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Abstract

Script diversity presents a challenge to Multi-
lingual Language Models (MLLM) by reduc-
ing lexical overlap among closely related lan-
guages. Therefore, transliterating closely re-
lated languages that use different writing scripts
to a common script may improve the down-
stream task performance of MLLMs. We em-
pirically measure the effect of transliteration on
MLLMs in this context. We specifically focus
on the Indic languages, which have the highest
script diversity in the world, and we evaluate
our models on the IndicGLUE benchmark. We
perform the Mann-Whitney U test to rigorously
verify whether the effect of transliteration is
significant or not. We find that transliteration
benefits the low-resource languages without
negatively affecting the comparatively high-
resource languages. We also measure the cross-
lingual representation similarity of the models
using centered kernel alignment on parallel sen-
tences from the FLORES-101 dataset. We find
that for parallel sentences across different lan-
guages, the transliteration-based model learns
sentence representations that are more similar.

1 Introduction

In the last few years, we have seen impressive ad-
vances in many NLP tasks. These advances have
been primarily led by the availability of large rep-
resentative corpora and improvement in the archi-
tecture of large language models. While improving
model architectures, training methods, regulariza-
tion techniques, etc., can help advance the state of
NLP in general, the unavailability of large, diverse
corpora is the bottleneck for most languages (Joshi
et al., 2020). Thus to inclusively advance the state
of NLP across languages, it is crucial to develop
techniques for training MLLMs that can extract the
most out of existing multilingual corpora. Here, we
focus on the issue of diverse writing scripts used by

closely related languages that may prevent MLLMs
from learning good cross-lingual representations.
Previous papers (Pfeiffer et al., 2021) have noted
that low-resource languages that use unique scripts
tend to have very few tokens representing them at
the tokenizer. As a result, these languages tend
to have more UNKnown tokens, and the words in
these languages tend to be more split up by sub-
word tokenizers. Often we can easily transliterate
from one script to another using rule-based sys-
tems. For example, there are established standards
that can be used to transliterate Greek (ISO 843),
Cyrillic (ISO 9), Indic scripts (ISO 15919), and
Thai (ISO 11940) to the Latin script.

In this paper, we focus on the Indic languages,
which have the highest script diversity in the world.
Many South Asian and Southeast Asian languages
are intimately connected linguistically, historically,
phonologically (Littell et al., 2017) and phyloge-
netically. However, due to different scripts, it is
difficult for MLLMs to fully exploit this shared
information. Among the Indic languages we con-
sidered in this study we encounter eleven different
scripts. These are shown in Table 1. Nevertheless,
these scripts have shared ancestry from the ancient
Brahmic script (Hockett et al., 1997; Coningham
et al., 1996) and have similar structures that we can
easily use to transliterate them to a common script.
Also, many of these languages heavily borrow from
Sanskrit, and due to its influence, many words are
shared among these languages. Therefore, due to
their relatedness and highly diverse script barrier,
the Indic languages presents a unique opportunity
to analyze the effects of transliteration on MLLMs.

We empirically measure the effect of translitera-
tion on the downstream performance of MLLMs.
We pretrain ALBERT (Base, 11M Parameters)
(Lan et al., 2020) and RemBERT (Base, 192M Pa-
rameters) (Chung et al., 2020) models from scratch
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on Indic languages. We pretrain two variants of
each model, one with the original writing scripts
and the other after transliterating to a common
writing script. Henceforth, we will refer to the
transliterated script model as uni-script model and
the other as a multi-script model. We evaluate the
models on downstream tasks from the IndicGLUE
benchmark dataset (Kakwani et al., 2020). In order
to rigorously compare the two models, we finetune
using nine random seeds on all downstream tasks.
Then we perform the Mann-Whitney U test (MWU)
between the uni-script and multi-script models. Us-
ing the MWU test, we conclude that transliter-
ation significantly benefits the low-resource lan-
guages without negatively affecting the compara-
tively high-resource languages.

We also measure the Cross-Lingual Representa-
tion Similarity (CLRS) to understand why the uni-
script model performs better than the multi-script
model. To measure the CLRS, we use the centered
kernel alignment (CKA) (Kornblith et al., 2019)
similarity score. We measure the CKA similarity
score between the hidden representations of the
models on the parallel sentences of the Indic lan-
guages from the FLORES-101 dataset (Goyal et al.,
2022). We find that, compared to the multi-script
models, the uni-script models achieve a higher
CKA score, and it is more stable throughout the
hidden layers of the models. Based on this, we
conclude that the uni-script models learn better
cross-lingual representation than the multi-script
models. In summary, our contributions are primar-
ily three-fold:

1. We find that transliteration significantly ben-
efits the low-resource languages without
negatively affecting the comparatively high-
resource languages.

2. We establish this finding through rigorous ex-
periments and show the statistical significance
along with the effect size of transliteration
using the Mann-Whitney U test.

3. Using CKA on the FLORES-101 dataset, we
show that transliteration helps MLLMs learn
better cross-lingual representation.

Our code is available at Github1 and our model

1https://github.com/ibraheem-moosa/
XLM-Indic

weights can be downloaded from HF Hub 2 3 4 5.

