Uralic Indo-Aryan
En-X X-En En-X X-En En-X X-En

CCS (base=ft. mBART50) 29.58 29.85 23.4 23.45 20.45 18.45
CCS (base=from-scratch) 30.05 29.40 23.1 22.95 20.25 19.55

Table 4: CCS with different `base' model choices. A
model trained `from-scratch' can be used as a substitute
for fine-tuned mBART50 with comparable performance.

Scaling beyond mBART50 While the above ex-
periments use mBART50 as the `base' model, an
important question to consider is how to scale to
languages beyond the ones included in the same (or,
more challengingly, any available massive model).
We conduct an alternative set of experiments, where
we train up small (6e6d) Transformer multilingual
models ``from-scratch" on our parallel data (Table
1b) and show in Table 4 that CCS baselines using
these as `base' models consistently perform compa-
rably to those using mBART50 as the `base'. This

989

suggests that although massive models are readily
available and convenient to use, CCS performance
is not dependent on their existence, and small mod-
els trained from scratch can be a good substitute.

Zero-Shot Translation: A follow-up question
to the previous solution of training models from
scratch on parallel data is the zero-shot scenario: i.e.
what happens if there is no parallel data available,
such as for low-resource languages or non-English
centric pairs? Table 5 addresses this scenario. Start-
ing from a random `from-scratch' baseline trained
on the Romance corpus in Table 1b (i.e. no En-
Pt data provided), we observe that CCS baselines
using the former as a `base' model introduce large
gains over the same and over AA. The latter is a
particularly strong baseline since it uses ground-
truth MUSE lexicons from Pt to every other Ro-
mance language for code-switching. However, the
enhanced multilingual code-switching of CCS can
potentially achieve superior alignment of the Pt vo-
cabulary with that of the other languages -- making
CCS a better alternative than AA even if parallel
data is unavailable for a given pair.

En-Pt Pt-En

From-scratch 1.30 3.40
AA 3.20 10.30

CCS (base=from-scratch) 4.80 11.00

Table 5: Zero-shot Translation

3.5 Analysis
We now empirically discuss some key factors that
enhance code-switched pretraining and hope these
would serve as useful pointers for future work.
Impact of many-to-many substitutions Table 6
studies the impact of many-to-many substitutions
through an ablation study, comparing against a CCS
baseline where only 1-1 aligned words are chosen
for substitution. We note a consistent decline in
performance across all language pairs, with the
largest being for Uralic (about 1.5-2 spBLEU points
on average). This is likely due to agglutination in
the Uralic family. For instance, 1 Finnish word
jauhelihakeitto aligns to 3 English words: minced
meat soup. This is correlated statistically - the

Romance Uralic Indo-Aryan
En-X X-En En-X X-En X-En En-X

CCS (1-1) 28.53 28.98 21.50 21.95 18.95 18.00
CCS 29.58 29.85 23.40 23.45 20.45 18.45

Table 6: Ablation study investigating the role of many-
to-many substitutions

average word count per sentence in our Fi corpus
is 10.66 while for En it is almost double (20.2).
Many-to-many substitutions are, thus, crucial for
code-switching such agglutinative languages.

Impact of contextual translations Through an
example lifted from the Romance corpus, Figure
3 shows how CCS improves pretraining data qual-
ity through contextual substitutions. While man
means humano (human) in certain contexts, the
French word homme is correct here. A similar ar-
gument holds for charge and gardes (garde could
mean either guard or custody, based on context).

Figure 3: CCS produces more contextual substitutions.
In this example taken from the Romance corpus, the
sentences codeswitch between En, It, Fr, Es, Pt, and Ro

Impact of code-switching language count Pan
et al. (2021) use Multilingual Code-Switching
(MLCS)5 to noise sentences, meaning a sentence
could be code-switched in multiple languages.
While we reproduce this in vanilla CCS and AA
baselines, in Table 7 we explore Bilingual Code-
Switching (BLCS), where 1 sentence switches be-
tween only 2 languages. Intuitively, this could be
easier for the model to denoise. We observe our
intuitions are mostly correct -- except for Romance,
BLCS consistently improves performance. For the
Romance languages, a likely explanation is that
these have high lexical similarity (about 80-90%
(Eberhard et al., 2022)) and more shared vocabu-
lary, so the denoising task is not as complex and
MLCS encourages greater transfer. In contrast, the
lexical similarity for Uralic languages is lower than
50% (Jorgensen, 2020), while Hindi and Gujarati

