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Abstract

When humans read a text, their eye move-
ments are influenced by the structural com-
plexity of the input sentences. This cognitive
phenomenon holds across languages and recent
studies indicate that multilingual language mod-
els utilize structural similarities between lan-
guages to facilitate cross-lingual transfer. We
use sentence-level eye-tracking patterns as a
cognitive indicator for structural complexity
and show that the multilingual model XLM-
RoBERTa can successfully predict varied pat-
terns for 13 typologically diverse languages,
despite being fine-tuned only on English data.
We quantify the sensitivity of the model to
structural complexity and distinguish a range
of complexity characteristics. Our results in-
dicate that the model develops a meaningful
bias towards sentence length but also integrates
cross-lingual differences. We conduct a con-
trol experiment with randomized word order
and find that the model seems to additionally
capture more complex structural information.

1 Introduction

Approximately 7,000 languages are currently spo-
ken in the world, exhibiting differences at almost
every level of linguistic organization (Eberhard
et al., 2022). Nonetheless, psycholinguistic the-
ories are predominantly supported by evidence
from a handful of Indo-European languages (Nor-
cliffe et al., 2015). Only recently, researchers have
started to explore cross-linguistic differences in
the neural implementation of language, uncover-
ing both striking similarities across languages and
empirical differences that cannot be explained by a
unitary account (Malik-Moraleda et al., 2022).

In natural language processing, multilingual lan-
guage models are optimized for tasks such as ma-
chine translation or cross-lingual information re-
trieval (Conneau et al., 2020) and follow a linguis-
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tically naïve training regime. They are trained on
dozens of languages simultaneously and do not
account for typological differences between lan-
guages. Nevertheless, their cross-lingual transfer
performance sets new records, even in zero-shot
settings (Pires et al., 2019). The ability to transfer
knowledge across languages has been attributed
to the shared vocabulary that is used for all lan-
guages (Wu and Dredze, 2019) because it enables
the reuse of common morphological roots for lan-
guages from the same family. However, recent
studies indicate that vocabulary sharing is not a pre-
requisite for cross-lingual transfer (Artetxe et al.,
2020) and that structural commonalities between
languages play a more prevalent role in models
(Karthikeyan et al., 2020).

Human sentence processing is sensitive to struc-
tural complexity. Eye movement data recorded
during reading provide insights into cognitive pro-
cessing patterns with a temporal accuracy of mil-
liseconds (Winke, 2013). Structural processing
difficulty materializes as regressions towards the
complex region and an increase of fixations on that
region (Clifton and Staub, 2011). For example,
sentences with an object-relative structure trigger
more regressions than sentences with more com-
mon subject-relative clauses (Gordon et al., 2006).
A classical example of structural complexity are
garden-path sentences which initially trigger a sim-
plified interpretation that must be revised when
reading the rest of the sentence (Bever, 1970).

On the surface level, eye movement patterns are
language-specific since they are influenced by vi-
sual factors such as orthography and word length
(Kliegl et al., 2004). For example, the Chinese
script is much more visually dense than the al-
phabetic script, resulting in longer fixations and
saccades that move to positions relatively close to
the current word (Liversedge et al., 2016). On a
deeper processing level, reading patterns seem to
converge across languages. Predictability effects
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have been demonstrated in multiple languages (Al-
Jassmi et al., 2022; Laurinavichyute et al., 2019)
and sentences that are matched for content are read
at a similar speed in Chinese, English, and Finnish
(Liversedge et al., 2016).

Sarti et al. (2021) find that the representations of
an English pre-trained transformer-based language
model encode structural complexity more promi-
nently when they are fine-tuned to predict English
eye-tracking patterns. Interestingly, Rama et al.
(2020) claim that structural similarity between lan-
guages is only weakly represented in multilingual
models. Nevertheless, Hollenstein et al. (2021)
show that multilingual models are able to predict
eye movement patterns of reading even for lan-
guages that are not seen during fine-tuning, which
indicates a general learnability of the relationship
between structural complexity and eye movement
patterns. Their results are restricted to four lan-
guages (three of them are from the Germanic fam-
ily), and it remains unclear which structural cues
are leveraged for the cross-lingual prediction be-
cause the test sentences are not aligned across lan-
guages.

