FedPerC: Federated Learning for Language Generation with Personal and
Context Preference Embeddings

Andrew Silva*
Georgia Institute of Technology
School of Interactive Computing
Atlanta, GA
andrew.silva@gatech.edu

Pradyumna Tambwekar*
Georgia Institute of Technology
School of Interactive Computing

Atlanta, GA
pradyumna. tambwekar@gatech.edu

Matthew Gombolay
Georgia Institute of Technology
School of Interactive Computing

Atlanta, GA
matthew.gombolay@cc.gatech.edu

Abstract

Federated learning is a training paradigm
that learns from multiple distributed users
without aggregating data on a centralized
server, promising the ability to deploy machine-
learning to a diverse population of users with-
out first collecting large, labeled datasets. As
federated learning involves averaging gradient
updates across a decentralized population, there
is a growing need for personalization of fed-
erated learning systems (i.e. conversational
agents must personalize to individual users and
the context of an interaction). In this work,
we propose a new direction for personaliza-
tion research within federated learning, lever-
aging both personal embeddings and shared
context embeddings. We also present an ap-
proach to predict these “preference” embed-
dings, enabling personalization without back-
propagation. Compared to state-of-the-art per-
sonalization baselines, our approach achieves a
50% improvement in test-time perplexity using
0.001% of the memory required by baseline
approaches, and achieving greater sample- and
compute-efficiency.

1 Introduction

As conversational agents and dialog systems are
deployed to real-world scenarios, these systems
require data-efficient personalization paradigms
such that language systems such as conversational
agents can be effectively adapted on-device. The
benefits of on-device optimization are two-fold;
(1) Swift adaptation of model-behavior based on
human-interactions (Dudy et al., 2021), (2) Privacy
protection by means of retaining all data related

* The authors contribute equally to this paper.

to the user on-device (Li et al., 2020b). One of
the prevailing paradigms for learning from and en-
gaging with end-users is federated learning. Feder-
ated learning is an inherently decentralized learning
paradigm that assumes no access to a large labeled
dataset and instead leverages averaged parameter
updates across all users of the system (McMahan
et al., 2017). Such averaged updates invariably
dilute individual preferences or deviations from
the mean, resulting in a model that works well for
the average user while failing to appropriately cap-
ture under-represented preferences or sub-groups
within the data. In this work, we present a novel ap-
proach (FedPerC) to personalizing federated learn-
ing with personal and context embeddings (collec-
tively called “preference embeddings”), adapting
more efficiently and effectively than prior work
with respect to both data and compute on-device.
We leverage the insight that a client’s data distri-
bution is informed by both individual preferences
and additional contextual information. For exam-
ple, while each user may have their own individual
style, there may be more general population-wide
trends that inform the style of personalized predic-
tions (e.g., dialogue assistants helping patients with
cognitive disorders, whereby agents can personal-
ize to individual patients and broader condition-
wide trends). While individual preferences may
be unique to each client (e.g. a user’s taste or af-
fect), we can more accurately personalize to client
preferences with the addition of context, as shared-
context parameters carry beneficial stylistic infor-
mation across clients (Dudy et al., 2021; Jones,
1999). Stylistic or situational context provides ad-
ditional information to curate relevant language

869

Findings of the Association for Computational Linguistics: FACL 2023, pages 869—882
May 2-6, 2023 ©2023 Association for Computational Linguistics

[Personalized Prediction J

Federated Learning Model

Local Data Personal Context
Preference Information

— é
—
Model and context :
Central Server On-Site Language

parameters sent to client Model

Model and context gradients
returned from clients

Figure 1: Overview of our personalized federated learn-
ing setup, FedPerC. Language models within client de-
vices, such as individual agents deployed to communi-
cate with people at hospitals, homes, or construction
sites, pull down global model parameters and context
embeddings. Local, on-device data is then paired with
both personal and context embeddings to produce per-
sonalized predictions with global model parameters.

outputs that can be shared across users.

In this work, we contribute a new approach to
personalized federated learning that is both eas-
ier to learn and more effective than prior work,
and investigate the utility of personalization via
individual preferences and contexts. While prior
language generation approaches have developed
personal or persona-based generative systems (Wu
et al., 2021; Zhang et al., 2018) or context-based
generative systems (Cheng et al., 2019; Lin et al.,
2019a) individually, none have combined them to
personalize outputs in a low-data setting under styl-
ized preferences. We show that our approach is
more sample-efficient than state-of-the-art base-
lines, while requiring less time to train. We addi-
tionally present an inference-only version of our
approach, personalizing without backpropagation
for new users. Finally, we directly test the poten-
tial for personalization with users who have been
held-out from training (i.e., testing with new users).
An overview of our approach is given in Figure 1.

2 Related Work

Federated learning enables machine-learning at-
scale to a diverse population of end-users without
first collecting a large, labeled dataset for all pos-
sible tasks. After the introduction of federated av-
eraging (McMahan et al., 2017), focus has shifted
to different ways of personalizing to individual
users. Prior personalization approaches for fed-
erated learning have typically involved learning
personal network heads and a shared global en-

coder (i.e., “split-learning” approaches (Gupta and
Raskar, 2018)), or learning a separate local model
from a global initialization (i.e., a “meta-learning”
approach (Finn et al., 2017; Nichol et al., 2018)).

Learning Personal Model Heads The most
prevalent approach to personalization in feder-
ated learning is through personalized model heads.
Such approaches share gradient information to
learn a global feature encoder, but retain user-
specific classification-head gradients on-device.
Approaches such as FedRep (Collins et al., 2021)
solely separate out local and global gradients, while
other methods such as PFedMe (Dinh et al., 2020)
enforce constraints on model-divergence (such as
via FedProx(Li et al., 2020a)). Other approaches,
such as FedMD (Li and Wang, 2019), enable clients
to adopt any desired architecture, sharing a com-
mon backbone but allowing for completely diver-
gent model heads (Arivazhagan et al., 2019; Kim
et al., 2021; Rudovic et al., 2021; Paulik et al.,
2021). Finally, there has recently been increased
effort on identifying clusters of related users to
share model heads, such as with K-Means clus-
tering in PFedKM (Tang et al., 2021) or through
clustered personal embeddings in FedEmbed (Silva
et al., 2022). Notably, there is no prior work which
learns both personal and contextual model heads
for personalization within federated learning.