2 Motivation and Background

2.1 Motivation

In their study, Joshi et al. (2020) showed the re-
source disparity between low-resource and high-
resource languages, and Ruder (2020) discussed
the necessity of working with low-resource lan-
guages. A large body of work suggests that
language-relatedness can help MLLMs achieve
better performance on low-resource languages by
leveraging related high-resource languages. For
instance, Pires et al. (2019) found that lexical over-
lap improved mBERT’s multilingual representation
capability even though it learned to capture multi-
lingual representations with zero lexical overlaps.
Dabre et al. (2017) showed that transfer learning
in the same or linguistically similar language fam-
ily gives the best performance for NMT. Lauscher
et al. (2020) found that language relatedness is
crucial for POS-tagging and dependency parsing
tasks. Although, corpus size is much more impor-
tant for NLI and Question Answering tasks. Wu
and Dredze (2020) showed that bilingual BERT
outperformed monolingual BERT on low-resource
languages when the languages were linguistically
closely related. Nevertheless, mBERT outper-
formed bilingual BERT on low-resource languages.

2.2 Script Barrier in Multilingual Language
Models

One of the major challenges in leveraging trans-
fer between high-resource and low-resource lan-
guages is overcoming the script barrier. Script bar-
rier exists when multiple closely related languages
use different scripts. Anastasopoulos and Neu-
big (2019) found that for morphological inflection,
script barrier between closely related languages
impedes cross-lingual learning, and language re-
latedness improved cross-lingual transfer. Translit-
eration and phoneme-based techniques have been
proposed to solve this issue. For example, Muriki-
nati et al. (2020) expanded upon Anastasopoulos
and Neubig (2019) and showed that both transliter-

2https://huggingface.co/ibraheemmoosa/
xlmindic-base-uniscript

3https://huggingface.co/ibraheemmoosa/
xlmindic-base-multiscript

4https://huggingface.co/ibraheemmoosa/
xlmindic-rembert-uniscript

5https://huggingface.co/ibraheemmoosa/
xlmindic-rembert-multiscript
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ation and grapheme to phoneme (g2p) conversion
removes script barrier and improves cross-lingual
morphological inflection and Rijhwani et al. (2019)
showed that pivoting low-resource languages to
their closely related high-resource languages re-
sults in better zero shot entity linking capacity
and used phoneme-based pivoting to overcome
the script barrier. Bharadwaj et al. (2016) showed
that phoneme representation outperformed ortho-
graphic representations for NER. Chaudhary et al.
(2018) also used phoneme representation to resolve
script barriers and adapt word embeddings to low-
resource languages.

2.3 Transliteration in Language Modeling

Different works have applied transliteration in dif-
ferent aspect for language models. For instance,
Goyal et al. (2020) and Song et al. (2020) both uti-
lized transliteration and showed that language re-
latedness was required for improving performance
on NMT. Amrhein and Sennrich (2020) studied
how transliteration improved NMT and came to
the conclusion that transliteration offered signifi-
cant improvement for low-resource languages with
different scripts.

Khemchandani et al. (2021) showed on Indo-
Aryan languages that language relatedness could be
exploited through transliteration along with bilin-
gual lexicon-based pseudo-translation and aligned
loss to incorporate low-resource languages into
pretrained mBERT. Muller et al. (2021) showed
that for unseen languages, the script barrier hin-
dered transfer between low-resource and high-
resource languages for MLLMs and transliteration
removed this barrier. They showed that translit-
erating Uyghur, Buryat, Erzya, Sorani, Meadow
Mari, and Mingrelian to Latin script and finetun-
ing mBERT on the respective corpus with masked
language modeling objective improved their down-
stream POS performance significantly. In contrast,
K et al. (2020) and Artetxe et al. (2020) proposes
that mBERT can learn cross-lingual representa-
tions without any lexical overlap, a shared vocabu-
lary, or joint training. However, these works focus
on zero-shot cross-lingual transfer learning only.
From the literature, it can be seen that many in
the community believe transliteration to be a po-
tential solution for script barriers. However, most
of the work shows the benefits of transliteration
for NMT. Nevertheless, there is no solid empirical
analysis of the effects of transliteration for MLLMs

apart from Dhamecha et al. (2021); Muller et al.
(2021). Hence, the motivation behind this paper is
to provide a solid empirical analysis of the effect of
transliteration for MLLMs with statistical analysis
and determine whether or not it helps models learn
better cross-lingual representation.

It should also be noted that, even though our
idea seems to be similar to Muller et al. (2021)
and Dhamecha et al. (2021), there are major differ-
ences. For instance, Muller et al. (2021) adapted
existing pretrained model to very low-resource lan-
guages. Whereas, we focus on training the models
with transliteration from scratch. We also train our
models on 20 languages and evaluate on more than
50 tasks. Unlike Dhamecha et al. (2021), we also
include Dravidian Languages in our analysis. Fur-
thermore, we focused on the issue of script barrier
while Dhamecha et al. (2021) focused on multilin-
gual fine-tuning. Whereas, we adopt multilingual
fine-tuning on all our models. Thus the improve-
ment we see comes only from circumventing the
script barrier. Moreover, we have provided statis-
tical testing to show the significance of translitera-
tion instead of just showing better metrics. We also
performed cross-lingual representation similarity
analysis to show the benefits of transliteration.

