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Abstract

Language documentation often requires seg-
menting transcriptions of utterances collected
on the field into words and morphemes. While
these two tasks are typically performed in suc-
cession, we study here Bayesian models for
simultaneously segmenting utterances at these
two levels. Our aim is twofold: (a) to study
the effect of explicitly introducing a hierarchy
of units in joint segmentation models; (b) to
further assess whether these two levels can be
better identified through weak supervision. For
this, we first consider a deterministic coupling
between independent models; then design and
evaluate hierarchical Bayesian models. Experi-
ments with two under-resourced languages (Ja-
phug and Tsez) allow us to better understand
the value of various types of weak supervision.
In our analysis, we use these results to revisit
the distributional hypotheses behind Bayesian
segmentation models and evaluate their validity
for language documentation data.

1 Introduction

In computational language documentation, unsu-
pervised segmentation into words or morphemes1

aims to identify boundaries between units in se-
quences of symbols, typically corresponding to a
phonetic or orthographic transcription of an unseg-
mented utterance. These tasks are fundamental, as
they help to identify and analyse possible dictionary
entries. There is a long tradition to handle these
tasks with generative probabilistic models (Brent,
1999; Venkataraman, 2001) initially designed to
model the acquisition of speech by children. The
most successful approaches to date rely on non-
parametric Bayesian models based on Dirichlet
Processes (Goldwater et al., 2006, 2009; Godard
et al., 2016) and Adaptor Grammars (Johnson et al.,
2007; Eskander et al., 2016; Godard et al., 2018;

1In this paper, our position regarding the notions of ‘words’
and ‘morphemes’ is entirely empirical, as we mainly try to
reproduce annotations performed by field linguists.

Eskander et al., 2019). An interesting property of
these generative models is their ability to accom-
modate existing resources (e.g. partial list of word
types) (Sirts and Goldwater, 2013; Ruokolainen
et al., 2016), which are often available in actual
documentation settings (Bird, 2020).

We study here a scenario where we automatically
generate a two-level segmentation,2 identifying si-
multaneously both word and morpheme boundaries.
Figure 1 illustrates such a segmentation, where
whitespaces separate words, while morphemes are
joined with hyphens. Our main task is thus to
identify two types of boundaries from the unseg-
mented stream of symbols (first line) to form the
two-level segmented sentence (penultimate line).
In this work, we only focus on surface segmenta-
tion (e.g. eat+ing) as opposed to canonical segmen-
tation (e.g. hike+ing for hiking) (Cotterell et al.,
2016).

Segmentation Sentence

Unsegmented WýokWatCWpWwGsWmtoa
Word Wýo kW atCW pWwGsWmtoa
Morpheme Wýo-kW-a-tCW-pW-wG-sW-mto-a
Two-level Wýo kW a-tCW pW-wG-sW-mto-a
Translation He let me see my son.

Figure 1: Example of two segmentation levels in Japhug:
words are separated by whitespaces (‘ ’) and morphemes
by hyphens (‘-’). Extract from (Jacques, 2021)

The motivation for this task is two-fold: (a) to
evaluate our ability to obtain annotations such as
Figure 1 in an unsupervised way; (b) to see how
much the two-level model can disambiguate word
from morpheme boundaries, thus improving word
segmentations. Note that in actual documentation
settings, the annotation of morpheme boundaries

2This ‘two-level segmentation’ is unrelated to the ‘two-
level morphology’ (Koskenniemi, 1983), which describes the
association between surface forms and underlying representa-
tions using the formalism of extended rational expressions.

640



is usually performed on utterances that are already
segmented into words, hence the need to optimise
this step.

A baseline for this task is a two-pass approach:
first, identify putative word boundaries, then iter-
ate the segmentation procedure on the correspond-
ing set of word types. As we discuss below, un-
supervised word segmentation procedures tend to
generate units that are often halfway between mor-
phemes and words (see e.g. (Goldwater et al., 2009)
or (Godard et al., 2016) who report oversegmenta-
tion for words). This means that the first pass often
delivers units that are too short and inadequate for
the latter processing step. This remains true even
with partial supervision information at the word
level (Okabe et al., 2022).