Meta-Learning Global Models An alternate ap-
proach to personalizing federated learning models
is through the adoption of meta-learning (Jiang
et al., 2019; Fallah et al., 2020), for learning a
global model prior to fine-tuning on client-data.
After cloning the global model as an initialization
from all client’s updates, local, client-side models
are permitted to diverge and fine-tune to a user’s
individual preferences or data distribution (Fal-
lah et al., 2020; Deng et al., 2020; Hanzely and
Richtérik, 2020; Hanzely et al., 2020; Lin et al.,
2019b; Chen et al., 2022). However, computing
and applying gradients for a full model often re-
quires too much time, power, and memory. As such,
expensive full-model gradients can often only be
computed and applied when a device is not actively
in-use. As in the split-learning literature, there
are not meta-learning approaches for disentangling
personal and contextual preferences within person-
alized federated learning.

Learning with Personal Embeddings Our work
leverages the insight that personal preferences can

870

be represented using a personalized embedding, al-
lowing the model to condition output predictions on
personal preferences without requiring completely
re-trained classification heads or networks. Per-
sonal embeddings have been used in prior work to
capture an individual’s “style,” often in imitation
learning settings (Tamar et al., 2018; Hsiao et al.,
2019; Paleja et al., 2020; Schrum et al., 2022a,b).
Treating personal embeddings as neural network
parameters that are updated on-device, these ap-
proaches learn to embed preferences and condi-
tion network output over both input data and pref-
erence embeddings. Most closely related to our
work are FedNLG (Lu et al., 2021), which predicts
“persona” parameters for users, and the Global+
model in FedEmbed (Silva et al., 2022), which
learns a personal embedding for each user. How-
ever, FedNLG requires access to a user’s entire
history of language and demographic data in order
to produce a “persona” for each user, informing the
generation of a “persona” embedding. Such infor-
mation is difficult to collect for large datasets, and
may compromise privacy requirements in federated
learning scenarios. Similarly, the Global+ model
incorporates supervised style feedback, requiring
labels that may be impractical to obtain in a private,
federated setting. Finally, prior embedding-based
approaches solely learn personal embeddings, ne-
glecting stylization through context. In our work,
we explore the utility of incorporating context in
addition to personal preferences, and all prefer-
ence embeddings are updated solely via a self-
supervised language-modeling loss.

Personalization in Language Personalization
for language generation systems seeks to produce
grounded systems that can efficiently adapt to end-
user needs (Yang and Flek, 2021; Dudy et al., 2021).
One such approach to personalization is by learn-
ing a “persona” for each user and conditioning
the language model on the embeddings or repre-
sentation for the persona via a memory network
(Zhang et al., 2018; Wu et al., 2021; Lu et al.,
2021). “Personas” are generally short sequences
of 5-6 sentences which contain information about
an individual such as “I have blonde hair” or “My
mom is a doctor.” Similar approaches leverage
Bayesian inference methods to infer context (Ma-
jumder et al., 2020) or persona (Kim et al., 2020),
and then condition the language generation on the
inferred context. However such approaches involve
collecting and maintaining user-profiles on a cen-

871

foutput [CW1][CW]ooo[CwN])
[Distil-GPT Transformer Decoder Blocks]
Embed (e][Jeoe[E |
[Embedding Layer]
(&)

6

Personal

¢ cooen-on

Context Language Utterance

Figure 2: The FedPerC model architecture. Input data,
such as on-device conversation data for a user, is passed
into the language model in addition to personal and con-
text labels specifying user’s preference. The personal
and context labels are embedded through a preference
embedding layer to produce a single preference embed-
ding. This preference embedding is combined with the
word embeddings for the input sequence and passed into
the DistilGPT2 model to predict the next word.

tral server which may violate user-confidentiality.
Alternate approaches seek bypass this issue by en-
abling dynamic speaker modeling through context-
based fine-tuning rather than conditioning on pro-
file information (Cheng et al., 2019; Li and Liang,
2021). FedPerC leverages a similar design to dy-
namically learn personal and context embeddings
through data from small datasets for a given user,
while also preserving user-confidentiality via fed-
erated learning.

FedPerC represents a new direction in personal-
ized federated learning research, enabling personal
and stylized language generation with a fraction
of the memory, data, and compute costs of prior
approaches without requiring access to pre-made
personal profiles or sequence labels.

3 Approach

In this section, we present our novel approach to
personalization in federated learning with FedPerC.
FedPerC produces personal and contextual prefer-
ence embeddings either via backpropagation (i.e.,
learning preference embeddings), or by inference
(i.e., predicting preference embeddings). A visual
overview of our federated learning architecture is
in Figure 2, and a step-by-step walk-through of our
training algorithm is given in Algorithm 1.

3.1 Personalization via Embeddings

Personalization in FedPerC is achieved entirely
through preference embeddings. Every input sam-
ple (e.g., an incomplete sentence) is accompanied
by both a personal preference embedding, repre-
senting the user, and a contextual preference em-
bedding, representing the context or style of the
prediction. These two embeddings are combined
via an element-wise multiplication to produce a
single preference embedding that accompanies the
input sample. By leveraging both personal and
context embeddings, FedPerC considers the indi-
vidual user and the broader context of an utterance,
enabling personal, stylized prediction.

In the language-modeling domain, the unified
preference embedding is prepended to the input
utterance, providing a prefix for the model to con-
sider (Li and Liang, 2021). The model then predicts
the next token of the utterance, and a language-
modeling loss is calculated by comparing the pre-
diction to the user’s actual next token. The next
token is then appended to the sequence, and prefer-
ence embeddings are again prepended to the new
input sequence, and the process repeats. After
completing a full utterance, preference embeddings
may be updated, either through backpropagation
or by using an embedding-generator to predict new
personal and contextual embeddings for the client.