2.4 Cross Lingual Similarity Learning in
Language Modeling

Several techniques have recently been used to study
the hidden representations of multilingual language
models. Kudugunta et al. (2019) study CLRS of
NMT models using SVCCA (Raghu et al., 2017).
Singh et al. (2019) used PWCCA (Morcos et al.,
2018) to study the CLRS of mBERT and found
that it drastically fell with depth. (Conneau et al.,
2020) have used CKA to study the CLRS of bilin-
gual BERT models. They found that similarity is
highest in the first few layers and drops moder-
ately with depth. Müller et al. (2021) used CKA
to study CLRS of mBERT before and after finetun-
ing on downstream tasks. They found in all cases
that CLRS increases steadily in the first five layers,
then it decreases in the later layers. From this, they
concluded that mBERT learns multilingual align-
ment in the early layers and preserves it throughout
finetuning. Del and Fishel (2021) applied various
similarity measures to understand CLRS of vari-
ous multilingual masked language models. Their
results also show that CLRS increases in the first
half of the models, while in the later layers, this
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similarity steadily falls.

3 Experiment and Results

3.1 Mann–Whitney U test

We perform Mann–Whitney U test (MWU) (Mann
and Whitney, 1947; Wilcoxon, 1945) to determine
if the performance differences between the multi-
script and the uni-script models are significant. In
short, it tells us the effect of transliteration on
model performance. MWU is a non-parametric
hypothesis test between two groups/populations.
MWU is chosen because it has weak assumptions.
The only assumptions of MWU are that the samples
of the two groups are independent of each other,
and the samples are ordinal. Under the MWU, our
null hypothesis or h0 is that the performances of
the uni-script (group 1) and the multi-script (group
2) models are similar, and the alternative hypoth-
esis or ha is that the performances (groups) are
different. We set our confidence interval α at 0.05
and reject the h0 for the p-values < α. We also
report three test statistics as the p-value only gives
statistical significance, which can be misleading at
times (Sullivan and Feinn, 2012).

The test statistics are three different effect sizes
that convey three different information. These test
statistics are absolute effect size (δ), common lan-
guage effect size (ρ), and standardized effect size
(r). The absolute effect size δ is the difference be-
tween the mean of the models’ performance metric,
which is given as,

δ = µuni-script-µmulti-script

for any given task and language. When the h0 is
rejected for any given task, a positive δ indicates
the uni-script model is better, and a negative δ indi-
cates the multi-script model is better. The details
and results of common language effect size (ρ),
and standardized effect size (r) are presented in
appendix D.

3.2 Dataset

The ALBERT models were pretrained on a sub-
set of the OSCAR corpus containing Indo-Aryan
languages. We use the unshuffled deduplicated ver-
sion of OSCAR corpus (Ortiz Su’arez et al., 2019)
available via Huggingface datasets library (Lhoest
et al., 2021). We pretrain on Panjabi, Hindi, Ben-
gali, Oriya, Assamese, Gujarati, Marathi, Sinhala,
Nepali, Sanskrit, Goan Konkani, Maithili, Bihari,
and Bishnupriya portion of the OSCAR corpus.

The RemBERT models were trained on a signifi-
cantly larger pretraining corpus with additional lan-
guages. We pretrained the RemBERT models on a
combination of Wikipedia (Foundation), mC4 (Raf-
fel et al., 2019), OSCAR2109 (Abadji et al., 2021)
and OSCAR corpus. These datasets are also avail-
able via the Huggingface datasets library. In addi-
tion to the languages in the ALBERT pretraining
corpus, we consider English, four Dravidian lan-
guages Kannada, Telugu, Malayalam, and Tamil,
and an Indo-Aryan language Dhivehi. We evalu-

Lang. Sub-family Script Size(GB)
en Germanic Latin 131
hi Central Indo-Aryan Devanagari 43
mr Southern Indo-Aryan Devanagari 35
bn Eastern Indo-Aryan Bengali 28
ta South Dravidian Tamil 22
ml South Dravidian Malayalam 10
te South-Central Dravidian Telugu 7
kn South Dravidian Kannada 6
si Insular Indo-Aryan Sinhala 5
ne Northern Indo-Aryan Devanagari 4
gu Western Indo-Aryan Gujarati 3.5
pa Northwestern Indo-Aryan Gurmukhi 2
or Eastern Indo-Aryan Oriya 0.5
sa Sanskrit Devanagari 0.2
as Eastern Indo-Aryan Bengali 0.1
dv Insular Indo-Aryan Thaana 0.1
bpy Eastern Indo-Aryan Bengali < 0.1
gom Southern Indo-Aryan Devanagari < 0.1
bh Eastern Indo-Aryan Devanagari < 0.1
mai Eastern Indo-Aryan Devanagari < 0.1

Table 1: Languages in our pretraining corpus and their
writing scripts and the pretraining corpus sizes used for
the RemBERT model

ate the models on four downstream tasks from In-
dicGLUE (Kakwani et al., 2020), which are News
Article Classification, WSTP, CSQA, and NER.
We use the balanced Wikiann dataset from Rahimi
et al. (2019) for NER. In addition, we evaluate the
models on other publicly available datasets that
are part of the IndicGLUE benchmark. These are
BBC Hindi News Classification, Soham Bengali
News Classification, INLTK Headlines Classifi-
cation, IITP Movie, and Product Review Senti-
ment Analysis (Akhtar et al., 2016), MIDAS Dis-
course Mode Classification (Dhanwal et al., 2020)
and ACTSA Sentiment Classification (Mukku and
Mamidi, 2017) datasets.