We therefore study models that explicitly distin-
guish between words and morphemes, considering
both the fully unsupervised and the minimally su-
pervised settings. The research questions that we
address are the following:

• RQ1: Bayesian segmentation models iden-
tify units based solely on distributional proper-
ties, identifying units that are often in between
words and morphemes. Can we improve both
segmentations through an explicit modelling
of these two levels?

• RQ2: a simple baseline is to first segment
sentences into words, then to segment each
word type3 identified in the first step into mor-
phemes. A second question is how much a
single joint segmentation model can mitigate
the error propagation of this two-step baseline.

• RQ3: there are multiple ways to implement
and supervise joint segmentation models, an
important distinction being between linear
(flat) and hierarchical segmentation models.
A third question relates to the strengths and
weaknesses of these approaches, both in the
presence and absence of supervision.

• RQ4: Bayesian segmentation models primar-
ily rely on distributional properties of char-
acters in morphemes and words, and embed
specific assumptions regarding these distribu-
tions. We last question the validity of these
assumptions in a low-resource language docu-
mentation context.

3Types denote unique words, as opposed to tokens, which
encompass all running occurrences of types in a corpus.

More generally, our main goal in this study is to
assess whether statistical cues alone are sufficient
to identify two distinct segmentation levels. To an-
swer this question, we analyse several simple joint
segmentation models introduced in Section 2 and
experiment with two under-resourced languages,
briefly presented in Section 3. Our main results
and analyses are in Section 4. From a practical
perspective, our objective is not to devise directly-
usable models for field work but to observe the
effect of introducing a subword level of segmenta-
tion in Bayesian non-parametric models, especially
in very low-resource situations as in language doc-
umentation: will it improve the (original) word-
level segmentation quality? How can additional
resources help?

2 Segmentation models

2.1 One-level segmentation
For this work, we use our own Python implementa-
tion4 of the unigram version of Goldwater et al.’s
(2009) model: dpseg. This model relies on Dirich-
let Processes to evaluate the probability of a word
sequence, as we briefly recall below. In dpseg, the
probability of a new occurrence w, based on the
observed past words, is expressed through Equa-
tion (1) where w denotes a word w = c1 . . . cL
comprising L characters:

P (w|h−;α) = n
(h−)
w + αP0(w|h−)

n− + α
. (1)

Here, h− denotes the rest of the text (w excluded),
n
(h−)
w the frequency of word w in the text, and n−

the total number of words. α is the concentration
parameter and P0, the base distribution, is defined
by Equation (2):

P0(w) = p#(1− p#)
(L−1) ∗

L∏

l=1

Pc(cl), (2)

with p# the probability to terminate a word and Pc

a distribution over the set of characters, assumed
uniform in the dpseg model.

Observing an unsegmented character string
c1 . . . cT , word segmentation can be formalised
with a latent variable model, introducing unob-
served boundary variables b1 . . . bT , where bt = 1
(resp. bt = 0) respectively denotes presence or ab-
sence of a boundary after ct. The inference is typi-

4Available at https://github.com/shuokabe/pyseg.
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cally performed with Gibbs sampling, using Equa-
tion (1) to iteratively resample the latent bound-
ary variables values. To speed up convergence,
Goldwater et al. (2009) additionally use simulated
annealing.

We chose to explore dpseg over alternative seg-
mentation models such as SentencePiece (Kudo
and Richardson, 2018) or Morfessor (Creutz and
Lagus, 2002; Smit et al., 2014) because of its bet-
ter performance in similar language documenta-
tion contexts. It is also well suited to small data
conditions and enables weak supervision (Okabe
et al., 2022). Furthermore, preliminary experi-
ments showed no major difference between using
a Dirichlet process (DP), as we do, and a variant
based on a Pitman-Yor process (PYP), known to
better capture the underlying power-law distribu-
tion. Overall, we believe that using more sophisti-
cated variants or faster implementations of dpseg
would not substantially alter our main observations.