5While this term is coined for ease-of-use in this work, it
is a slight misnomer, and we discuss this in Appendix A.3

990

Romance Uralic Indo-Aryan
En-X X-En En-X X-En En-X X-En

CCS (MLCS) 29.6 29.9 23.4 23.45 20.45 18.45
CCS (BLCS) 28.2 28.58 23.9 23.7 21.45 20.65

Table 7: Comparison between MultiLingual (MLCS)
and BiLingual Code-Switching (BLCS)

use different scripts -- leading to reduced vocabu-
lary sharing and increased complexity. This might
also explain why BLCS gives the Indo-Aryan fam-
ily the highest gains, followed by Uralic. We note
BLCS is also more time-efficient in Section 8.1,
so we suggest future work to use the same when
code-switching lexically dissimilar languages.

Impact of fine-tuning While the default variant
of CCS follows Pan et al. (2021) and mixes parallel
and monolingual code-switched data for pretrain-
ing, we explore if pretraining on only the latter and
leaving the parallel data `unnoised' for fine-tuning,
might be a better alternative (as is common in other
related works). Table 8 confirms this enhances
performance significantly, likely due to monolin-
gual data being abundant enough for achieving the
cross-lingual transfer desired during pretraining,
and fine-tuning more closely resembling the final
translation task. Secondly, we note that Multilin-
gual Fine-Tuning (MLFT) beats Bilingual Fine-
Tuning (BLFT) in code-switched pretraining too,
complementing the findings of Tang et al. (2021)
in masked pretraining.

Romance Uralic Indo-Aryan
En-X X-En En-X X-En X-En En-X

CCS 29.58 29.85 23.40 23.45 20.45 18.45

CCS + BLFT 28.65 28.43 23.55 23.80 16.35 14.50
CCS + MLFT 30.00 29.68 25.20 25.85 23.55 22.35

Table 8: Improvements yielded by fine-tuning

4 Related Work
Denoising-based pretraining: Various noising
mechanisms have been proposed for denoising-
based pretraining of NMT models in recent times.
Inspired by BERT (Devlin et al., 2019), earlier mod-
els including MASS (Song et al., 2019) and BART
(Lewis et al., 2020) were pretrained on masked
monolingual corpora, followed by fine-tuning on
large parallel datasets (Tang et al., 2021). In an ef-
fort to shift the denoising objective from language
modeling to translation, subsequent works adopted
code-switched noising. ALM (Yang et al., 2020a)
introduced this concept by using statistical phrase

tables to code-switch parallel datasets and train-
ing bilingual MT models that showed small im-
provements for the high-resourced, linguistically
similar En-De and De-En pairs. Next, CSP (Yang
et al., 2020b) proposed using probabilistic lexicons
for code-switching in order to train bilingual mod-
els on both monolingual and parallel data. RAS
(Lin et al., 2020) extended this trend to multilin-
gual NMT, utilizingMUSE lexicons to code-switch
and pretrain the massive NMT model mRASP on
parallel corpora from 32 languages. Its succes-
sor, Aligned Augmentation (Pan et al., 2021) used
a `multilingual' lexicon (formed by heuristically
chaining bilingual MUSE lexicons) to code-switch
both monolingual and parallel corpora and pre-
trained the mRASP2 model on these using con-
trastive learning. They reported SOTA scores, beat-
ing mRASP and many other strong baselines across
a variety of language pairs and tasks. CeMAT (Li
et al., 2022b) showed that BART-like masking can
complement lexicon-based code-switching.

Different from all these works that only attempt
one-to-one, non-contextual code-switching, the key
novel contribution of our work is to carefully ex-
plore and analyze the performance gains offered
by enhanced code-switching that factors context,
many-to-many substitutions, code-switching lan-
guage count, etc. We show how modern NMT
models can be utilized to achieve these goals and
achieve comparable or better performance while
using a tiny fraction of the data and compute.