3.3 Transliteration Method

We transliterate Indic language texts to Latin script
using the ISO 15919 transliteration scheme. We
tested with two publicly available implementations
of this scheme, Aksharamukha (Rajan, 2015) and
PyICU (PyICU). We found the quality of translit-
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eration of the Aksharamukha library to be better.
Thus we use this library for transliterating the in-
puts to the ALBERT uni-script model. However,
the Aksharamukha implementation is very slow
compared to the PyICU implementation. As we
significantly expanded our pretraining corpus for
the RemBERT model, we switched to PyICU for
the RemBERT uni-script model.

3.4 Downstream Finetuning

We finetune the models on each downstream task
independently. The specific hyperparameters used
for each task are reported in the appendix B. On
all tasks, we finetune with nine random seeds and
report the average and standard deviation of the
metrics. In Table 2 and Table 4, we report the per-
formances on IndicGLUE benchmark tasks and in
Table 3 on other publicly available datasets. Here,
we discuss the results on each of the the models on
each of the tasks. Furthermore, in appendix D, we
show the test statistics for all the datasets.

Wikipedia Section Title Prediction: For both
RemBERT and ALBERT models, the uni-script
model performed better on all languages except
Malayalam (ml). We noticed that a letter of Malay-
alam script is not properly transliterated by the
PyICU library. This introduced some artifacts in
the form of unnecessary splitting of words by the
subword tokenizer.

News Category Classification: It is interesting
that on this task the uni-script models performed
better for Panjabi (pa) and Oriya (or) languages.
It is clear from Table 1 that these two languages
are low-resource compared to Bengali (bn) and
Marathi (mr). On Bengali and Marathi we see
slight performance degradation which is not statis-
tically significant. This shows the validity of our
first finding.

Named Entity Recognition: On this task we
see that the uni-script model performs much bet-
ter for Assamese (as), Oriya(or), Panjabi (pa) and
Gujarati (gu). These languages are low-resource
and here again the uni-script model shines. The
large performance improvement on this task can
be explained by the fact that Named Entities usu-
ally have the same spelling after transliteration for
Indian languages. Thus the uni-script model has
better chances for learning various named-entities
during pre-training.

Article Genre, Sentiment & Discourse Mode
Classification: We evaluate the models on various

other sequence classification datasets that are part
of the IndicGLUE benchmark. Here again the uni-
script model usually performs better than the multi-
script model. However for two tasks in Malayalam
(ml) and Tamil (ta) we see better performance for
the multi-script model. We already mentioned that
there is some tokenization issue for Malayalam
which can explain the results for Malayalam. The
results for Tamil suggests that it may be a good
idea to try both uni-script and multi-script model if
they are available to see which performs best on a
particular task. However this is the only instance of
a task where we see the multi-script model perform
better.

3.5 Zero Shot Capability Testing

We use the CSQA task to test the zero-shot capabil-
ity of the models as we can use the models without
finetuning. This task is designed to test whether
language models can be used as knowledge bases
(Petroni et al., 2019). In Table 4 we report the re-
sults. We note that the RemBERT models perform
much better than the ALBERT models on this task.
This is expected as the ALBERT models’ memo-
rization capability is hampered by weight sharing.

The ALBERT uni-script model is better on all
languages compared to the ALBERT multi-script
model. This shows the potential of a uni-script
model in a restricted low parameter situation. For
the RemBERT models, the results are mixed. How-
ever, on average the uni-script model performs bet-
ter than the multi-script model. The worst results
are for Malayalam (ml) which as we mentiond be-
fore has some tokenization issues.

4 Cross-lingual Representation Similarity

In this section, we analyze why the uni-script model
performs better than the multi-script model from
the perspective of Cross-Lingual Representation
Similarity. Following (Müller et al., 2021), (Con-
neau et al., 2020) and (Del and Fishel, 2021) we ap-
ply CKA to measure CLRS. We use the CKA imple-
mentation from the Ecco library (Alammar, 2021).
We use parallel sentences on thirteen languages
from the FLORES-101 (Goyal et al., 2022) dataset.
For the ALBERT models, which are trained on
only the Indo-Aryan languages, we only consider
Panjabi, Hindi, Bengali, Oriya, Assamese, Gujarati,
Marathi, and Nepali sentences. For the RemBERT
models, we additionally consider Kannada, Telugu,
Malayalam, Tamil, and English sentences.
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Model pa hi bn or as gu mr kn te ml ta avg