2.2 Pipeline model: two-step segmentation
We now turn to models computing a segmentation
in words and morphemes. Our baseline two-level
model combines in a pipeline two dpseg models:
the first inputs unsegmented text and yields a word-
level segmentation. The word types in this segmen-
tation are then collected and processed by a second
dpseg to get the morpheme-level segmentation. By
design, in this approach, a word type is always
associated with a unique morphological analysis.5

2.3 Flat segmentations with coupling
Two-level segmentation can also be formalised
with latent variables, using two sets of variables, de-
noted as {bw1 . . . bwT } (resp. {bm1 . . . bmT }) for word
(resp. morpheme) boundaries. Obviously, using the
same dpseg model to independently sample these
variables will produce indistinguishable segmen-
tations. It is, however, possible to get two-level
segmentations by introducing interactions between
these two models, so that the values of variables bwt
and bmt are no longer independent. Deterministic
interactions can be introduced in two ways which
both ensure that word and morpheme segmentation
hypotheses always remain consistent: by imposing
either i) that word boundaries also correspond to
morpheme boundaries, or ii) that morpheme inter-
nal positions are also considered word internal.

5This hypothesis corresponds to what we observe in our
corpora, where only a few dozen words occur with more than
one segmentation in morphemes.

In strategy i), we first sample boundary variables
for words and then for morphemes, yielding the
parallel-w approach. If a word boundary is de-
tected (bwt = 1), then we deterministically identify
a morpheme boundary at that position (bmt = 1).
Otherwise (bwt = 0), we sample the value for bmt as
usual. The net effect is to make morpheme bound-
aries more likely than in an independent model and
generate shorter units at the morpheme level; no
change is expected at the word level. In strategy
ii), denoted parallel-m, morpheme variables are
sampled first: if a boundary is detected (bmt = 1),
an extra sample decides the value of bwt ; else, we
readily assign bwt = 0. Here, the effect is re-
versed and makes word boundaries less likely, forc-
ing the word model to generate longer units; the
morpheme-level segmentation remains unchanged.

2.4 Hierarchical segmentations
Inspired by (Mochihashi et al., 2009), we also im-
plement hierarchical segmentation models for the
two-level segmentation task. These models aim to
explicitly represent the structured aspect of the dou-
ble segmentation process. Here, the word model is
nearly identical to the basic version of dpseg, with
a change in the base distribution P0 of Equation (1).
The character model (Pc) is replaced by a second
non-parametric model for morphemes (hence the
hierarchical nature of the model), also based on
dpseg. This morpheme model has a base distribu-
tion that is, as for the original dpseg, a unigram
character model.

Considering a word w (of length L) made of
K morphemes, w = m1 . . .mK , by analogy to
Equation (2), P0 is therefore changed to:

Pw
0 (w|h−) = p#(1−p#)

(L−1)∗
K∏

k=1

Pm(mk|h−),

(3)
where Pm(mk) is the probability of morpheme mk

according to the morpheme model (the standard
dpseg model), which is written as follows:

Pm(mk|h−;αm) =
n
(h−)
mk + αmPm

0 (mk)

n−
m + αm

, (4)

where αm and Pm
0 are, respectively, the concen-

tration parameter and the base distribution for
morphemes—the latter being a uniform character
model. Sampling in this model is implemented as
follows: each time a new word is hypothesised, a
morpheme segmentation is obtained from the mor-
pheme model; for words that are actually retained,
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this segmentation is recorded and used for further
occurrences of the same word form. A basic ver-
sion of this approach (denoted hier-type) thus
samples boundary variables for morphemes only
once for each word type.6 Two variants are consid-
ered: in the hier-iter model, morpheme bound-
aries are iteratively resampled for all existing word
types every k iterations of the word-level Gibbs
sampler; in hier-final, this process is only per-
formed once after convergence of the word model,
to make a fair comparison with the pipeline model
of Section 2.2. As in the pipeline model, these
approaches ensure that all occurrences of a given
word type will have the same morphological de-
composition.