Contributions We examine whether the multilin-
gual model XLM-RoBERTa (henceforth XLM-R)
is sensitive to the structural complexity patterns
that can be found in eye-tracking data. We use
data from the newly released Multilingual Eye-
tracking Corpus (Siegelman et al., 2022) to predict
eye movement patterns for parallel texts in 13 ty-
pologically diverse languages. This allows us to
specifically target the model’s sensitivity towards
structural information and rules out the possibil-
ity that the results are influenced by differences in
semantics or dataset sizes.

We show that XLM-R can apply cross-lingual
transfer to predict eye-tracking patterns for all
13 languages while being fine-tuned only on
English eye-tracking data. Our results indicate
that the model develops a meaningful bias towards
sentence length, but also integrates cross-lingual
differences. For a more detailed analysis of
structural sensitivity, we probe the model’s final
layer for complexity features. Based on a control
experiment with randomized word order, we
conclude that the model seems to additionally
capture more complex structural information. All
our experimental code is publicly available at
https://github.com/CharlottePouw/
crosslingual-complexity-transfer.

2 Related Work

We introduce recent findings on the role of struc-
tural information for cross-lingual transfer in multi-
lingual models and motivate the use of eye-tracking
data as a proxy for cognitive processing complex-
ity.

2.1 Cross-lingual Transfer in Multilingual
Models

Massive multilingual language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) are trained on more than a hun-
dred languages simultaneously. Wu and Dredze
(2019) show that this approach leads to surpris-
ingly strong performances in cross-lingual trans-
fer settings and attribute the improvements to the
shared subword vocabulary. Pires et al. (2019)
note that the model’s ability to generalize "cannot
be attributed solely to vocabulary memorization".
Complementary, Artetxe et al. (2020) and Liu et al.
(2020) find that a shared vocabulary is not neces-
sary for cross-lingual transfer. Instead, the multi-
lingual model seems to exploit structural similarity
between the training and the target language to
facilitate transfer (Karthikeyan et al., 2020).

Structural similarity is loosely defined as an over-
lap on a subset of typological characteristics which
seem to be better reflected in multilingual language
models explicitly optimizing for cross-lingual trans-
fer (Beinborn and Choenni, 2020; Choenni and
Shutova, 2022). In language-agnostic models such
as mBERT and XLM-R, the multilingual represen-
tations of the input can be separated into language-
specific and language-neutral components (Tanti
et al., 2021; Libovický et al., 2020; Gonen et al.,
2020). While Rama et al. (2020) find that struc-
tural similarity between languages is only weakly
represented in these models, Bjerva et al. (2019) ob-
serve that structural similarity between languages
correlates most with representational similarity. Ex-
periments with artificial languages indicate that
multilingual models are sensitive to hierarchical
structure (De Varda and Zamparelli, 2022) and to
word order (Chai et al., 2022; Deshpande et al.,
2022). Ahmad et al. (2021) show that cross-lingual
transfer can be improved by explicitly encoding
structural information via an auxiliary syntactic
objective and Guarasci et al. (2022) find that struc-
tural complexity knowledge can even be transferred
across languages without explicit training.
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2.2 Predicting Processing Complexity
Recent studies indicate that transformer-based lan-
guage models are sensitive to structural character-
istics of the input sentence when predicting eye-
tracking patterns. Hollenstein et al. (2021) find a
correlation between the Flesch reading ease score
and eye-tracking prediction accuracy of pre-trained
multilingual transformer models which disappears
after fine-tuning. Wiechmann et al. (2022) detect
similar correlations between the prediction accu-
racy of English transformer models and a wider
range of readability features. Finally, Hollenstein
et al. (2022b) find that eye-tracking metrics pre-
dicted by multilingual transformer models corre-
late in a similar way with readability features as
eye-tracking metrics recorded from human readers.