5 Conclusion

We explore a noising mechanism called Contex-
tual Code-Switching (CCS) that extracts contextual,
many-to-many word translations for code-switched
pretraining in multilingual NMT. Our experiments,
conducted on 3 different language families, show
that CCS consistently beats the previous SOTA ap-
proach, Aligned Augmentation and also performs
comparably or better thanmBART50 andmRASP2,
based on the quantity of training data provided.
We analyse the impact of some major factors re-
sponsible for enhancing code-switched pretrain-
ing through examples and ablation studies. We
hope the findings of this work will be useful to re-
searchers studying NMT pretraining, as well as to
academic and industry peers who may be looking
for a way to fruitfully leverage massive NMT mod-
els, or conversely, to jump-start the training of even
larger and better-performing ones.

991

6 Acknowledgements
This work was funded by UK Research and Innova-
tion (UKRI) under the UK government’s Horizon
Europe funding guarantee 10039436. The experi-
ments in this work were conducted using resources
provided by the Cambridge Service for Data Driven
Discovery (CSD3) operated by the University of
Cambridge Research Computing Service6, Sulis
Tier 2 HPC platform hosted by the Scientific Com-
puting Research Technology Platform at the Uni-
versity of Warwick, and the Baskerville Tier 2 HPC
service7 operated by Advanced Research Comput-
ing at the University of Birmingham. Finally, we
would also like to acknowledge Guillem Ramirez
for his help in selecting interesting examples for
Figure 3.

7 Ethical Considerations
There has been significant concern recently over
massive multilingual NLP models learning racial
and gender biases during pretraining (Tan and Celis,
2019; Bender et al., 2021). A technique like CCS
that leverages massive NMTmodels could be at risk
of propagating any such biases present in the `base'
model. While such a limitation is not unique to
CCS and could apply to any technique harnessing
large models (such as Knowledge Distillation ap-
proaches), it is an important ethical concern since
model biases that are propagated this way could be
harder to detect and control - as compared to data
biases. In such a situation, it could be worthwhile
to invest effort into curating more `unbiased' data,
and then using models trained from scratch on this
data as the base models for CCS (see Table 4) - giv-
ing a greater degree of control than massive models
like mBART50 but potentially yielding comparable
performance.

8 Limitations
We now discuss some limitations of our work and
suggest some ways to mitigate them.

8.1 Cost
One of the advantages of AA is that it is relatively
inexpensive to code-switch using lexicons. CCS,
on the other hand, requires translating training data
into multiple different languages followed by com-
puting word alignments, which can be very expen-
sive, particularly on scaling up. So, we suggest

6www.csd3.cam.ac.uk
7https://www.baskerville.ac.uk/

Algorithm Time

CCS-MLCS (base=mBART50) 8h 37m
CCS-BLCS (base=mBART50) 4h 30m

CCS-MLCS (base=from-scratch) 4h 42m
CCS-BLCS (base=from-scratch) 2h 37m

Table 9: Total Preprocessing (base translation+word
alignment+CCS) time costs for En-Fi 4M corpus, while
using 1 GPU node of 3 A100 GPUs

some ways of reducing the cost, while potentially
maintaining comparable performance. One effec-
tive way would be to use the BLCS variant, since
it only needs one translation and one set of word
alignments per sentence. Another way to reduce
costs is to use smaller (6e6d) models trained from-
scratch as a faster substitute for larger models like
mBART50 (Table 4). The effectiveness of these
techniques is shown in Table 9, which depicts the
total preprocessing costs (for the entire pipeline in
Figure 3) for code-switching a 4M En-Fi parallel
corpus on a single GPU node (with 3 A100 GPUs).
It is worth remembering that the word alignment
costs are minimal here (about 30 minutes), so the
costs are primarily due to generating translations
(with a beam size of 5). We, thus, encourage using
standard techniques to improve MT efficiency, like
using lower beam size, shortlisting, quantization
etc. to further reduce costs.

We will also release the code-switched corpora
constructed in this research as part of the camera-
ready version of this paper, to ensure greater reuse
of the expenditure in our time and resources.