2.5 Unsupervised Adaptor Grammars
Another hierarchical baseline is based on the Adap-
tor Grammar (AG) model of (Johnson et al., 2007).
This is a strong unsupervised word segmentation
model that can also capture morphological struc-
ture to some extent. We use the colloc grammar
in (Johnson, 2008), which considers the follow-
ing levels: a Sentence is made of Collocations,
which are made of Words, themselves composed
of Characters. In the same manner as (Johnson,
2008, Section 3.2), we considered the Collocation
tier to correspond to words and the Word tier to
morphemes.7

2.6 Weak supervision
Following (Okabe et al., 2022), we further consider
two types of realistically available resources that
can supervise the segmentation process. The first
takes the form of a small number of segmented sen-
tences (e.g. from previously annotated texts), where
the corresponding boundary variables are observed.
During Gibbs sampling, we skip these positions
and simply use the observed values (0 or 1). This
type of supervision, which gives information at the
token level, is denoted sentence.

A second type of resource corresponds to lists
of lexical units (words and/or morphemes). We
use them to replace in P0 the uniform model with
a bigram model, thus increasing the likelihood of
known units. This supervision method which uses
knowledge about types is denoted dictionary.

Observed word segmentation or the word dic-
tionaries will be used to compute Pw(w|h−, α)

6This is slightly more subtle, as the same word can be
created then deleted during the Gibbs sampling iterations.

7Appendix C details the hyperparameter values.

(Equation (1)). Likewise, observed morpheme
boundaries or morpheme lists will be taken into
account at the morpheme level (e.g. in Equation (4)
for the hierarchical model). In all our experiments,
we assume that weak supervision is available si-
multaneously at the word and morpheme levels.

2.7 Full supervision
An even more favourable situation is when bound-
aries are fully observed for a sufficiently large set of
sentences, warranting the use of supervised learn-
ing techniques such as Conditional Random Fields
(Lafferty et al., 2001). This situation is studied
notably by (Moeller and Hulden, 2018; Kann et al.,
2018). Our experiments with this setting show
that this procedure is sample efficient. It is, how-
ever, also subject to the same confusion between
word and morpheme boundaries and does not sig-
nificantly outperform the weak supervision setting.
Full results are reported in Appendix D.

3 Experimental protocol and material

3.1 Evaluation metrics
Following (Goldwater et al., 2006), the segmenta-
tion outputs are evaluated with F-scores on the two
levels of segmentation (word and morpheme) at
three tiers: BF at the boundary level obtained by
comparing predicted and actual boundary values
(0 or 1), WF for the token level, which focuses on
the correspondence between each unit in the sen-
tences, and LF for the lexicon level, counting the
matches between unit types collected on the whole
text. For finer analyses, we also report the precision
and recall for all three levels in Appendix D.

In addition, some basic statistics regarding the
texts will be presented for both segmentation levels.
Nutt, Ntype, and Ntoken respectively denote the
number of utterances, unit types, and tokens in the
text. We also report the inferred average token
(WL) and type (TL) lengths.

3.2 Linguistic material
This work studies two low-resource languages: Ja-
phug and Tsez.

Japhug is a Sino-Tibetan language from the Gyal-
rong family spoken in the Sichuan province in
China. It notably has a rich morphology for both
nouns and verbs. For example, verbs can use sev-
eral prefixes to express tense or aspect features on
top of suffixes. Japhug is currently being docu-
mented: recordings, annotated corpora, and dictio-
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naries are available in Pangloss.8 Jacques (2021)
comprehensively describes the language. The cor-
pus is composed of all the Japhug examples from
the LATEX source files of this grammar book.9 The
extraction of those sentences is made easier thanks
to the \gll command before the Japhug sentences.