Sensitivity to structural complexity also seems
to increase when incorporating eye-tracking data
in NLP models. Learning eye movement behavior
as an auxiliary task has been shown to facilitate the
prediction of text complexity in English and Por-
tuguese (González-Garduño and Søgaard, 2017;
Evaldo Leal et al., 2020). Barrett et al. (2016)
show that English eye-tracking features improve
the performance a French part-of-speech tagger,
suggesting that information learned from monolin-
gual eye-tracking data is transferable across lan-
guages.

In this work, we explicitly test for sensitivity
to a range of structural characteristics in multi-
lingual models and analyze if structural sensitiv-
ity increases by learning to predict eye-tracking
patterns. We extend previous analyses to a much
wider range of languages from five different fam-
ilies (Indo-European, Koreanic, Semitic, Turkic,
and Uralic).

3 Methodology

We fine-tune a pre-trained multilingual transformer
model to predict eye-tracking metrics in a setting
of zero-shot cross-lingual transfer.

3.1 Data
We use the aligned multilingual eye-tracking cor-
pus MECO for testing. As the multilingual data
consists of only few samples, we use the larger
monolingual English eye-tracking dataset GECO
for training. Size statistics of both corpora can be
found in the appendix in Table 3.

Multilingual Eye-tracking Corpus (MECO)
The Multilingual Eye-tracking Corpus contains par-

allel eye-tracking data of reading in 13 different
languages (Siegelman et al., 2022).1 The reading
material consists of 12 short Wikipedia-style texts
about various topics, which participants read in
their native language. The texts were either directly
translated or carefully matched for topic, genre, and
readability. Each of the 12 texts was presented on
a single screen and in the same fixed order in all
languages. The number of participants ranged from
29 to 54 per language (45 on average).

Ghent Eye-tracking Corpus (GECO) The
Ghent Eye-tracking Corpus contains eye-tracking
data from 14 monolingual English readers (Cop
et al., 2016). They were reading the entire novel
The Mysterious Affair at Styles by Agatha Christie
which was presented on the screen one paragraph
at a time.

3.2 Experimental Setup
We use multi-task learning for predicting four
sentence-level eye-tracking metrics.

Sentence-Level Eye-Tracking Metrics Liv-
ersedge et al. (2016) find that eye movement pat-
terns are more comparable across languages at the
sentence level than at the word level. We select four
sentence-level eye-tracking metrics that cover both
early and late language processing in line with Sarti
et al. (2021). For each sentence s, we consider:

1. Fixation count: number of fixations on s
2. Total fixation duration: total duration of all

fixations on s
3. First-pass duration: duration of the first read-

ing pass over s
4. Regression duration: total duration of all re-

gressions within s.

Duration values are measured in milliseconds. To
obtain generalized eye movement patterns, we av-
erage all eye-tracking metrics over participants and
scale each eye-tracking feature to fall in the range
0–100, so that the loss can be calculated uniformly
for durations and counts (Hollenstein et al., 2021).
The distribution of the four metrics is shown in the
appendix in Figure 7.

Model We use XLM-R (Conneau et al., 2020)
as our multilingual transformer model since it
achieved the best zero-shot results in the CMCL
2022 Shared Task on Multilingual and Crosslingual

1Dutch, English, Estonian, Finnish, German, Greek, He-
brew, Italian, Korean, Norwegian, Russian, Spanish, Turkish.

657



Kore
an

Ital
ian

English Gree
k

Spanish
Russi

an
Hebrew Dutch

Turkis
h

Norw
egian

Germ
an

Fin
nish

Esto
nian

1.5

1.0

0.5

0.0

0.5

1.0

sc
or

e

Total fixation duration

R-squared
Explained variance

Figure 1: Cross-lingual transfer results for predicting cognitive processing complexity (i.e. sentence-level fixation
duration). Prediction performance is evaluated with explained variance and R2 for each language in MECO. The
results are averaged over 5 folds; error bars denote the standard deviation over folds.