Wikipedia Section Title Prediction
RemBERTMS 68.42±0.92 70.90±0.39 72.58±0.45 69.92±0.90 68.37±1.37 72.93±0.58 73.23±0.61 71.67±0.41 92.98±0.19 69.03±0.57 69.77±0.45 73.00
RemBERTUS 71.01±0.22 72.45±0.29 73.65±0.21 75.37±0.69 72.50±0.91 76.35±0.29 74.58±0.72 74.21±0.29 93.66±0.09 69.33±0.35 70.63±0.22 74.89
δ 2.59 1.55 1.07 5.45 4.13 3.42 1.34 2.54 0.68 0.31 0.86 1.89
p− value 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0035 0.0004 0.0004 0.2505 0.0006 -

ALBERTMS 74.33±0.83 78.18±0.33 81.18±0.28 74.35±1.2 76.70±0.83 76.37±0.53 79.10±0.84 - - - - 77.17
ALBERTUS 77.55±0.61 82.24±0.18 84.38±0.29 81.47±0.99 81.74±0.82 82.39±0.27 82.74±0.52 - - - - 81.78
δ 3.22 4.06 3.20 7.12 5.04 6.02 3.64 - - - - 4.61
p− value 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 - - - - -

News Category Classification
RemBERTMS 95.67±0.38 - 97.90±0.17 96.59±0.18 - 98.22±0.58 99.16±0.16 97.23±0.10 99.03±0.12 91.25±0.43 97.33±0.18 96.93
RemBERTUS 96.92±0.29 - 97.78±0.12 97.55±0.14 - 99.02±0.14 99.14±0.21 97.10±0.12 99.03±0.66 92.08±0.40 97.49±0.20 97.34
δ 1.24 - -0.11 0.95 - 0.80 -0.03 -0.13 0.00 0.83 0.16 0.41
p− value 0.0003 - 0.0981 0.0004 - 0.0040 0.7783 0.0995 0.7548 0.0014 0.0814 -

ALBERTMS 96.83±0.19 - 98.14±0.14 98.09±0.16 - 98.80±0.43 99.58±0.25 - - - - 98.30
ALBERTUS 97.90±0.17 - 97.99±0.22 98.77±0.12 - 99.40±0.54 99.47±0.21 - - - - 98.70
δ 1.07 - -0.15 0.68 - 0.60 -0.18 - - - - 0.40
p− value 0.0003 - 0.181 0.0004 - 0.03084 0.1683 - - - - -

Named Entity Recognition (F1-Score)
RemBERTMS 69.47±1.72 90.95±0.33 95.51±0.18 87.92±1.26 79±0.22 69±0.94 90.72±0.17 72.65±1.81 81.82±1.81 89.17±0.25 90.07±0.33 83.40
RemBERTUS 81.91±1.93 91.73±0.39 96.19±0.21 88.92±2.88 83.50±2.75 80.25±1.42 90.75±0.35 78.98±1.50 84.97±0.45 89.26±0.46 90.18±0.27 86.97
δ 12.44 0.78 0.68 1.00 4.28 10.31 0.02 6.33 3.15 0.01 0.12 3.56
p− value 0.00004 0.0005 0.00001 0.1615 0.0019 0.00004 0.6665 0.00004 0.00004 0.7304 0.2973 -

ALBERTMS 76.69±1.5 91.80±0.42 96.39±0.19 84.18±1.8 75.45±1.8 69.10±2.9 88.72±0.40 - - - - 83.19
ALBERTUS 85.42±1.9 92.93±0.21 97.31±0.22 93.54±0.58 89.06±2.2 80.16±0.15 90.56±0.44 - - - - 89.85
δ 8.73 1.13 0.92 9.36 13.61 11.06 1.84 - - - - 6.66
p− value 0.0004066 0.0004066 0.0003983 0.0004038 0.000401 0.0004066 0.0004095 - - - - -

orange indicates the multi-script and uni-script models are equal and blue indicates the uni-script model is better

Table 2: Results on Classification Tasks from IndicGLUE Benchmark

Language Dataset RemBERTMS RemBERTUS δ p− value ALBERTMS ALBERTUS δ p− value

Article Genre Classification
hi BBC News 76.80±0.84 77.78±0.92 0.98 0.0466 77.28±1.51 79.14±0.60 1.86 0.0088
bn Soham News Article Classification 92.86±0.10 93.69±0.20 0.83 0.0004 93.22±0.49 93.89±0.48 0.67 0.0090
gu INLTK Headlines 90.27±0.47 91.60±0.28 1.33 0.0004 90.41±0.69 90.73±0.75 0.32 0.6249
mr INLTK Headlines 91.24±0.50 92.27±0.39 1.03 0.0008 92.21±0.23 92.04±0.47 -0.17 0.3503
ml INLTK Headlines 94.11±0.49 93.33±0.22 -0.78 0.003 - - - -
ta INLTK Headlines 95.59±0.70 94.93±0.30 -0.65 0.013 - - - -

Sentiment Analysis
hi IITP Product Reviews 72.17±1.98 72.85±0.63 0.68 0.9646 76.33±0.84 77.18±0.77 0.85 0.04099
hi IITP Movie Reviews 58.66±1.09 62.65±2.74 3.99 0.0023 65.91±2.2 66.34±0.16 0.15 0.8941
te ACTSA 61.18±1.38 60.53±0.85 -0.66 0.1981 - - - -