3.2 Federated Learning Algorithm

To begin, all clients initialize their own personal
embedding on-device, and the server initializes a
set of C' context vectors for each relevant setting
given the target task. We additionally assume that
all data points on a client device have an associated
context, ¢, being derived from the contextual infor-
mation of the client device when the data point was
captured (e.g., time of day, location, etc.).
Training begins by distributing all the requi-
site information to client-devices. Client devices
pull down the global model parameters, 8, and the
global context embedding parameters, ¢, making
local copies, 6, and ¢4 (line 6). Unlike the global
model parameters and context embeddings, the per-
sonal embeddings, ¥4 do not need to be copied
from the server as they are kept on client-devices.
Client devices then take K gradient steps using
their own on-device data, where each input sample
is paired with the client’s on-device embedding, 14,
and the context embedding for the particular sam-
ple, ¢4, assuming the data point was drawn under

context ¢ € C. Gradients are calculated using a
language-modeling objective, though any objective
could theoretically be applied. If preference embed-
dings are being generated via forward-propagation
rather than learned via backpropagation, contextual
and personal preference embeddings will also be
predicted by an embedding-generator at this stage
(note: the parameters of the embedding-generator
are shared globally, being a part of 8).

Gradients are applied to the shared-model param-
eters, 64, and are then used to update preference
embeddings (line 9). If preference embeddings
are being predicted, these gradient steps are also
applied to the shared embedding-generator, and
preference embeddings (i.e., context embeddings
¢4 and personal embeddings 1)) are overwritten
with their latest predicted values (lines 10-11). If
preference embeddings are being learned via back-
propagation, gradient steps are applied to ¢4 and
14 using Equation 1 (lines 10-11).

After K steps, gradients for ; and ¢, are sent
back to the server, while 4 remains on-device
(lines 13 - 15). The server computes a single up-
date for the global model and context embeddings
by averaging across all clients (lines 17-18). The
server applies the averaged update to 6 and ¢, and
the process repeats (lines 19-21).

ba = ¢a + VeL(0a, d,c,Va, Ba)
VYa = a + VyL(Od, Pdyc, Ya, Ba)

In a typical federated averaging deployment, client
devices will pull down global parameters, fine-tune
on local datasets, and then test on held-out, local
data. With FedPerC, the majority of the network’s
parameters, 6, are frozen, reflecting a federated-
learning setup with a more constrained computa-
tional budget when deploying large language mod-
els. Using FedPerC, clients pull down and sub-
sequently freeze global parameters, 6, and either
generate preference embeddings from observation,
or only compute and apply gradients to context em-
beddings, ¢, and their local personal embedding
1. Relying on forward-propagation calls rather
than backpropagation, or by computing gradients
over only these embeddings, we reduce the com-
putational overhead of FedPerC while preserving
or even improving upon accuracy relative to fine-
tuning an entire model. When testing over local
data, all updates to context embeddings V4 are not
sent to the central server. Rather, these gradients
are directly applied to the context embeddings for

ey

872

Algorithm 1 FedPerC Training Loop

1: Given: Training objective £, Client devices
D, # client steps, K, # global steps, N

2: Initialize: Global model ¢, Context embeds ¢
3: Inmitialize: Personal embeddings on-device v
4: forn € N do
5: forde Ddo
6: 0g=0,pq=0¢
7: for k € K do
8: Sample B, from user’s on-device data
o: Oa < 04+ VoL(Od, Pdc: Vs Ba)

10: ¢d < ¢a+ Vg,

11: Yq < Ya+ Vy,

12: end for

13: VQd —60—0,

14: Vg < ¢ — Pa

15: Return Vg, and V4, to the server

16: end for

1. Vo 530 V,,

18: V¢ — % ZC? V¢d

19: 0+ 0+ Vy

200 o d+Vy

21: end for

the current user, and then discarded. When instanti-
ating a new embedding for a previously unseen user,
we set the user’s embedding to the noisy-average
of all known user embeddings.

3.2.1 Generating Preference Embeddings

To generate embeddings, we adopt a similar proce-
dure to HyperNetworks (Ha et al., 2016; Shamsian
etal., 2021), in which a neural network is trained to
predict parameters of another network. In FedPerC,
an embedding-generator is trained to predict the pa-
rameters of preference embeddings (either personal
or context). To generate embeddings, we apply
an additional transformer decoder block (Vaswani
et al., 2017), that uses a randomly-initialized per-
sonal embedding and a known context embedding
as the queries, along with the word embeddings
for the utterance as the keys and values to update
the given preference embeddings. We utilize sepa-
rate generators to predict the personal embedding,
14, and the context embedding, ¢4. Specific train-
ing details for the embedding-generator applied to
language-modeling are given in the appendix.
While the embedding-generator must be learned
from scratch during training, this method of pre-
dicting preference embeddings allows us to gen-
erate personal embeddings for previously unseen

users when testing. By predicting preference em-
beddings, we circumvent the need for expensive
gradient calculation and on-device learning. In-
stead, new users can quickly reap the benefits of
personalized predictions via a trained preference
prediction module (i.e., the embedding generator),
as opposed to conventional personalized federated
learning methods that require slow and sample-
inefficient on-device learning.

4 Experiments

We conduct several experiments to evaluate the
sample efficiency, generalization, and runtime of
our approach relative to baseline federated learning
frameworks. In our experiments, we compare:

* FedPerC — Learning personal and context em-
beddings jointly with a global feature encoder,
and performing local fine-tuning of personal
and context embeddings on-device.

* FedPerC (Frozen) — As above but without lo-
cal fine-tuning for preference embeddings.

* FedPerC (Generated) — Learning an embed-
ding generator and global feature encoder, and
then using only generated embeddings at test-
time (i.e., not directly learning embeddings).

* Split-Learning — Learning personal and
context-specific model-heads jointly with a
global feature encoder, and performing lo-
cal fine-tuning of the personal and context-
specific model heads on-device (Dinh et al.,
2020; Collins et al., 2021).