8.2 Resource Dependencies
The CCS models in our work function using
mBART50 as the `base' model and the word align-
ment model, awesome-align. Greater resource de-
pendencies are, thus, another limitation of CCS
and it is important to think of viable alternatives in
case of non-availability of these. Awesome-align
uses representations from mBERT (Devlin et al.,
2019) so, it could scale to the languages the latter
is pretrained on. For other languages, such as very
low-resource pairs, it could be worth exploring low-
resource word aligners (Asgari et al., 2020; Poerner
et al., 2018) - though we leave the exploration of
the same as part of future work. As for the `base'
model, we could use models trained from scratch
as a viable alternative (see Table 4) and potentially
obtain comparable performance. In case of non-
availability of parallel data, this approach can scale

992

well to zero-shot translation when parallel corpora
from related language pairs are available. (Table 5)

8.3 Low-Resource Scenarios
As we saw in Table 10, CCS appears to yield
relatively lower gains for low-resource languages.
While this does beat many SOTA models includ-
ing mBART50 and mRASP2, further research is
needed to adapt CCS better for data-scarce and low-
resource scenarios in general. Based on related
work, one useful solution could be to leverage data
from high-resourced languages and families (eg.
mixing Romance language data with Indo-Aryan
languages) in a more multilingual and scaled-up
iteration of our work. Another way would be to
filter out low-quality translations from the `base'
model using its confidence scores, and only use
the high-quality ones for code-switching. While
we are unable to explore these within the scope of
this work, they could make for interesting future
directions.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3874--3884,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Roman
Grundkiewicz, Barry Haddow, Leonie Harter, Ken-
neth Heafield, Christopher Homan, Matthias Huck,
Kwabena Amponsah-Kaakyire, Jungo Kasai, Daniel
Khashabi, Kevin Knight, Tom Kocmi, Philipp Koehn,
Nicholas Lourie, Christof Monz, Makoto Morishita,
Masaaki Nagata, Ajay Nagesh, Toshiaki Nakazawa,
Matteo Negri, Santanu Pal, Allahsera Auguste Tapo,
Marco Turchi, Valentin Vydrin, andMarcos Zampieri.
2021. Findings of the 2021 conference on machine
translation (WMT21). In Proceedings of the Sixth
Conference on Machine Translation, pages 1--88, On-
line. Association for Computational Linguistics.

Ehsaneddin Asgari, Masoud Jalili Sabet, Philipp Dufter,
Christopher Ringlstetter, and Hinrich Schütze. 2020.
Subword sampling for low resource word alignment.
arXiv preprint arXiv:2012.11657.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,

Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1--61, Florence, Italy. As-
sociation for Computational Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big?��. In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, pages 610--623.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171--4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zi-Yi Dou and Graham Neubig. 2021. Word alignment
by fine-tuning embeddings on parallel corpora. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2112--2128, Online.
Association for Computational Linguistics.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2022. Ethnologue: Languages of the World,
25 edition. SIL International. Online version:
http://www.ethnologue.com.

Dirk Geeraerts. 1993. Vagueness's puzzles, polysemy's
vagaries.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 Evaluation
Benchmark for Low-Resource and Multilingual Ma-
chine Translation. Transactions of the Association
for Computational Linguistics, 10:522--538.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In NIPS
Deep Learning and Representation Learning Work-
shop.

Paul Jorgensen. 2020. How similar are finnish and esto-
nian? https://langfocus.com/language-features/
how-similar-finnish-and-estonian. Accessed:
2022-10-18.

993

https://doi.org/10.18653/v1/N19-1388
https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
http://arxiv.org/abs/1503.02531
https://langfocus.com/language-features/how-similar-finnish-and-estonian
https://langfocus.com/language-features/how-similar-finnish-and-estonian

Yova Kementchedjhieva, Mareike Hartmann, and An-
ders Søgaard. 2019. Lost in evaluation: Misleading
benchmarks for bilingual dictionary induction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3336--3341,
Hong Kong, China. Association for Computational
Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
machine translation summit x: papers, pages 79--86.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66--71, Brussels, Belgium.
Association for Computational Linguistics.

Guillaume Lample, Alexis Conneau, Marc'Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018. Word
translation without parallel data. In International
Conference on Learning Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871--7880, Online. Association for Computa-
tional Linguistics.