Discourse Mode Classification
hi MIDAS Discourse 78.07±0.83 79.46±0.67 1.39 0.0415 78.39±0.33 78.54±0.91 0.15 0.7561

orange indicates the multi-script and uni-script models are equal, cyan indicates multi-script is better than uni-script models and blue indicates vice versa

Table 3: Accuracy on Public Datasets

Model pa hi bn or as gu mr ta te ml kn avg

Cloze-style QA (Zero Shot)
RemBERTMS 33.93 39.06 38.93 37.32 37.66 84.21 46.15 37.02 34.42 38.45 40.75 42.53
RemBERTUS 33.92 40.10 39.62 38.28 39.26 85.37 45.92 36.68 34.36 37.16 44.29 43.17
δ -0.01 1.04 0.69 0.96 1.6 1.16 -0.23 -0.34 -0.06 -1.29 3.54 0.64

ALBERTMS 31.04 36.72 35.19 34.63 33.92 59.86 36.14 - - - - 38.21
ALBERTUS 32.77 38.52 36.38 36.00 37.36 70.22 39.53 - - - - 41.54
δ 1.73 1.8 1.19 1.37 3.44 10.36 3.39 - - - - 3.33
cyan indicates multi-script is better than uni-script models and blue indicates vice versa

Table 4: Test accuracy on CSQA

First, we calculate the sentence embeddings of
these parallel sentences from the models. Sentence
embedding is calculated by averaging the hidden
state representations of the tokens. Then, we calcu-
late the CKA similarity score between the sentence
embeddings for each language pair. For each lan-
guage, we average its CKA similarity scores. In
Figure 1 we plot this average CKA similarity for

each layer of the models.

We see that CLRS score drops significantly at the
last layer for all models. However, the uni-script
models retain high CLRS score until the eleventh
layer, whereas the multi-script models have low
CLRS score from the ninth layer. Overall the CLRS
score of the uni-script models are more stable. This
indicates that the uni-script models have learned
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(a) ALBERTMS (b) ALBERTUS

(c) RemBERTMS (d) RemBERTUS

Figure 1: CKA Similarity Score for the multi-script and uni-script models

better cross-lingual representations.

5 Tokenizer Quality Analysis

In terms of performance, we expect the transliter-
ation model to exploit better tokenization across
the languages. Following (Ács, 2019) and (Rust
et al., 2021), we measure the subword fertility (av-
erage number of tokens per word) and the ratio
of words unbroken by the tokenizer. From fig-
ure 2, we can see that transliteration reduces the
splitting of words. This indicates that many words
that were represented by different tokens in the
multi-script model are represented by a single to-
ken in the transliteration model. On average, the
ALBERT uni-script tokenizer has a lower subword
fertility score of 1.55 compared to the multi-script
tokenizer’s 1.825. The uni-scirpt tokenizer also has
a lower proportion of continued word score of 0.36
while the multi-script tokenizer has a score of 0.45.

6 Conclusion and Future Work

In this paper, we show that transliterating closely re-
lated languages to a common script improves mul-
tilingual language model performance and leads to
better cross-lingual representations. We conducted

rigorous statistical analysis to quantify the signif-
icance and effect size of transliteration on down-
stream task performance. We found that translit-
eration especially improves performance on com-
paratively low-resource languages and did not hurt
the performance on high-resource languages. This
findings are in agreement with (Dhamecha et al.,
2021; Muller et al., 2021). Our results indicate that
in other scenarios where closely related languages
use different scripts, transliteration can be used to
improve the performance of language models. For
example, Slavic and Turkic languages present sim-
ilar scenarios. We would like to extend our study
to models at different scales and more languages
in the future. Also, another interesting future di-
rection would be to just use the transliteration for
pretraining signal but give the model the ability to
deal with the original scripts.

Limitations

A limitation of our work is that it introduces a
transliteration step into the model pipeline. Thus
we need a stable implementation of the translitera-
tion scheme. Thus the model can become tied to a
specific version of the transliteration library. Also
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(a) Subword Fertility. (b) Unbroken Ratio.

Figure 2: Subword fertility (lower is better) and unbroken ratio (higher is better)

the transliteration scheme is not perfect as we saw
for Malayalam, it introduced some artifacts. Finally
given our limited computational budget, we could
not run experiments with a lot of models at differ-
ent scales. Thus the impact of transliteration over
different model scales has not been explored. Even
though our work has these limitations, it clearly
shows transliteration as an important tool for train-
ing better multilingual models.

Ethics Statement

In their study, Joshi et al. (2020) showed the re-
source disparity between low-resource and high-
resource languages, and (Ruder, 2020) also high-
lighted the necessity of working with low-resource
languages. However, creating representative and
inclusive corpora is a difficult task and an ongoing
process and is not always possible for many low-
resource languages. Thus to inclusively advance
the state of NLP across languages, it is crucial to
develop techniques for training MLLMs that can ex-
tract the most out of existing multilingual corpora.
Hence, we believe our analysis might help MLLMS
with low-resource languages in real-world appli-
cations. However, there is one ethical issue that
we want to state explicitly. Even though we pre-
train on a comparatively large multilingual corpus,
the model may exhibit harmful gender, ethnic and
political bias. If the model is fine-tuned on a task
where these issues are important, it is necessary
to take special consideration when relying on the
model’s decisions.
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A Cloze Style QA Evaluation Method

Since a word can be tokenized to multiple tokens
by the subword tokenizer, correctly evaluating the
model on this task requires special care. Specif-
ically, we have to use the same number of mask
tokens as the number of subword tokens that a word
gets split into. Then we calculate the probability
for the word by multiplying the probability of the
subword tokens predicted by the masked language
model.