Prediction of Human Reading Behaviour (Srivas-
tava, 2022; Hollenstein et al., 2022a). The model
was pre-trained on 2.5TB CommonCrawl data con-
taining 100 languages using the Masked Language
Modelling objective and uses SentencePiece sub-
word tokenization (Kudo and Richardson, 2018).
We select the Huggingface checkpoint xlm-roberta-
base and add a linear dense layer to predict four
sentence-level eye-tracking metrics.

Multi-Task Learning We employ multi-task
learning with hard parameter sharing to fine-tune
the model on all eye-tracking metrics simultane-
ously in line with Sarti et al. (2021). This means
that all model parameters are shared except for the
task-specific regression heads in the final prediction
layer. More specifically, the same sentence repre-
sentation is fed into each of the four regression
heads which predict their respective eye-tracking
metric. The model parameters are optimized jointly
for all regression tasks by summing the individual
MSE losses in line with previous work (Hollenstein
et al., 2021, 2022a; Wiechmann et al., 2022).

Training Parameters We fine-tune XLM-R for
15 epochs with early stopping after 5 epochs with-
out an improvement in the validation accuracy. We
use 10% of the training data as validation data and
evaluate every 40 steps. We employ a batch size of
32 and a learning rate of 1e-5. The sentence repre-
sentation is obtained by mean pooling over token
representations. We train the model on the GECO
data using 5-fold cross-validation and report the
average over the folds for each language in MECO.

Evaluation We report explained variance and R-
Squared (R2) to capture the proportion of variance

in the dependent variable that can be explained by
our model in line with Sarti et al. (2021). Explained
variance uses the biased variance to determine what
fraction of the variance is explained. R2 uses the
raw sums of squares instead and provides comple-
mentary information about systematic offsets in the
predictions. We report both metrics and evaluate
the performance of the fine-tuned model individu-
ally for each of the four eye-tracking metrics.2

4 Cross-Lingual Transfer Results

Figure 1 shows the explained variance and R2

scores of the fine-tuned model for total fixation
duration across languages. In terms of explained
variance, we see that the model achieves a similar
performance across languages, i.e. it captures 60
to 80 percent of the variance in the original eye-
tracking signal for all languages. The R2 scores,
on the other hand, vary much more depending on
the language. Similar results were observed for
two of the other eye-tracking metrics, i.e. fixa-
tion count and first-pass duration, but the model is
worse at predicting regression duration (see Figure
8 in the appendix). To better control for spurious
correlations, we ran the experiment on permuted
input-output pairs, i.e., we paired input sentences
with eye-tracking values corresponding to another
random sentence and averaged the results over 5
folds. For this random baseline setup, both ex-
plained variance and R2 are always strictly nega-
tive for all languages.

2In previous work on token-level eye-tracking prediction,
the mean absolute error was reported instead but it is less
informative for sentence-level predictions because sentence-
level eye-tracking metrics are generally more centered around
the mean.
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Figure 2: The left plot shows the distribution of true and predicted values for total fixation duration for Estonian,
Turkish, English and Korean sentences in MECO. The right figure shows the distribution of values with respect to
sentence length.

To better understand the varied R2 scores for
different languages, we show the distribution of
the true and predicted values for total fixation du-
ration for two languages with high R2 (Estonian,
Turkish) and two languages with low R2 (English,
Korean) in Figure 2. We see that the low R2 for
English and Korean is caused by predictions that
are consistently too high. For Estonian and Turkish,
the difference between true and predicted values
is clearly smaller, resulting in a higher R2. Nev-
ertheless, the model is able to predict a significant
amount of the variance in the eye-tracking signal of
all languages, as expressed by the stable explained
variance scores across languages.

Interestingly, the model performs slightly bet-
ter for most zero-shot languages than for the fine-
tuning language English. Recall that this perfor-
mance difference cannot be attributed to cross-
lingual differences in semantics, since all sentences
are parallel with respect to content. On the right
side of Figure 2, we analyze the predictions with
respect to sentence length and find that both the
model predictions and the true values for fixa-
tion duration correlate with sentence length in all
languages. As sentence length is an indicator of
structural complexity, we further dissect this phe-
nomenon and conduct an analysis of a range of
structural characteristics in the following section.