Pengfei Li, Liangyou Li, Meng Zhang, Minghao Wu,
and Qun Liu. 2022a. Universal conditional masked
language pre-training for neural machine translation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6379--6391, Dublin, Ireland.
Association for Computational Linguistics.

Pengfei Li, Liangyou Li, Meng Zhang, Minghao Wu,
and Qun Liu. 2022b. Universal conditional masked
language pre-training for neural machine translation.

Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu,
Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pre-
training multilingual neural machine translation by
leveraging alignment information. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2649--2663,
Online. Association for Computational Linguistics.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume
1: Long Papers), pages 244--258, Online. Associa-
tion for Computational Linguistics.

Nina Poerner, Masoud Jalili Sabet, Benjamin Roth,
and Hinrich Schütze. 2018. Aligning very small
parallel corpora using cross-lingual word embed-
dings and a monogamy objective. arXiv preprint
arXiv:1811.00066.

Maja Popović. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference on
machine translation, pages 612--618.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Di-
vyanshu Kakwani, Navneet Kumar, et al. 2022.
Samanantar: The largest publicly available parallel
corpora collection for 11 indic languages. Trans-
actions of the Association for Computational Lin-
guistics, 10:145--162.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2685--2702, Online. Association for
Computational Linguistics.

Aditya Siddhant, Ankur Bapna, Orhan Firat, Yuan Cao,
Mia XuChen, Isaac Caswell, and Xavier Garcia. 2022.
Towards the next 1000 languages in multilingual ma-
chine translation: Exploring the synergy between su-
pervised and self-supervised learning. arXiv preprint
arXiv:2201.03110.

Raivis Skadiņš, Jörg Tiedemann, Roberts Rozis, and
Daiga Deksne. 2014. Billions of parallel words for
free: Building and using the eu bookshop corpus. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 1850--1855.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. In International
Conference on Machine Learning, pages 5926--5936.

Yi Chern Tan and L Elisa Celis. 2019. Assessing so-
cial and intersectional biases in contextualized word
representations. Advances in Neural Information Pro-
cessing Systems, 32.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3450--3466, Online. Association for Computa-
tional Linguistics.

Chau Tran, Shruti Bhosale, James Cross, Philipp Koehn,
Sergey Edunov, and Angela Fan. 2021. Facebook AI's

994

https://doi.org/10.18653/v1/D19-1328
https://doi.org/10.18653/v1/D19-1328
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=H196sainb
https://openreview.net/forum?id=H196sainb
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.acl-long.442
https://doi.org/10.18653/v1/2022.acl-long.442
https://doi.org/10.48550/ARXIV.2203.09210
https://doi.org/10.48550/ARXIV.2203.09210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2020.emnlp-main.210
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
https://aclanthology.org/2021.wmt-1.19

WMT21 news translation task submission. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 205--215, Online. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Philip Williams and Barry Haddow. 2021. The elitr eca
corpus.

Jian Yang, Shuming Ma, Haoyang Huang, Dongdong
Zhang, Li Dong, Shaohan Huang, Alexandre Muzio,
Saksham Singhal, Hany Hassan, Xia Song, and Furu
Wei. 2021. Multilingual machine translation systems
from Microsoft for WMT21 shared task. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 446--455, Online. Association for Computa-
tional Linguistics.

Jian Yang, Shuming Ma, Dongdong Zhang, ShuangZhi
Wu, Zhoujun Li, and Ming Zhou. 2020a. Alternat-
ing language modeling for cross-lingual pre-training.
Proceedings of the AAAI Conference on Artificial In-
telligence, 34(05):9386--9393.

Zhen Yang, Bojie Hu, Ambyera Han, Shen Huang, and
Qi Ju. 2020b. CSP:code-switching pre-training for
neural machine translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2624--2636,
Online. Association for Computational Linguistics.