Tsez is a Caucasian language part of the Nakh-
Daghestanian language family, spoken in the Re-
public of Dagestan in Russia. It is officially an
unwritten language, transcribed and transliterated
through the Avar writing system (Comrie and Polin-
sky, forthcoming). Nouns and verbs are mainly in-
flected with a variety of combined suffixes. More-
over, Tsez features a set of clitics that are merged
with the words. The latest grammar is currently
in the process of being published. The only sub-
stantial dictionary of the language contains around
7,500 entries. The Tsez corpus contains sentences
from the Tsez Annotated Corpus of (Abdulaev and
Abdulaev, 2010), used in (Zhao et al., 2020) to
study the generation of interlinear glosses.

language Japhug Tsez
segment word morph. word morph.

Nutt 3628 3628 2000 2000
WL 4.73 2.90 5.61 2.81
TL 7.30 5.41 6.93 5.21
Ntype 6739 2731 5732 1603
Ntoken 28579 46632 20153 40229

Nsuper. 664 493 867 455

Table 1: Statistics for the Japhug and Tsez corpora. Both
are segmented into words and morphemes (morph.).

Table 1 describes the two language corpora, re-
porting statistics at the two segmentation levels.
Japhug word types have an average number of
2.48 morphemes, while in Tsez, that value is 2.37.

For weak supervision, the first 200 sentences of
each corpus are selected as training material, used
as is for boundary supervision (sentence method)
or as a list of unique (word or morpheme) types for
lexical supervision (dictionary method). Nsuper.

above summarises the number of supervision units.

3.3 Experimental settings

In our experiments, the results are obtained after
20,000 iterations of Gibbs sampling, with 10 in-

8https://pangloss.cnrs.fr/corpus/Japhug.
9https://github.com/langsci/295/.

crements of simulated annealing, for quicker con-
vergence as detailed in (Goldwater et al., 2009).
The last iteration of a run returns the final boundary
prediction that is considered to be the model output.
To account for the variability of the sampler, we
report below the average of three runs. We find
that this segmentation procedure is stable with an
average standard deviation of less than 1 for all
metrics.

We use the default values of the base dpseg for
hyperparameters: p# = 0.5 and α = αm = 20.
We set the same initial value of the concentration
parameter for the two levels in both categories of
model. Following Teh (2006) and Mochihashi et al.
(2009), the two concentration parameters, which
both have a Gamma posterior distribution, are re-
sampled after each iteration on the corpus—thus,
upon convergence, we observe α ̸= αm.

For the hierarchical models, hier-final re-
segments word types into morphemes with 1,000 it-
erations of Gibbs sampling, while hier-iter car-
ries out 5 iterations of morphological segmentation
every 100 iterations of word segmentation.

4 Experimental results

4.1 RQ1: unsupervised two-level models

Table 2 reports segmentation results for the Japhug
corpus. The corresponding results for Tsez are in
Table 6 in Appendix D. As briefly stated in the in-
troduction, the one-level dpseg segments into units
that are too short for words (cf. average unit lengths
WL and TL) and seems to segment units that are
closer to morphemes, with higher morpheme F-
scores for all three evaluation tiers. This motivated
our work on two-level segmentation models, which,
contrarily to the basic dpseg, make a distinction
between the two types of boundaries. The more
sophisticated AG model shows a similar trend, out-
putting words and morphemes that are too short,
insufficiently diverse (low LF), and result in too
many tokens (excessive Ntoken).

The pipeline approach only differs from the
one-level dpseg at the morpheme level, where we
see worse F-scores, with a massive drop in LF
score. For the ‘parallel’ models, the expected im-
provements are observed: better morpheme bound-
aries for parallel-w, better word boundaries for
parallel-m. However, these two models deliver
units that remain quite close in average length, and
the F-score improvements remain rather limited in
magnitude. In those experiments, the hierarchical

644

https://pangloss.cnrs.fr/corpus/Japhug
https://github.com/langsci/295/


model AG dpseg* pipeline parallel-w parallel-m hier-type -final hier-iter
level word morph. word morph. word morph. word morph. word morph. word morph. morph. word morph.