B Pretraining Details

Corpus Preparation: Since the OSCAR corpus
contains raw text from the Web, we apply a few
filtering and normalization. First, we discard en-
tries where the dominant script does not match
the language tag provided by the OSCAR corpus.
Then we use the IndicNLP normalizer (Kunchukut-
tan, 2020) to normalize the raw text. For the uni-
script model, we then transliterate all the text to
ISO-15919 format using the Aksharamukha (Rajan,
2015) library.

For the RemBERT models we do not perform
any of the filtering mentioned above since our pre-
training corpus is comparatively very large. In this
case, we use the PyICU library (PyICU) for translit-
erating to ISO-15919 format.

Tokenizer Training: For the ALBERT mod-
els, we train two SentencePiece tokenizers (Kudo
and Richardson, 2018) on the transliterated and the
non-transliterated corpus with a vocabulary size of
50,000. For the RemBERT models we train Uni-
gram tokenizers from the Tokenizers library (Wolf
et al., 2020) with a vocabulary size of 65,536.

ALBERT Model Training: We first pretrained
an ALBERT base model from scratch on the non-
transliterated corpus as our baseline. Afterward,
we pretrained another ALBERT base from scratch
on the transliterated corpus. We chose the base
model due to computing constraints. We trained

the models on a single TPUv3 VM. Both models
were trained using the same hyperparameters. We
followed the hyperparameters used in (Lan et al.,
2020) except for batch size and learning rate. The
pretraining objective is also the same as (Lan et al.,
2020).We used a batch size of 256, which is the
highest that fits into TPU memory, whereas the
ALBERT paper used a batch size of 4096. As our
batch size is 1/16th of the ALBERT paper, we use
a learning rate of 1e-3/8, which is approximately
1/16th of the learning rate used in the ALBERT
paper (1.76e-2). Additionally, we use the Adam
optimizer (Kingma and Ba, 2015) instead of the
LAMB optimizer. The rest of the hyperparameters
were the same as the ALBERT paper. Specifically,
we use a sequence length of 512 with absolute po-
sitional encoding, weight decay of 1e-2, warmup
steps of 5000, max gradient norm of 1.0, and Adam
epsilon of 1e-6. The models were trained for 1M
steps. Each model took about 7.5 days to train. We
use the ALBERT implementation from the Hug-
gingface Transformers Library (Wolf et al., 2020).

RemBERT Model Training: We pretrained an
RemBERT base models similar to the ALBERT
models. We trained the models on a single TPUv3
VM. Both models were trained using the same
hyperparameters. We followed the hyperparam-
eters used in (Chung et al., 2020) except for batch
size and learning rate. The pretraining objective
is also the same as (Chung et al., 2020). We used
a batch size of 256, which is the highest that fits
into TPU memory, whereas the RemBERT paper
used a batch size of 2048. As our batch size is 1/8th

of the RemBERT paper, we use a learning rate
of 2e-4/8, which is 1/8th of the learning rate used
in the RemBERT paper. Similar to the ALBERT
model, we use the Adam optimizer (Kingma and
Ba, 2015). The rest of the hyperparameters were
the same as the RemBERT paper. Specifically, we
use a sequence length of 512 with absolute posi-
tional encoding, weight decay of 1e-2, warmup
steps of 15000, max gradient norm of 1.0, and
Adam epsilon of 1e-6. The models were trained
for 1M steps. Each model took about 7.5 days to
train. We use the RemBERT implementation from
the Huggingface Transformers Library (Wolf et al.,
2020).

C Downstream Hyperparameters

Hyperparameters for downstream tasks are pre-
sented in Table 5 and Table 6.
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Task TPU Batch Size Learning Rate Weight Decay Dropout Epochs Warmup Ratio

News Category Classification False 16 2e-5 0.01 0.1 20 0.10
Wikipedia Section-Title Prediction True 256 2e-5 0.01 0.1 3 0.10
Named Entity Recognition True 512 2e-5 0.01 0.1 20 0.10
BBC Hindi News Classification False 16 2e-5 0.01 0.1 20 0.10
Soham Bengali News Classification False 16 2e-5 0.01 0.1 8 0.10
INLTK Headlines Classification False 256 2e-5 0.01 0.1 20 0.10
IITP Movie Review False 64 5e-5 0.01 0.25 20 0.10
IITP Product Review False 16 5e-5 0.01 0.5 20 0.10
MIDAS Discourse Mode False 32 2e-5 0.01 0.5 20 0.10