A Appendix

A.1 Examining the Code-Switching Errors in
Figure 1

In this subsection, we dissect Figure 1 and detail
the mentioned errors, along with their causes8. Pre-
training a multilingual model like mRASP2 that
uses non-English corpora requires code-switching
in non English-centric directions as well. Since the
MUSE dictionaries (like most lexicons) are largely
available in English-centric directions, Pan et al.
(2021) attempt to generate a multilingual dictio-
nary by recursively linking the bilingual MUSE
lexicons through a pivot language (English). In
theory, this would allow dictionary entries from
language X to language Y using only X-En and
En-Y dictionaries. However, such recursive linking
would propagate any existing quality issues even
further. We illustrate this point using examples
from Figure 1. The Estonian word annetada and

8We did not include this in the main work since this is
auxilliary to our paper's focus on contextual and many-to-many
substitutions

the Hebrew word הירוטיו are used as substitutions
for don’t and win respectively -- but they actually
mean donate andVittoria (a city in Spain), both of
which have relatively less edit distance with don’t
and victory. A closer look at the Estonian9 and
the Hebrew 10 MUSE dictionaries, as well as the
multilingual dictionary11 constructed by Pan et al.
(2021) confirms that this has been caused by the
process of linking noisy bilingual dictionaries. The
latter error, for instance, was caused by linking win
to victoria (Portuguese), which was then aligned
with Vittoria (Italian) and then Vittoria (English)
- completely altering the meaning. A similar ex-
planation can be drawn for how the English word
some is incorrectly substituted with the English
word sometimes (Figure 1b), despite there being
no English-English dictionary.

A.2 The CCS algorithm
The pseudo-code of the CCS algorithm is shown
in Algorithm 1, along with finer details we were
unable to describe previously.

A.3 A discussion on the MLCS terminology
Multilingual Code-Switching (MLCS), as de-
scribed in Section 2, is a misnomer. In the work
of Pan et al. (2021), code-switching is carried out
using a bilingual (English-centric) lexicon for the
parallel corpora, and a multilingual dictionary for
the monolingual corpora. Thus, they use MLCS in
a monolingual corpus with the multilingual dictio-
nary, but only Bilingual Code-Switching (BLCS)
in a parallel corpus. They do not explain the reason
for this choice. In our work, we attempt to shed
some light on this and explore the efficacy of BLCS,
which is far more efficient for CCS (refer Section
8.1) and also performs comparably or better (Tables
2 and 3). We use the term MLCS in our AA and
CCS baselines, therefore, to contrast with BLCS
and for ease of use. It is worth noting, however, that
the parallel corpus is still bilingually code-switched
in the MLCS baselines, following Pan et al. (2021).

A.4 Experimental Settings
A.4.1 Computational Infrastructure
Due to expiry and low availability of GPU hours,
we are forced to conduct our experiments on 3 dif-

9https://dl.fbaipublicfiles.com/arrival/dictionaries/et-en.txt
10https://dl.fbaipublicfiles.com/arrival/dictionaries/he-

en.txt
11https://lf3-nlp-opensource.bytetos.com/obj/nlp-

opensource/acl2021/mrasp2/synonym_dict_raw_dep3

995

https://aclanthology.org/2021.wmt-1.19
https://doi.org/10.48550/ARXIV.2109.07351
https://doi.org/10.48550/ARXIV.2109.07351
https://aclanthology.org/2021.wmt-1.54
https://aclanthology.org/2021.wmt-1.54
https://doi.org/10.1609/aaai.v34i05.6480
https://doi.org/10.1609/aaai.v34i05.6480
https://doi.org/10.18653/v1/2020.emnlp-main.208
https://doi.org/10.18653/v1/2020.emnlp-main.208

Algorithm 1: Contextual Code-switching of a sentence using the CCS algorithm
Input : Sentence S; translations T1, T2 . . . Tn; alignments A1, A2 . . . An

Output : Code-switched sentence CCCS(S)
GenerateCCSCandidates (S, T,A)

V isited← ∅ // Keeps track of words that have already been aligned
Candidates← ∅
foreach word wi ∈ S do

if wi ∈ V isited then
continue

end
SrcWords, TgtWords← {wi},∅
PrevSrcWords, PrevTgtWords← ∅,∅
/* Generates many-to-many connected components of words */
while true do