BF 71.0 83.4 73.1 81.0 73.1 80.6 73.3 83.6 73.2 80.8 74.7 62.5 82.3 73.5 81.4
WF 45.8 62.5 46.2 55.1 46.2 57.8 46.5 61.3 46.0 54.7 48.7 24.5 60.9 47.2 59.1
LF 31.1 28.9 20.4 41.4 20.4 17.5 20.6 40.5 23.8 41.4 28.8 17.0 23.4 31.7 24.7

WL 4.72 2.51 3.34 3.34 2.13 3.34 2.98 3.73 3.35 3.93 1.65 2.32 4.29 2.37
TL 6.60 3.27 4.22 4.22 2.64 4.23 3.99 4.77 4.21 4.78 2.83 2.87 5.12 2.88
Ntype 5582 1113 2260 2260 694 2257 1834 2921 2281 3806 1013 911 4925 956
Ntoken 28.6k 53.9k 40.5k 40.5k 63.4k 40.5k 45.4k 36.3k 40.4k 34.4k 82.1k 58.2k 31.5k 57.0k

Table 2: Results on the Japhug corpus for unsupervised one-level (*) and two-level dpseg models. The reference
contains 6,739 words and 2,731 morphemes (Ntype). Bold numbers represent the best result per metrics.

models make a stronger distinction between the
two types of units, yielding well-differentiated av-
erage lengths (WL and TL). Overall, almost all
two-level models but the simple-minded pipeline
improve the baseline scores for at least one level of
segmentation, with the unsupervised parallel-w
flat model delivering the best results on average.

While our answer to RQ1 is positive, we note
that the score differences between approaches are
often small and that all models keep oversegment-
ing words, leading to a too low number of word
types and yielding poor LF scores. The same trend
is observed for the hierarchical models at the mor-
pheme level: they find too few morphemes (cf.
Ntype) and result in poor type-level scores.

4.2 RQ2: error propagation

Compared to the baseline, the unsupervised
pipeline approach obtains poor LF score at the mor-
pheme level (Table 2). As the two approaches have
almost identical BF and WF scores, this means that
pipeline performance is mostly due to its ability
to detect frequent morphemes at the expense of
rarer ones. This is also reflected by the very small
number of morpheme types found by this model.

This is because the pipeline model uses the word
types computed by the regular dpseg to detect mor-
pheme boundaries. As this first step obtains poor
results (WF ≈ 20), cascading errors accumulate.
Wrong detections at the word level are thus counted
twice: once at the word level, once at the mor-
pheme level. The use of joint models slightly reme-
dies this state of play, yielding improvements in
the word dictionary, which then turn into improved
morpheme dictionaries. This allows us to answer
RQ2 positively, even though the recall for mor-
pheme types still remains far from satisfactory. To
progress on that front, the surest way seems to im-
prove word segmentation, if only because many
word types are made of one single morpheme.

4.3 RQ3: flat and hierarchical models
This section compares the flat (parallel) and hi-
erarchical models, first analysing the differences
between variants of the same family, before com-
paring these two approaches.10

Parallel models As explained in § 2.3, each ‘par-
allel’ model only improves the baseline for one type
of unit: morpheme boundaries for parallel-w and
word boundaries for parallel-m (Table 2). This
remains true when using weak supervision. A first
comparison is between the parallel models, where
we see better scores for parallel-w, which out-
performs parallel-m on almost all accounts and
all weak supervision settings. In fact, even with the
help of supervision, parallel-m obtains lower BF
and WF scores at the word level than parallel-w:
more word types are generated, the average length
is increased, but these hypotheses are often wrong.
We do not see the reverse for parallel-w, which
generates fewer morphemes: the decrease in re-
call is almost balanced by the increase in precision,
with little negative impact on the morpheme seg-
mentation quality.