* Meta-Learning — Learning a single global
model for all users and contexts, and fine-
tuning the shared model-head on-device (Finn
et al., 2017; Nichol et al., 2018).

Because our experimental datasets do not con-
tain labeled personas for all users, we do not com-
pare directly to prior works that assume access to
such information (e.g., FedNLG (Lu et al., 2021)).

We conduct two sets of experiments to compare
the above approaches on both sample efficiency
and runtime efficiency. For the sample efficiency
experiments, we present perplexity numbers for all
methods across two versions of the dataset: known
users and withheld users. For our known user ex-
periments, all users are present in the training and
testing set. For our withheld user experiments, a

873

subset of users from each dataset is withheld en-
tirely from training, and performance results are
presented only for the held-out users. Perplexity
is calculated over unseen utterances with the first
three tokens of each utterance given as a prompt.
Finally, we present qualitative results from our
method, demonstrating the power of stylized gen-
eration for individual users.

All models are initialized with the DistilGPT2
pre-trained model (Wolf et al., 2019), with all lay-
ers frozen. We note that the use of large language
models for federated language generation is a sig-
nificant improvement over prior work (Lu et al.,
2021) which instead learned Seq2Seq models from
scratch. For our Split-Learning and Meta-Learning
baselines, the last layer of the model is unfrozen.
Training details are in the appendix.

4.1 Datasets

We conduct our experiments using two datasets,
a smaller dataset of TV Show scripts (“Friends”
(Chen and Choi, 2016) and “Game of Thrones”
(Koirala, 2019)) and a larger dataset of Reddit posts
(Chang et al., 2020). Each dataset has a diverse
set of individuals as well as clearly defined con-
texts/styles (i.e., TV shows or subreddits). These
properties enable us to not only compare our ap-
proach to baseline approaches for personalized pre-
dictions, but they also enable us to move users
between contexts or styles (e.g., producing text for
a “Friends” character under a “Game of Thrones”
context). By generating sequences for different
users under new styles, we demonstrate the power
of FedPerC for personal, stylized prediction. Fed-
PerC is the first work to experiment on a dataset
consisting of language data from real-world users,
and not just movie scripts or dialogues. Additional
information about the datasets used in this work is
given in the appendix.

For both datasets, we treat each sentence from
a speaker (i.e., TV Show character or Reddit user)
as an independent utterance and we only consider
utterances with at least three tokens. For exper-
iments on known users, we perform a 60/20/20
Train/Validation/Test data split. For experiments
on novel, unseen users, we perform a 70/15/15
split of Reddit users, and we manually select the
“Friends” and “Game of Thones” users to include
in each data fold. For both sets of experiments, all
contexts are seen during training.

4.2 Results and Discussion

All experiments are repeated fifteen times, with
different random seeds for each run, and means
and standard deviations for performance and run-
time results are presented in Tables 1, 2, and 3.
Tables 1 and 2 show that our approach is able to
generate sensible language for both held-out user
instances and known users. Both embedding-based
approaches presented in this paper (i.e., FedPerC
with generated or learned embeddings) show dras-
tic improvements over baselines in terms of both
sample- and runtime-efficiency, and are more suit-
able for real-world on-device language models.

Summary With known users, FedPerC achieves
perplexity as low as 46.7 and 100.3, on the TV
Show and Reddit datasets, respectively, compared
to the best baseline perplexities of 82.1 and 233.2
(a 45-50% improvement). For unknown users, Fed-
PerC achieves perplexities of 52.3 and 97.6, re-
spectively, compared to baselines at 96.7 and 212.7
(a 45-55% improvement). FedPerC training times
are between 25-400% faster than baseline train-
ing times. Finally, FedPerC uses 0.001% of the
memory that baseline methods use for stylized per-
sonalization.

Memory Costs FedPerC incurs a significantly
lower memory cost than prior Split-Learning based
approaches (Li and Wang, 2019; Collins et al.,
2021; Dinh et al., 2020; Tang et al., 2021; Rudovic
et al., 2021; Gupta and Raskar, 2018). The Split-
Learning baselines require maintaining a model-
head for each user and context present in the
dataset, and the size of these model heads is pro-
portional to the size of the vocabulary. On each
client-device, a user’s personal model head and all
context heads need to be stored in memory and used
in forward passes. In our work, every GPT model
head is approximately 154 MB (being 768 x 50257
parameters). To update the model on-device, one
would need to store a model head corresponding to
every possible context. Our Reddit dataset involves
57 contexts, totalling an additional ~ 8GB of data
in memory. This memory requirement for personal-
ized heads could become infeasible for real-world
tasks, particularly for on-device inference or back-
propagation on mobile devices. Using FedPerC,
which only requires the addition of a drastically
smaller preference embedding, the total amount
of memory required on device to store the embed-
dings is only ~171 KB (0.001% of the memory

874

Table 1: Perplexity Showing Sample Efficiency Across All Methods for Known Users. Lower is Better.

Samples FedPerC FedPerC (Frozen) FedPerC (Generated) Split-Learning Meta-Learning
= 1 219.5 +£35.7 1462 +£2.3 120.2 + 14 12975 £219 2262 £3.7
2 5 131.6 + 10.1 1369+ 34 123.3 £ 2.8 994.3 £+ 27.8 2347£5.1
~ 15 111.4 £ 3.5 132.6 4.7 120.0 £ 3.3 691.3 +34.3 227.1 £ 84

All 189.5 £ 6.7 167.9 £ 2.0 1249 +1.3 930.4 + 30.9 2414 £ 2.1
2 1 572+3.6 50.3 +1.6 516 +13 359.4 +28.2 1117+ 4.6
e 5 51.5£ 1.5 50.7 + 2.1 51.7+£20 2445 + 15.1 110.0 £ 6.5
: 15 48.8 + 1.7 51.0£2.1 51.7£2.0 167.7 + 8.6 111.9 £ 6.1
= Al 46.7 £ 1.7 512+£2.0 521+£2.6 82.1 £33 113.0 = 4.7