/* Adds target words aligned to source words */
TgtWords← TgtWords ∪A[wj∀wj ∈ SrcWords]
if PrevSrcWords == SrcWords or PrevTgtWords == TgtWords then

continue // Convergence condition
end
PrevSrcWords, PrevTgtWords← SrcWords, TgtWords
/* Adds source words aligned to target words */
SrcWords← SrcWords ∪A[wj∀wj ∈ TgtWords]

end
V isited← V isited+ {wj∀wj ∈ SrcWords}
Candidates← Candidates+ (SrcWords, TgtWords)

end
return Candidates

CCSCandidates← GenerateCCSCandidates(S, Ti, Ai)∀(Ti, Ai)
CCCS(S), Swaps←””,∅
V isited← ∅ // Keeps track of words that have already been code-switched
while |V isited|/|S| < ReplacementRatio do

/* Randomly choose word(s) for substitution */
SrcWords, TgtWords = Random.Choice(CCSCandidates)
if ∃wi ∈ SrcWords{wi ∈ V isited} then

continue
end
Swaps← Swaps+ (SrcWords, TgtWords)
V isited← V isited+ {wj∀wj ∈ SrcWords}

end
CCCS(S) = S.Swap(SrcWords, TgtWords)∀(SrcWords, TgtWords) ∈ Swaps
return CCCS(S)

996

ferent GPU clusters. To maintain comparability,
however, we ensure that we use the same cluster
for each case study - thus the training and evalua-
tion of all baselines (be it CCS or AA), including
the evaluation of the massive models, for a partic-
ular language family is always conducted on the
same cluster. Additionally, we also ensure that the
same parameters are used across all machines, and
libraries with the same versions are installed.

Specifically, for the Romance family Case Study
we use Skylake CPU nodes with the maximum
memory of 300GB and Ampere GPU nodes with
1000GB RAM and 4 Nvidia A100 GPUs per node,
running CentOS8. For the Uralic family, we use
nodes with 2 AMD EPYC 7742 (Rome) CPUs and
512GB RAM, while for GPUs we use 3 Nvidia
A100 GPUs with 40 GB RAM. For the Indo-Aryan
family, we use Intel®Xeon® Platinum 8360YCPU
nodes with 512 GB RAM and GPU nodes with 4x
NVIDIA A100 40GB GPUs.

A.4.2 Computational costs
Total preprocessing costs for the En-Fi 4M pair are
given in Section 8.1 and, based on the technique
used, can be roughly interpolated given our train-
ing corpora size (Table 1) to calculate total GPU
hours. In practice, the real-world time was much
lesser since we: a) used GPU clusters (as men-
tioned above) to simultaneously process multiple
language pairs by submitting multiple jobs , and
b) divided large corpora into smaller halves that
were simultaneously preprocessed. For example,
the 20M English monolingual corpus used in the
Uralic family (Table ??) was divided into 2 halves
of 10M that were submitted as part of 2 separate
jobs.

For training, we only used 1 GPU node (1 Slurm
job) per language family with 3 or 4 GPUs, depend-
ing on the cluster. Training costs for the Romance
model took about 50 hours till convergence, 32
hours for Uralic and 61 hours for the Indo-Aryan
models. The discrepancy in time is likely due to the
fact that each of these experiments had to be run
on separate clusters (as mentioned in A.4.1) with
different architectures and different batch sizes, es-
pecially given each model took very similar number
of steps until convergence (270K-290K updates in
total).

A.4.3 Datasets used
All the datasets we use are publicly available, dis-
tributed freely with the CC0 license. For all case

studies, News Crawl (Akhbardeh et al., 2021) is
chosen to make up the monolingual corpus. For
parallel corpora, we use different sources for each
language family. For the Romance family, we use
the Europarl corpus (Koehn, 2005) as our parallel
corpus. For Uralic, we use theWMT (Barrault et al.,
2019), EUBookshop (Skadiņš et al., 2014) and the
ELITR-ECA (Williams and Haddow, 2021) cor-
pora. Finally, for Indo-Aryan, we use the Samanan-
tar (Ramesh et al., 2022) corpus.

Except for Samanatar, all of these datasets be-
long to the news domain. While Samantar is a
collection of datasets from various domains, given
the test set belongs to the news domain, we sample
news datasets from this corpus for inclusion in our
training data.

A.5 Additional Results
A.5.1 Results on other metrics
We summarize the results of our key models in
Table 10, using spBLEU, ChrF++ and COMET
metrics. While we were unable to include the same
in our main work, we observe that the metrics agree
with each by and large and detail it in this section
for completeness.