5 Sensitivity to Structural Complexity

We explore four categories of sentence-level
complexity features: length, frequency, morpho-
syntactic, and syntactic. Word frequencies are ob-
tained as standardized Zipf frequencies using the
Python package wordfreq (Speer et al., 2018). The

package combines several frequency resources, in-
cluding SUBTLEX lists (e.g. Brysbaert and New
(2009)) and OpenSubtitles (Lison and Tiedemann,
2016). The morpho-syntactic and syntactic features
are computed using the Profiling-UD tool (Brunato
et al., 2020).

Cross-Lingual Differences We showcase an in-
dividual example sentence in Table 1 to compare
the predicted fixation duration for English, Finnish
and Turkish. We observe that the highest value
is predicted for the English version. This is most
likely caused by its length, as the sentence is less
complex than the Finnish and Turkish versions in
terms of all other linguistic features.

Interestingly, the model predicts that Finnish
readers will fixate on the sentence longer than Turk-
ish readers, even though both sentences have the
same length. The Turkish sentence contains longer,
less frequent words, and is lexically more dense,
but the Finnish sentence contains longer depen-
dency links. This indicates that the model is more
sensitive to dependency structure than to low-level
complexity (i.e. word length and frequency) when
predicting eye-tracking values for sentences of the
same length.

5.1 Sensitivity to Fine-Tuning Input

To analyze the model’s sensitivity to the structural
complexity of the fine-tuning data, we compare
the performance of the fine-tuned model for in-
domain data (English GECO) and cross-domain
data (English MECO). Table 2 shows the explained
variance and R2 scores of the fine-tuned model
predictions for each eye-tracking metric for both
domains. We see that the model consistently yields
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Example Prediction

English In ancient Roman religion and myth, Janus is the god of beginnings and gates. 42.96
Finnish Muinaisen roomalaisen mytologian mukaan Janus oli alkujen ja porttien jumala. 38.91
Turkish Antik Roma inanışlarında ve mitlerinde, Janus başlangıçların ve kapıların tanrısıdır. 32.28

Structural Complexity English Finnish Turkish

Length Sentence length (tokens) 14 10 10
Avg. word length (characters) 4.57 6.80 7.60

Frequency Avg. word frequency (Zipf) 5.63 4.36 3.46
# low frequency words 2 6 6

Morpho-Syntactic Lexical density 0.57 0.70 0.73
Syntactic Parse tree depth 3 3 3

Avg. dependency link length 2.15 2.78 1.90
Max. dependency link length 7 7 4
# verbal heads 1 1 1

Table 1: Predicted values for total fixation duration for the same example sentence in English, Finnish, and Turkish
(top), and the respective values for the nine structural complexity features (bottom).

more accurate predictions for the in-domain data
than for the cross-domain data.

MECO GECO

EV R2 EV R2

FC .78 (.02) -.63 (.35) .93 (.00) .93 (.01)
TFD .75 (.02) -.65 (.24) .92 (.00) .92 (.01)
FPD .50 (.03) -.87 (.27) .95 (.00) .95 (.01)
RD -.28 (.14) -.96 (.45) .44 (.04) .45 (.05)

Table 2: Explained variance (EV) and R2-scores of
the fine-tuned model predictions for four eye-tracking
metrics from the English parts of MECO and GECO:
fixation count (FC), total fixation duration (TFD), first-
pass duration (FPD), and regression duration (RD). The
results are averaged over 5 folds; standard deviations
are indicated in parentheses.