Table 2: Perplexity Showing Sample Efficiency Across All Methods for Withheld Users. Lower is Better

Samples FedPerC FedPerC (Frozen) FedPerC (Generated) Split-Learning Meta-Learning

= 1 594.3 £ 973.8 202.0 £5.9 117.3 £ 1.8 922.9 +£27.8 2139+ 6.0
it 5 1394 + 4.4 2029 £ 109 117.5 + 2.7 6559 £ 18.8 2122 £5.4
~ 15 1174 £ 1.9 203.6 £11.2 116.6 + 2.6 4492+ 114 211.7£3.7

All 101.1+ 2.2 202.2+7.6 1179 +2.8 309.3 £ 8.3 212.8 £5.2
2 1 205.1 £292.2 96.4 £ 10.4 68.7 £ 5.9 283.6 £309 1135+ 13.1
2 5 68.6+ 5.6 90.1 £4.9 66.7 = 6.3 220.7£29.2 1114 +133
2 15 62.1 £5.0 97.6 £ 6.8 66.1 £5.5 158.1 £20.0 1173 £10.5
= Al 52.3+33 98.24+9.5 68.6 £ 5.1 96.7 £ 14.5 1142 +£17.0

required by separate model heads).

Sample Efficiency FedPerC is able to outper-
form Split-Learning and Meta-Learning models
with significantly fewer samples across both exper-
iments and both datasets. This trend is reflected
regardless of whether embeddings are generated or
learned through backpropagation. When embed-
dings are learned, FedPerC improves with online
data to more effectively model the given user’s style
as more data is made available to the model. Con-
versely, while the generated embeddings exhibit
greater sample performance with a single sample,
they are unable to improve with more data. For
both known and with-held users, FedPerC with
generated embeddings is unable to effectively up-
date the preference embedding to improve gener-
ation performance. Finally, we see an increase in
perplexity for Reddit users with all available data
when using FedPerC. This result suggests that it
is possible to overfit preference embeddings, as
we see an increase in perplexity from 15 to “All”
samples (Table 1).

We observe no improvement for the Meta-
Learning baseline, regardless of how much data
is available for each user. This lack of improve-
ment suggests that the model is not capable of

rapidly personalizing to a single user or context
with only a handful of available samples. Only
updating the model head may be insufficient when
the base, shared model head must generalize across
all possible contexts and characters.

The Split-Learning baseline, on the other hand,
does show significant improvement with increasing
amounts of data for withheld and known users. In
our known user experiments, all personal model
heads should have already been well-tuned to
personal preferences. Our result therefore sug-
gests that context-specific model heads are over-
generalized to their respective contexts, and must
be refined to better-align with individual users.

Runtime Efficiency FedPerC incurs significantly
lower training costs than both Split-Learning
and Meta-Learning approaches to personalization.
While Meta-Learning baseline does not have the
memory-constraints of the split-learning model in
terms of storing additional model heads, training
the Meta-Learning baseline still involves comput-
ing gradients over all 768 x 50257 parameters in
the shared output layer. As we show in Table 3,
this leads to a significantly more costly training
time for each user. Similarly, the Split-Learning
baseline must update at least two model heads for

875

Table 3: Training and Testing run-time for FedPerC and our baselines, in milliseconds. Lower is better.

Method ‘ FedPerC FedPerC (Frozen) FedPerC (Generated) Split-Learning = Meta-Learning
Train Pass Time | 88.18 4 24.104 43.57 + 11.99 55.96 + 12.41 222.08 +37.55 111.81 £22.33
Test Pass Time 40.37 £ 11.76 40.25 £+ 12.10 47.02 + 12.63 65.42 + 16.49 36.77 + 8.95

Table 4: Generated Examples using Arya, from “Game of Thrones” (GoT) and Chandler, from “Friends”.

Character‘ Show | “We Must”

“I think”

be careful! I’'m not going to get a divorce. I’ll be able to do this.
Chandler | Friends | be a little bit more relaxed than we’re here. I’m a good man
be the one who’s the one who’s the one... I’m a big fan of you
be honest with you. I’m going to be a little more serious
Chandler | GoT | be very nervous about the possibility of a bomb attack. | I'm going to be a little bit of a jerk
be a little nervous about the situation I’m going to have a big secret.
be a little more careful. you can’t help me
Arya GoT | be careful about the dangers of the sea. of the people
be wary of the possibility of a coup. you’re not going to be a hero?
be a thief I’m not a bad person
Arya Friends | be a hero. Icandoit
be a little girl. I should have a chance to do something

each backward pass, requiring gradient computa-
tion for 2 x 768 x 50257 parameters. If a user is
active in multiple contexts, then additional context
model-heads must be used, further exacerbating the
training cost of the Split-Learning approach. The
Split-Learning approach must also leverage these
additional context model-heads at test-time, result-
ing in the slowest forward-passes of any baseline.

In contrast to prior approaches, training for Fed-
PerC only requires updating 2 x 768 parameters.
This reduced computation results in significantly
lower training times. When we train an embedding-
generator, there is an increase in training times
reflecting the added cost of computing gradients
for the embedding generator. Additionally, there is
a test-time penalty incurred by the added forward-
pass parameters. When running inference with any
version of FedPerC, preference embeddings are
combined and then prepended to the input utter-
ance. This process results in marginally slower test
times with FedPerC relative to the Meta-Learning
baseline, though the differences are not significant.

Qualitative Results Our qualitative results in Ta-
ble 4 demonstrate the power of FedPerC, and justify
the need for personal and context embeddings. Not
only is our model able to complete sequences for a
character in their “home” context (i.e., the context
from which all of their data is drawn), but we are
also able to stylize generation for characters, bring-
ing them into new contexts. We present generated
samples from a “Game of Thrones” (GoT) char-

acter (Arya) with a “Friends” context embedding
and a GoT context embedding. We see that Arya’s
generated sequences are distinct under the two dif-
ferent contexts. Under the GoT context, Arya’s
utterances match the theme of the show, suggesting
danger and revolution. Under the “Friends” con-
text, Arya’s utterances change to instead reflect
more mundane, modern language while still pre-
serving personal attributes of the character.