A.5.2 CCS for Knowledge Distillation
While the results in the main work mostly focused
on the efficacy of CCS in its primary role as a
pretraining mechanism, Table 11 indicates how
it could also be effective as a better Knowledge
Distillation (KD) technique, with minimal compu-
tational overload. We compare against the vanilla
KD baseline (Hinton et al., 2015) that trains a small
(6e6d) student model to mimic the teacher model
(mBART50). CCS models of the same size rou-
tinely outperform KD, with the sole exception of
X-En (Romance). It is interesting to note that it
takes similar computational resources to prepro-
cess and train CCS (BLCS), as it does for the KD
baseline: given a translation generated by a teacher
model, it appears it is better to use the translation to
noise (code-switch) the source sentence and train
it using the CCS mechanism, as opposed to using
it as a target. The only overhead for CCS would be
that of extracting word alignments, and in practice
we find that it is relatively small - about 1/16th the
time taken for translation generation.

997

En-X X-En
spBLEU ChrF++ COMET spBLEU ChrF++ COMET

Massively Multilingual Models
mBART50 (large, ft) 32.25 54.60 0.59 35.63 57.43 0.55
mRASP2 (large) 36.00 57.18 0.69 37.13 58.50 0.59

Language family-specific baselines
AA (MLCS) 24.08 46.75 0.13 26.45 51.28 0.20
AA (MLCS) (large) 29.18 51.65 0.39 29.53 53.38 0.35

CCS (BLCS) 28.20 51.83 0.38 28.58 53.13 0.31
CCS (MLCS) 29.58 52.40 0.44 29.85 53.78 0.36
CCS (MLCS, large) 31.30 53.93 0.51 31.10 54.88 0.43
CCS (MLCS, large, ft) 31.30 53.90 0.51 31.13 54.53 0.43

(a) Case Study 1: Romance languages

En-X X-En
spBLEU ChrF++ COMET spBLEU ChrF++ COMET

Massively Multilingual Models
mBART50 (large, ft) 23.10 46.95 0.72 29.35 52.35 0.52
mRASP2 (large) 25.20 48.55 0.75 27.00 50.75 0.47

Language family-specific baselines
AA (MLCS) 18.05 41.30 0.19 21.30 46.00 0.20
AA (MLCS) (large) 21.25 44.45 0.43 23.55 47.95 0.32

CCS (BLCS) 23.85 46.45 0.64 23.70 47.70 0.35
CCS (MLCS) 23.40 46.05 0.61 23.45 47.45 0.34
CCS (MLCS, large) 27.60 49.35 0.80 27.25 50.65 0.48
CCS (MLCS, large, ft) 27.70 49.70 0.77 28.05 51.70 0.51

(b) Case Study 2: Uralic languages

En-X X-En
spBLEU ChrF++ COMET spBLEU ChrF++ COMET

Massively Multilingual Models
mBART50 (large, ft) 13.45 25.00 -0.17 23.20 47.85 0.43
mRASP2 (large) 5.75 22.90 -0.99 15.10 35.60 -0.15

Language family-specific baselines
AA (MLCS) 19.30 36.50 0.18 18.05 42.30 0.19
AA (MLCS) (large) 20.20 37.10 0.23 18.65 41.90 0.14

CCS (BLCS) 21.45 38.55 0.27 20.65 44.35 0.24
CCS (MLCS) 20.45 37.05 0.23 18.45 41.55 0.18
CCS (MLCS, large) 23.30 40.20 0.40 22.00 45.90 0.31
CCS (MLCS, large, ft) 25.30 42.00 0.54 23.50 47.90 0.38

(c) Case Study 3: Indo-Aryan languages

Table 10: Average spBLEU, ChrF++ andCOMET scores
for all 3 case studies

Romance Uralic Indo-Aryan
En-X X-En En-X X-En X-En En-X

mBART50 (ft) 32.25 35.63 23.10 29.35 13.45 23.20

KD 28.90 30.65 18.05 20.30 5.05 16.80
CCS (MLCS) 29.58 29.85 23.40 23.45 20.45 18.45
CCS (BLCS) 28.20 28.58 23.85 23.70 21.45 20.65

Table 11: CCS v/s Knowledge Distillation (KD)

998