To better understand why the model does not
generalize well across domains for English, we vi-
sualize the Spearman correlation between complex-
ity features and eye-tracking metrics for English
GECO and MECO sentences in Figure 3. We see
that the predicted values for the MECO sentences
exhibit a similar correlation pattern with the com-
plexity features as the GECO sentences. The true
values of MECO are less consistent with this pat-
tern. Literary texts contain very different words
than encyclopedic texts, which might influence fix-
ation durations and trigger regressions that cannot
solely be explained by structural complexity. In ad-
dition, MECO is significantly smaller than GECO
(99 vs 4,041 English sentences) and contains data
from a higher number of participants (46 vs 14).
The smaller amount of sentences and the larger
amount of readers increase the effect of individ-

ual differences3 which might obscure correlations
between structural complexity and eye movement
patterns. Directly applying the learned correlations
from GECO to MECO might explain why the fine-
tuned model fails to generalize across domains.

The average sentence length is considerably
higher in GECO than in MECO (21 vs 13 words,
see Table 3). As the model predictions strongly
correlate with sentence length, we speculate that
the model overestimates eye-tracking values for
sentences that are longer than the majority of fine-
tuning sentences which would explain the higher
mean of the predictions in Figure 2.

Multi-Task Learning Effect Figure 3 further
shows that regression duration is only weakly cor-
related with the complexity metrics in contrast to
the other eye-tracking metrics. Nevertheless, the
correlations between the model predictions and the
complexity features are similar for all four metrics.
This indicates a drawback of multi-task learning:
since the loss is computed jointly over all tasks, ac-
curate predictions for three out of four tasks already
yield a small loss. The model seems to overfit to
first-pass duration, total fixation duration and fixa-
tion count, which can all be predicted from similar
complexity features, and does not learn the deviat-

3A higher number of participants leads to more diversity
across readers with respect to individual factors that could
influence reading strategies (e.g. age, education level). The
GECO data came from 14 English readers who were all under-
graduate students with an age range of 18-26. The MECO data
came from 29 to 54 readers per language (45 on average), who
had more diverse educational backgrounds and a wider age
range (18-45). Based on these statistics, we assume that the
increased heterogeneity of the MECO participants influences
the correlations observed in Figure 3.
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Figure 3: Spearman correlations between complexity features and eye-tracking metrics of GECO and the English
part of MECO (predicted versus true). A darker color represents a stronger correlation. All GECO correlations are
significant (p < 0.001); MECO correlations above 0.2 are significant (p < 0.01).

ing patterns to predict regression duration. Further
research is needed to better understand the linguis-
tic features underlying regression duration.

5.2 Feature-Based Prediction

To further establish which complexity features are
good predictors for each individual eye-tracking
metric, we examine the extent to which the four
eye-tracking metrics can be predicted from explicit
features. Since multi-task learning seems to have a
negative impact on learning the structural features
underlying each individual eye-tracking metric, we
train a separate feature-based model for each eye-
tracking metric individually. We use support vector
machines (SVM) with a linear kernel as our feature-
based regression models. We employ the SVR
implementation from scikit-learn (Pedregosa et al.,
2011) with all default parameters and use different
subsets of features from Table 1: 1) only the two
length features, 2) only the two frequency features,
3) only the five structural (i.e., morpho-syntactic
and syntactic) features, and 4) all nine features.

As the SVM models predict a simpler problem (a
single eye-tracking metric), it is not surprising that
they outperform the fine-tuned multi-task model
with respect to the absolute predictions (as mea-
sured by R2, see appendix Figure 9). More inter-
estingly, Figure 4 shows that the multi-task model
is able to capture a similar amount of variance as
the length-based SVM. Furthermore, we see that
the length-based SVM performs almost identically
to the SVM trained on all complexity features, out-
performing the SVMs trained on frequency features
and structural features. This shows that length is
a strong predictor for sentence-level eye-tracking
metrics, and suggests that structural and frequency

features do not provide much additional informa-
tion. We further investigate if length is the main
factor affecting the predictions of the fine-tuned
model in the following section.
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Figure 4: Explained variance of the four feature-
based SVM models and the fine-tuned XLM-R model.
The models are trained on GECO using 5-fold cross-
validation and evaluated on the English part of MECO;
error bars denote the standard deviation over folds.