Across all of our experiments, particularly
the novel experimental evaluation on held-out
user-instances, our results provide evidence that
embedding-conditioned personalization within fed-
erated learning can be effectively applied to real-
world use-cases. FedPerC offers a promising av-
enue of future work towards on-device language
models, capable of efficient language generation
with respect to compute-power and data.

5 Conclusion

We present FedPerC, a new approach to personal-
ized federated learning, enabling efficient and high-
performance personalization to client devices by
leveraging individual and shared preference embed-
dings. Combining shared contexts with individual
personal preferences, FedPerC outperforms base-
lines even when allotted a lower computational bud-
get, and is the first federated language generation
approach to build on large language models rather
than training sequence generation models from
scratch. We also provide a method of generating
preference embeddings through inference alone,

876

providing personalization with no on-device gradi-
ent computation, and we show comparable perfor-
mance to FedPerC using learned embeddings.

We presented experiments on two datasets, TV
Show scripts and Reddit user data, presenting em-
pirical evidence of the utility of FedPerC towards
personalizing to unseen users in a federated learn-
ing setting, i.e. a 50% improvement in terms of run-
time and perplexity when fine-tuning on with new
users. We also demonstrated qualitative results,
showing the power of separate personal and con-
text embeddings and enabling stylization of users in
new contexts. Our results show that FedPerC offers
a promising path forward for personalization within
federated learning, achieving superior quantitative
results and requiring significantly less training time
and data relative to baseline approaches.

Limitations

Firstly, although our embedding-generator offers
a promising avenue of personalizing without any
on-device gradient computation, our generator is
currently unable to improve on its generated em-
beddings given more examples for a given user. As
shown in our results from Sec 4.2, while the model
can generate an effective preference embedding for
a user with a single sample, it is unable to improve
with more data. In future work, we hope to explore
approaches to facilitate a generator which can ef-
fectively modify embeddings given additional data.

Secondly, our approach caters to confidential-
ity by ensuring that user-data and embeddings re-
main on-device, however we have not incorporated
differential privacy in our experiments (Li et al.,
2020b). Future work may apply differential pri-
vacy to guarantee user privacy while personalizing
and contributing feature encoder information to a
central server. Finally, it is important to note that
FedPerC does not solve all problems within the
scope of language generation models. As FedPerC
offers a path forward to facilitate privacy protection
and efficient on-device learning for large language
models, future work may extend FedPerC to addi-
tional problems (e.g., language summarization or
turn-based dialogue generation).

Ethics Statement

Federated learning systems promise the ability to
learn useful models without needing access to pri-
vate, protected data on user’s devices. By contribut-
ing improvements to personalization and contextu-

alization within the federated learning paradigm,
FedPerC takes a step towards improving fairness of
federated learning systems, which otherwise strug-
gle with fitting to data distributions that are not
common in training populations. However, it is
important to note that FedPerC works to maximize
the likelihood of the observed data, which may
reinforce existing societal biases and stereotypes—
there are no protections or safeguards in place to en-
sure responsible generation or unbiased preference
learning (May et al., 2019; Nadeem et al., 2021;
Silva et al., 2021). While this problem is certainly
not unique to FedPerC, it is important to consider
the safety and fairness implications of improved
language generation, and future work must address
biases inherent to large language models (Schick
et al., 2021; Ravfogel et al., 2020). Another impor-
tant ethical consideration is the potential misuse of
our generative modelling approach for malicious
impersonation. In our federated setup, personal em-
beddings would be kept on-device, meaning that an
individual’s style is not accessible to others. How-
ever, this does not prevent users from manually
impersonating other individuals (e.g., celebrities).
Future work must explore additional mechanisms
for the prevention of misuse at all stages of the per-
sonalization pipeline, including protections against
impersonation of other individuals.

6 Acknowledgements

This work was supported by the Office of Naval
Research (ONR) under award N0O0014-19-1-2076,
the National Science Foundation under awards
NSF CPS-2219755 and NSF 1IS-2112633. An-
drew Silva was supported by the Apple Scholars in
AI/ML PhD fellowship.

References

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aa-
ditya Kumar Singh, and Sunav Choudhary. 2019.
Federated learning with personalization layers. arXiv
preprint arXiv:1912.00818.

Jonathan P. Chang, Caleb Chiam, Liye Fu, An-
drew Z. Wang, Justine Zhang, and Cristian Danescu-
Niculescu-Mizil. 2020. Convokit: A toolkit for the
analysis of conversations. In Proceedings of the 21th
Annual Meeting of the Special Interest Group on Dis-
course and Dialogue, SIGdial 2020, st virtual meet-
ing, July 1-3, 2020, pages 57-60. Association for
Computational Linguistics.

Letian Chen, Sravan Jayanthi, Rohan Paleja, Daniel
Martin, Viacheslav Zakharov, and Matthew Gombo-

877

https://aclanthology.org/2020.sigdial-1.8/
https://aclanthology.org/2020.sigdial-1.8/

lay. 2022. Fast lifelong adaptive inverse reinforce-
ment learning from demonstrations. In Proceedings
of the 6th Conference on Robot Learning (CoRL),
2022.

Yu-Hsin Chen and Jinho D Choi. 2016. Character identi-
fication on multiparty conversation: Identifying men-
tions of characters in tv shows. In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 90-100.

Hao Cheng, Hao Fang, and Mari Ostendorf. 2019. A dy-
namic speaker model for conversational interactions.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2772-2785.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and
Sanjay Shakkottai. 2021. Exploiting shared repre-
sentations for personalized federated learning. In
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 2089-2099.

Yuyang Deng, Mohammad Mahdi Kamani, and
Mehrdad Mahdavi. 2020. Adaptive personalized fed-
erated learning. arXiv preprint arXiv:2003.13461.

Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen.
2020. Personalized federated learning with moreau
envelopes. arXiv preprint arXiv:2006.08848.