Table 5: Hyperparameters for ALBERT models

Task TPU Batch Size Learning Rate Weight Decay Dropout Steps Label Smoothing

News Category Classification False 16 1e-5 0.1 0.1 2500 0.0
Wikipedia Section-Title Prediction True 256 8e-6 0.1 0.1 12500 0.0
Named Entity Recognition False 16 5e-5 0.1 0.1 10000 0.0
BBC Hindi News Classification False 16 1e-5 0.01 0.1 2500 0.0
Soham Bengali News Classification False 16 1e-5 0.1 0.1 2500 0.1
INLTK Headlines Classification False 16 1e-5 0.1 0.1 5000 0.0
IITP Movie Review False 16 1e-5 0.1 0.1 5000 0.0
IITP Product Review False 16 1e-5 0.1 0.1 5000 0.0
ACTSA Sentiment Classification False 16 1e-5 0.1 0.1 5000 0.0
MIDAS Discourse Mode False 16 8e-6 0.1 0.1 2500 0.1

Table 6: Hyperparameters for RemBERT models

For the ALBERT models batch size was chosen
to be the maximum that fits in memory. This was
done so that each batch contains approximately the
same number of tokens. Otherwise the hyperparam-
eters were chosen following the recommendations
of (Mosbach et al., 2021). On the highly skewed
IITP Movie Review, IITP Product Review and MI-
DAS Discourse we found that this default setting
resulted in worse performance compared to the in-
dependent baselines. So we finetuned the learning
rate and classifier dropout on the validation set of
these tasks.

For the RemBERT models learning rate, weight
decay, dropout, steps and label smoothing were
chosen based on grid search with a few values.

D Test Statistics Results

ρ gives us the probability of one group being better
than the other group. That is the probability that a
random performance sample of the the uni-script
model is greater than a random performance sam-
ple of the multi-script model. The last test statistic
is r which indicates the magnitude of difference

between the performance values of the uni-script
model (group 1) and the multi-script model (group
2). r shows us how realistically significant the per-
formance differences are between models even if
the performance difference is statistically signif-
icant. It gives us a value between 0 to 1 and its
ranges are: small effect ( 0 ≤ r ≤ 0.3) , medium
effect ( 0.3 < r ≤ 0.5) and large effect (0.5 <
r). We performed MWU on all downstream tasks
except CSQA. On CSQA, we only report the δ.
The MWU is performed using the SciPy library
(Virtanen et al., 2020), and the results are further
validated using R (Lüdecke, 2020). These statistic
are reported in Table 7 for the IndicGLUE classi-
fication tasks and in Table 8 for the public dataset
classification tasks.

E Cross-lingual Similarity of ALBERT
Models on All Language Pairs
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Model pa hi bn or as gu mr kn te ml ta

Wikipedia Section Title Prediction
RemBERTρ 1 1 1 1 1 1 0.91 1 1 0.67 0.99
RemBERTr 0.83 0.83 0.83 0.84 0.83 0.84 0.69 0.83 0.83 0.27 0.81

ALBERTρ 1 1 1 1 1 1 1 - - - -
ALBERTr 0.83 0.83 0.83 0.83 0.83 0.83 0.83 - - - -

News Category Classification
RemBERTρ 1 - 0.27 1 - 0.87 0.46 0.27 0.45 0.94 0.75
RemBERTr 0.85 - 0.39 0.84 - 0.68 0.07 0.39 0.07 0.75 0.41

ALBERTρ 1 - 0.31 1 - 0.80 0.31 - - - -
ALBERTr 0.86 - 0.32 0.83 - 0.51 0.32 - - - -

Named Entity Recognition
RemBERTρ 1.00 0.95 0.99 0.70 0.91 1.00 0.57 1.00 1.00 0.56 0.65
RemBERTr 0.83 0.75 0.81 0.33 0.69 0.83 0.10 0.83 0.83 0.08 0.25

ALBERTρ 1 1 1 1 1 1 1 - - - -
ALBERTr 0.83 0.83 0.83 0.83 0.83 0.83 0.83 - - - -

Table 7: Test Statistics on Classification Tasks from IndicGLUE Benchmark

Language Dataset RemBERTρ RemBERTr ALBERTρ ALBERTr

Article Genre Classification
hi BBC News 0.78 0.47 0.87 0.62
bn Soham News Article Classification 1 0.84 0.87 0.62
gu INLTK Headlines 1 0.84 0.57 0.12
mr INLTK Headlines 0.98 0.79 0.36 0.22
ml INLTK Headlines 0.08 0.70 - -
ta INLTK Headlines 0.15 0.59 - -

Sentiment Analysis
hi IITP Product Reviews 0.51 0.01 0.79 0.48
hi IITP Movie Reviews 0.93 0.72 0.52 0.03
te ACTSA 0.31 0.30 - -

Discourse Mode Classification
hi MIDAS Discourse 0.79 0.48 0.45 0.07

Table 8: Test Statistics on Public Datasets
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(a) multi-script PA-X (b) uni-script PA-X

(c) multi-script HI-X (d) uni-script HI-X

(e) multi-script BN-X (f) uni-script BN-X

(g) multi-script OR-X (h) uni-script OR-X

Figure 3: CKA of multi-script and uni-script on all language pairs for pa, hi,bn and or
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(a) multi-script AS-X (b) uni-script AS-X

(c) multi-script GU-X (d) uni-script GU-X

(e) multi-script MR-X (f) uni-script MR-X

(g) multi-script NE-X (h) uni-script NE-X

Figure 4: CKA of multi-script and uni-script on all language pairs for AS, GU, MR and NE
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