6 The Role of Sentence Length

To test whether the fine-tuned XLM-R model cap-
tures more sophisticated structural information than
sentence length, we conduct two additional exper-
iments. First, we probe the final-layer represen-
tations of the model for the complexity features
from Table 1, both before and after fine-tuning on
eye-tracking data. Second, we compare the per-
formance of the fine-tuned model to a control con-
dition: we randomize the word order within each
MECO sentence to analyze the prediction perfor-
mance on scrambled input.

6.1 Probing Set-up

We train regressors gi to predict a value for each
of the nine latent factors of structural complexity
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Z = z1,...,z9 using XLM-R’s final-layer represen-
tation θ(x) of our input sentence x. The prediction
accuracy of gi is an indication of how prominently
the linguistic property zi is encoded in θ. We an-
alyze this both for the pre-trained and fine-tuned
representations of XLM-R to quantify the relative
increase of sensitivity to zi after fine-tuning on
eye-tracking metrics.

We conduct the probing experiments for three
typologically different languages to analyze if the
structural sensitivity that was acquired from En-
glish eye-tracking data transfers to other languages.
As input, we use 1,000 parallel sentences from the
English, Korean and Turkish parts of the Parallel
Universal Dependencies (PUD) treebanks which
were randomly selected from Wikipedia and news
articles (Zeman et al., 2017). We apply a 5-fold
cross-validation setting with 800 sentences for
training the probing regressors for each language
and the remaining 200 for testing. We use the same
architecture as described in Section 3.2, but freeze
the encoder model and only update the final re-
gression layer during training. The regression layer
contains nine probing heads (one for each linguistic
feature) and is trained for 5 epochs.4

6.2 Results
We report the results of the probing experiments
and the model performance on scrambled inputs.

Probing Figure 5 shows the relative probing per-
formance for each complexity feature. We see
that fine-tuning yields the largest improvements for
probing sentence length and average dependency
link length. For the other complexity features, we
see that the fine-tuned representations yield little
to no improvement in probing accuracy compared
to the pre-trained representations. This mostly con-
cerns the features for which sentence length is fac-
tored out, i.e., average word frequency, average
word length and lexical density. Sarti et al. (2021)
report similar results and show that increased prob-
ing performance for dependency features persists
for sentences of the same length. This provides
additional evidence that structural information is
learned in addition to low-level length information.

We observe only minor differences in probing
accuracy for individual complexity features of En-

4We report results for a multi-task set-up for probing in
line with Sarti et al. (2021) and use the same hyperparameters
as for the fine-tuning experiments but without intermediate
evaluation on a development set. We also ran single-task
probing as a sanity check and obtained similar results.
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Figure 5: Relative improvement in R2 for complexity
features of English, Korean and Turkish sentences in
fine-tuned XLM-R sentence representations over pre-
trained representations. The results are calculated using
probing regressors and averaged over 5 folds.

glish, Korean and Turkish sentences. The gen-
eral pattern is consistent for all languages: fea-
tures related to the structural complexity of sen-
tences are more easily predicted after fine-tuning
on eye-tracking metrics. This indicates that the fine-
tuned model is able to transfer structural complex-
ity knowledge acquired from English eye-tracking
data to other languages.

Influence of Word Order We compare the per-
formance of the fine-tuned model on sentences with
normal versus scrambled word order, both in terms
of explained variance and R2. We measure simi-
lar explained variance scores for both input types.
This indicates that the model is able to account for
a large portion of the variance in our eye-tracking
data by merely considering sentence length. The
R2 scores, on the other hand, are consistently lower
for scrambled inputs, as shown for total fixation
duration in Figure 6 (see appendix Figure 10 for the
other eye-tracking metrics). We conclude that the
model is sensitive to word order and bases its eye-
tracking predictions not only on sentence length
but also on more complex structural characteristics.
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language in MECO, both for sentences with normal and
scrambled word order. The results are averaged over 5
folds; error bars denote the standard deviation.
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7 Conclusion

We find that XLM-R can apply cross-lingual trans-
fer to predict cognitive processing difficulty with
similar performance across 13 typologically di-
verse languages, despite being fine-tuned only on
English data. We conducted a range of experiments
to quantify the model’s sensitivity to structural com-
plexity and find that the fine-tuned model promi-
nently encodes sentence length, but also considers
more complex structural information such as depen-
dency structure and word order for the prediction
of eye-tracking metrics.