Shiran Dudy, Steven Bedrick, and Bonnie Webber. 2021.
Refocusing on relevance: Personalization in nlg.
arXiv preprint arXiv:2109.05140.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
2020. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
1126-1135.

Otkrist Gupta and Ramesh Raskar. 2018. Distributed
learning of deep neural network over multiple agents.
Journal of Network and Computer Applications,
116:1-8.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-
networks. arXiv preprint arXiv:1609.09106.

Filip Hanzely, Slavomir Hanzely, Samuel Horvéth, and
Peter Richtarik. 2020. Lower bounds and optimal
algorithms for personalized federated learning. arXiv
preprint arXiv:2010.02372.

Filip Hanzely and Peter Richtarik. 2020. Federated
learning of a mixture of global and local models.
arXiv preprint arXiv:2002.05516.

Fang-I Hsiao, Jui-Hsuan Kuo, and Min Sun. 2019.
Learning a multi-modal policy via imitating demon-
strations with mixed behaviors. arXiv preprint
arXiv:1903.10304.

Yihan Jiang, Jakub Konecny, Keith Rush, and Sreeram
Kannan. 2019. Improving federated learning person-
alization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488.

Karen Sparck Jones. 1999. Automatic summarizing:
factors immarizing: factors and directions. Advances
in automatic text summarization, page 1.

Hyunwoo Kim, Byeongchang Kim, and Gunhee Kim.
2020. Will i sound like me? improving persona
consistency in dialogues through pragmatic self-
consciousness. arXiv preprint arXiv:2004.05816.

Joongheon Kim, Seunghoon Park, Soyi Jung, and
Seehwan Yoo. 2021. Spatio-temporal split learn-
ing. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks-
Supplemental Volume (DSN-S), pages 11-12. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Shekhar Koirala. 2019. Game_of _thrones.
com/shekharkoirala/Game_of_Thrones.

github.

Daliang Li and Junpu Wang. 2019. Fedmd: Heteroge-
nous federated learning via model distillation. arXiv
preprint arXiv:1910.03581.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. 2020a.
Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems,
2:429-450.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Yiwei Li, Tsung-Hui Chang, and Chong-Yung Chi.
2020b. Secure federated averaging algorithm with
differential privacy. In 2020 IEEE 30th International
Workshop on Machine Learning for Signal Process-
ing (MLSP), pages 1-6. IEEE.

Zhaojiang Lin, Andrea Madotto, Jamin Shin, Peng Xu,
and Pascale Fung. 2019a. Moel: Mixture of empa-
thetic listeners. arXiv preprint arXiv:1908.07687.

Zhaojiang Lin, Andrea Madotto, Chien-Sheng Wu, and
Pascale Fung. 2019b. Personalizing dialogue agents
via meta-learning. arXiv preprint arXiv:1905.10033.

878

github.com/shekharkoirala/Game_of_Thrones
github.com/shekharkoirala/Game_of_Thrones
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Yujie Lu, Chao Huang, Huanli Zhan, and Yong
Zhuang. 2021. Federated natural language genera-
tion for personalized dialogue system. arXiv preprint
arXiv:2110.06419.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Tay-
lor Berg-Kirkpatrick, and Julian McAuley. 2020.
Like hiking? you probably enjoy nature: Persona-
grounded dialog with commonsense expansions.
arXiv preprint arXiv:2010.03205.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622—628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273-1282. PMLR.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 53565371, Online. Association for
Computational Linguistics.

Alex Nichol, Joshua Achiam, and John Schulman.
2018. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999.

Rohan Paleja, Andrew Silva, Letian Chen, and Matthew
Gombolay. 2020. Interpretable and personalized
apprenticeship scheduling: Learning interpretable
scheduling policies from heterogeneous user demon-
strations. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 6417-6428. Cur-
ran Associates, Inc.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic
Telaar, Joris Kluivers, Rogier van Dalen, Chi Wai
Lau, Luke Carlson, Filip Granqvist, Chris Vande-
velde, et al. 2021. Federated evaluation and tuning
for on-device personalization: System design & ap-
plications. arXiv preprint arXiv:2102.08503.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237-7256, Online. Association for Computational
Linguistics.

Ognjen Rudovic, Nicolas Tobis, Sebastian Kaltwang,
Bjorn Schuller, Daniel Rueckert, Jeffrey F Cohn, and
Rosalind W Picard. 2021. Personalized federated

deep learning for pain estimation from face images.
arXiv preprint arXiv:2101.04800.

Timo Schick, Sahana Udupa, and Hinrich Schiitze. 2021.
Self-Diagnosis and Self-Debiasing: A Proposal for
Reducing Corpus-Based Bias in NLP. Transactions
of the Association for Computational Linguistics,

9:1408-1424.

Mariah L Schrum, Erin Hedlund-Botti, and Matthew
Gombolay. 2022a. Reciprocal mind meld: Improving
learning from demonstration via personalized, recip-
rocal teaching. In Proceedings of the 6th Conference
on Robot Learning (CoRL), 2022.

Mariah L Schrum, Erin Hedlund-Botti, Nina Moorman,
and Matthew C Gombolay. 2022b. Mind meld: Per-
sonalized meta-learning for robot-centric imitation
learning. In Proceedings of the 2022 ACM/IEEE In-
ternational Conference on Human-Robot Interaction,
pages 157-165.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal
Chechik. 2021. Personalized federated learning us-
ing hypernetworks. In International Conference on
Machine Learning, pages 9489-9502. PMLR.

Andrew Silva, Katherine Metcalf, Nicholas Apostoloff,
and Barry-John Theobald. 2022. Fedembed: Per-
sonalized private federated learning. arXiv preprint
arXiv:2202.09472.

Andrew Silva, Pradyumna Tambwekar, and Matthew
Gombolay. 2021. Towards a comprehensive under-
standing and accurate evaluation of societal biases in
pre-trained transformers. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2383-2389, Online.
Association for Computational Linguistics.

Aviv Tamar, Khashayar Rohanimanesh, Yinlam Chow,
Chris Vigorito, Ben Goodrich, Michael Kahane, and
Derik Pridmore. 2018. Imitation learning from vi-
sual data with multiple intentions. In International
Conference on Learning Representations.