Hierarchical models First, for all three F-scores
at the morpheme level, in any experimental situa-
tion, the hier-type model is consistently worse
than the hier-final model, which carries out ad-
ditional Gibbs sampling steps for the morpheme
variables once the word boundaries have stabilised.
This model finds longer units (cf. WL) with the
additional iterations, which leads to significant im-
provements (+20 points in WF).

The hier-iter variant achieves a fair trade-off
between the boundary and token F-scores on the
one hand, and the type F-score on the other hand:
this model is better when evaluated at the type
level, while hier-final reaches better scores on
the other two levels. As the hier-final model

10Full results in Appendix D.
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Figure 2: Results in Japhug without supervision on the left, with sentence supervision in the middle, and
dictionary supervision on the right of each subplot (row: segmentation level, column: F-score). We use a different
y-axis scale for each F-score.

attains a similar but higher aggregated F-score on
average, we chose it to represent the hierarchical
models for the following sections. This model is
also slightly less computationally involved than
hier-iter, another reason for choosing it in prac-
tical settings.

Comparing two types of models Figure 2 dis-
plays the results for the baselines and best per-
forming flat and hierarchical models on Japhug
with and without supervision, illustrating the
impact of resources. Four models are com-
pared: pipeline, parallel-w, hier-final, and
independent. The latter corresponds to two dis-
tinct dpseg models, one trained for word bound-
aries, the other for morpheme boundaries, each su-
pervised and evaluated at the corresponding level.
It can produce inconsistent segmentations.

By design, independent, pipeline, and
parallel-w generate similar word-level segmen-
tations and improve a lot from dictionary super-
vision. At the morpheme level, the latter model
strongly improves its LF score, equally benefiting
from both weak supervision strategies.

The hierarchical model has the best results
for word-level scores with sentence supervision,
whereas, with dictionary supervision, it lags
behind the other methods. At the morpheme
level, results are less clear. When unsupervised,

hier-final is better than the baselines but worse
than parallel-w; however, it always gets a strong
boost from supervision, more so than its contenders.
In short, sentence is more beneficial for the hi-
erarchical model, while dictionary rather im-
proves the others. Still, these increments remain
small; we conclude that weak supervision does not
seem to help the models better differentiate the two
types of units. Overall, when aggregating F-scores
across settings and languages, models rank as fol-
lows, from worst to best: independent, pipeline,
parallel-w, and hier-final. This answers RQ3.

4.4 RQ4: distributional assumptions

4.4.1 Word distributions in CLD
The parallel and hierarchical models both rely on
the same fundamental assumption: the distribution
of word tokens in a natural corpus follows a power
law, which was a motivation for using Dirichlet
processes in (Goldwater et al., 2006). As described
in (Goldwater et al., 2011), such distributions de-
rive from the use of a two-stage model: a generator
which focuses on creating word types (this is P0 in
the dpseg model) and an adaptor that produces the
‘rich-get-richer’ effect (Equation (1)).

To check how well our data matches this assump-
tion, in Figure 3, we look at type/token curves,
which display the number of word types in texts
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of increasing lengths. We deem this ratio to be a
reasonable proxy to observe the ‘rich-get-richer’
effect on word types. We compare the Japhug and
Tsez texts, their automatic segmentations (‘dp-’),
as well as their English translation (‘-en’) (as in
(Godard et al., 2016)), with five languages of vary-
ing morphological complexity: English, French,
Finnish, German, and Turkish. For these, we use
the 2020 news data from the Leipzig corpus (Gold-
hahn et al., 2012), keeping only the first 2,000 sen-
tences for comparison.