Our analyses suggest that domain differences
in training and testing data have a greater im-
pact on model performance than language differ-
ences within the same domain. More specifically,
XLM-R performs better on in-domain GECO data
than cross-domain MECO data, but within MECO,
XLM-R shows similar performance across lan-
guages. This aligns with the findings of Morger
et al. (2022), who show that the correlation be-
tween relative importance metrics and total fixa-
tion duration is influenced by text domain. Our
study highlights the significance of controlling for
text domain and size, as it allows to evaluate cross-
lingual generalization that is independent of dataset
characteristics.

In future work, we plan to better account for in-
dividual differences between readers (Brandl and
Hollenstein, 2022) and spill-over effects across sen-
tence boundaries (Wiechmann et al., 2022). The
modeling approach for learning eye-tracking pat-
terns also needs further exploration. We find that
sentence-level prediction of eye-tracking patterns
works well for learning about structural complex-
ity, but that it is not optimal for capturing lexical
complexity. Token-level measures, as predicted
in Hollenstein et al. (2021), are more likely to be
informative about lexical phenomena. A joint loss
for sentence and token-level eye-tracking metrics
might lead to sensitivity to a wider range of linguis-
tic complexity features.

8 Limitations

The main limitation of our work is the use of rela-
tively small datasets for testing our models due to
limited availability of eye-tracking data in multi-
ple languages. The dataset used for testing cross-
lingual transfer (MECO) contains approximately
100 sentences per language. For probing structural
complexity, we used a sample of 1,000 sentences

per language.
As in related work, we averaged the eye-tracking

metrics over readers to obtain a more robust indi-
cation of human reading behavior. This approach
disregards the fact that reading is a highly individ-
ual process that is dependent on cognitive factors
and experience. A computational model might de-
velop a better sense of linguistic complexity when
it learns about the linguistic properties that lead
to variation across readers and we are working to-
wards methods for integrating this information.
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A Additional Tables and Figures

Dataset Language #Words #Sentences Avg. sent. length Avg. word length

GECO English 52131 4041 12.90 4.60

MECO English 2092 99 21.13 5.32
Dutch 2226 112 19.88 5.54
German 2019 115 17.56 6.38
Finnish 1462 110 13.29 8.19
Estonian 1542 112 13.77 7.35
Norwegian 2106 116 18.16 5.62
Italian 2111 90 23.46 5.70
Spanish 2412 98 24.61 5.01
Greek 2082 99 21.03 5.67
Turkish 1696 104 16.31 6.92
Russian 1827 101 18.09 6.53
Hebrew 1943 121 16.06 4.89
Korean 1699 101 16.82 3.21

Table 3: Size characteristics for the reading materials of GECO and MECO. GECO sentences which are shorter than
five words are removed to ensure that the model sees an adequate amount of complex structures during training.
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Figure 7: Distribution of four sentence-level eye-tracking metrics in English parts of GECO and MECO. All metrics
are scaled between 0-100.
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Figure 8: Cross-lingual transfer results for predicting cognitive processing complexity (i.e. fixation count, first-pass
duration and regression duration). Prediction performance is evaluated with explained variance and R2 for each
language in MECO. The results are averaged over 5 folds; error bars denote the standard deviation over folds.
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Figure 9: R2 of the four feature-based SVM models and the fine-tuned XLM-R model. The models are trained on
GECO using 5-fold cross-validation and evaluated on the English part of MECO; error bars denote the standard
deviation over folds.
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Figure 10: R2 for fixation count, first-pass duration and regression duration for each language in MECO, both
for sentences with normal and scrambled word order. The results are averaged over 5 folds; error bars denote the
standard deviation.
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