Xueyang Tang, Song Guo, and Jingcai Guo. 2021. Per-
sonalized federated learning with clustered general-
ization. arXiv preprint arXiv:2106.13044.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

879

https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.18653/v1/2021.naacl-main.189
https://doi.org/10.18653/v1/2021.naacl-main.189
https://doi.org/10.18653/v1/2021.naacl-main.189

Yuwei Wu, Xuezhe Ma, and Diyi Yang. 2021. Personal-
ized response generation via generative split memory
network. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1956—1970.

Diyi Yang and Lucie Flek. 2021. Towards user-centric
text-to-text generation: A survey. In International
Conference on Text, Speech, and Dialogue, pages
3-22. Springer.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you have
pets too? arXiv preprint arXiv:1801.07243.

A Generation Algorithm

At each time-step during inference, the embeddings
are updated by the following equations.

er = Multi_Head_ Attn(Wy, LN (e4—1), W<y)
€t = LN(LN(et) + LN(et_1)>
€t = LN(FFN(@t) + LN(et,l)

For the first timestep, e;— is initialized as ¢
or v for personal and context embeddings respec-
tively, and LN represents a layer normalization
function. We apply future-masking to prevent any
future-information in the sequence from leaking
forward into the rest of the model. After process-
ing the entire utterance, the generated embedding is
updated to the final value of e;, which can then be
stored on-device for future processing. An updated
algorithm which applies the generator to predict
preference embeddings can be found in Alg 2.

B Training Details

All models are initialized with the DistilGPT2 pre-
trained model from Huggingface (Wolf et al., 2019).
All layers of the model are frozen, and FedPC only
backpropagates error to personal and context prefer-
ence embeddings. For our Meta-Learning baseline,
the last layer is unfrozen and all users jointly update
this final output layer (note: there is no dedicated
context head in this approach). Our Split-Learning
baseline assigns a unique model head to each user
and to each context, and each user only updates
their own model head and the contexts that they
use.

All models are trained for 55 epochs over
their training datasets using the Adam optimizer
(Kingma and Ba, 2014) for global updates (learning
rate = 1) and local updates (learning rate = 0.001).

Each client (character or Reddit user) makes 10
local updates before passing their pooled gradient
information back to the server. During training,
each client samples 15 data points per training pass.
For local fine-tuning updates at test-time, each user
makes 15 updates using a small portion of the test
data (the data used for fine-tuning is not used for
testing).

All models use a frozen DistilGPT2 model from
HuggingFace as their initialization. After empirical
experimentation, we opted to freeze the majority of
the DistilGPT2 parameters by default. This freez-
ing helped to save on computational and memory
costs as well as improving generalization perfor-
mance across diverse users. As a result of this freez-
ing, shared learning and personalization updates
will only affect model heads, shared embeddings,
and/or personal embeddings.

FedPC leverages a standard federated averag-
ing training procedure (FedAvg) (McMahan et al.,
2017) with the addition of a FedProx penalty term
(Li et al., 2020a) to regularize on-device client up-
dates back to the globally-averaged model. Em-
pirically, FedProx improved performance for all
methods. We fix the FedProx p parameter to 1.

Training was carried out on an NVIDIA A40
GPU with 48GB of memory. Due to limitations
of the GPU, not all context-heads could be stored
in memory at once for our Split Learning base-
line when working with the Reddit dataset. The
GPU could only accommodate 14 model heads in
addition to the DistilGPT2 model, but the dataset
featured 57 unique subreddits. To work around this
limitation, 13 context heads were active at all times,
and the parameters of those heads were saved and
overwritten as necessary to ensure that each user
had access to their required context heads.

C Dataset Information

The TV Show dataset is constructed by merging
scripts from two shows, “Friends” and “Game of
Thrones.” We use ConvoKit (Chang et al., 2020)
to gather the “Friends” Corpus (Chen and Choi,
2016), and retain the six main characters. We use a
set of “Game of Thrones” scripts (Koirala, 2019)
to query for the thirteen characters with the highest
utterance-count. Our merged dataset has 19 char-
acters, 60650 utterances, and two contexts. The
average utterance count for each character is 3370,
with “Friends” characters having more utterances
than “Game of Thrones” characters.

880

Algorithm 2 Personalized Federated Learning Loop with Generated Embeddings

S Y e
R A A i el

NN
N =

I}
bl

RN
A

26:
27:

A A G S i v

%)
=

Given: Training objective, £, Client devices D
Given: Number of client steps, K
Given: Number of global steps, N
Initialize: Global model, 6, Context embeddings ¢, Context Generator I', Client Generator v
Initialize: Personal embeddings on-device v
forn € N do
for d € D do
0 =0,00=0,g=Tvg=v
for k € K do
Sample B, from client’s on-device data
4 < 04+ VoL(0d, bdc,Va, Ba) / Fine-tune global model with local data
¢d < va(04, da.c, Ba) I/ Generate context embedding from local data
Ya < Tq(04,10q, Bg) // Generate personal embedding from local data
Vg < vq+ Vi L(04, Gdc, Va, Ba) // Update client Generator
g < Tq+ VrL(b4, dd.c, Ya, Ba) Il Update context Generator
end for
Vg, < 0 — 04 // compute final client § gradients
Vr, < I' = 'y // compute final client I" gradients
V., ¢ v — v/l compute final client v gradients
Return Vg, V,, and Vr, to the server
end for
Vo + % 25) Vg, // calculate average 6 gradients
Vr % ZdD Vr, // calculate average I' gradients

V., 5 25) V., /I calculate average v gradients
06+ Vy
¢ ¢+ V¢

end for

881

Our Reddit experiments use the “reddit-corpus- only include users with at least 50 utterances and
small dataset from ConvoKit (Chang et al., 2020), contexts (subreddits) with at least 150 utterances.
which includes posts from the top-100 subreddits =~ The resulting dataset has 326 characters, 30260
over a set period of time. We filter the dataset to utterances, and 57 contexts.

882