0 10000 20000 30000 40000
Tokens

0

2000

4000

6000

8000

10000

12000

Ty
pe

s

Japhug
Japhug-en
dp-Japhug
Tsez
Tsez-en
dp-Tsez
Finnish
Turkish
German
French
English

Figure 3: Type-token curves for several languages

We see that the curves for Japhug and Tsez fol-
low the French and English trends, reflecting a
lesser lexical variation than for German, Turkish,
and Finnish. Looking at their English translations
confirms this trend and hints that the number of
word types in our corpora does not correctly mir-
ror the actual morphological complexity of these
languages. Indeed, corpora collected for language
documentation may present distributional biases:
sentences are often chosen to illustrate relevant lin-
guistic properties, as in our Japhug corpus extracted
from a grammar book. This reduced lexical vari-
ety is amplified in automatically segmented texts,
where we fail to identify most rare words. For ex-
ample, 97% of the words occurring only once are
not found by the unsupervised hier-final model.
See Appendix A for another view of the same phe-
nomena.

4.4.2 Modelling morpheme distributions
Where the parallel and hierarchical versions dif-
fer is how they estimate morpheme models:
parallel-w assumes a power law of morphemes
in running texts, while hier-final assumes it on
word types. We see the impact of these assump-
tions in Figure 4. This graph is based on an esti-

mation of the parameter of the Zipf distributions
of words in the Tsez corpus and of morphemes in
the Tsez word types (see details in Appendix A).
While these parameters strongly depend on the cor-
pus size, they are typically in the range [−1,−1.2]
(Baayen, 2001) — the lower value computed for
the reference Tsez word distribution again hints
at the peculiarity of this distribution, whereas the
corresponding parameters for morpheme are in the
right ballpark.

All inferred segmentations at the word level be-
have similarly, with values steeper than for the
reference, reflecting the effect of using a power-
law model. Once more, we see that supervision is
hardly helping. We observe sharper differences at
the morpheme level, where the hierarchical model
gets much closer to the reference, further boosted
by sentence supervision. This is in line with (Vir-
pioja et al., 2011), which notes the better mor-
pheme segmentations obtained when modelling
types rather than tokens.
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Figure 4: Zipfianity of various segmentations of Tsez.
par is based on parallel-w, htl on hier-final.

5 Related work

Word segmentation and morphological segmenta-
tion are related tasks; however, both segment only
at a single level. We focus here on methods or
objectives of approaches comparable to ours.

Word segmentation with Bayesian non-
parametric models, on the one hand, benefits from
models based on Dirichlet Processes (Goldwater
et al., 2006, 2009), extended with the more general
Pitman-Yor Processes and a hierarchical structure
(Teh, 2006; Mochihashi et al., 2009). In language
documentation settings, unsupervised methods
are applied (Godard et al., 2016). Morphological
segmentation, on the other hand, usually focuses
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on the surface segmentation of word types (Cot-
terell et al., 2016), with models such as Morfessor
(Creutz and Lagus, 2002). Ruokolainen et al.
(2016) extensively survey the task for supervised
conditions. In low-resource settings, recent works
include (Kann et al., 2018; Liu et al., 2021; Moeng
et al., 2021).

For both tasks, the Adaptor Grammar (AG)
(Johnson et al., 2007), capable of modelling hi-
erarchical structure in sequences with trees, of-
ten yields strong results (Johnson, 2008; Eskander
et al., 2016; Godard et al., 2018), especially thanks
to its flexibility in incorporating minimal super-
vision. For instance, Sirts and Goldwater (2013)
explicitly model words as a compound of one or
more morphemes in their AG.

6 Conclusion

By extending a Bayesian non-parametric segmenta-
tion model, dpseg, we have proposed two models
to simultaneously segment into words and mor-
phemes: one segmenting in parallel and the other
in a hierarchical manner. Using corpora of two low-
resource, morphologically complex languages, we
have observed improved performance with respect
to the baselines. These two approaches have been
contrasted in various ways, leading us to favour the
hierarchical approach when supervision is avail-
able. The observed improvements are, however,
modest, partly due to modelling assumptions that
are not fully matched in our data. It remains that
sorting words from morphemes based solely on dis-
tributional cues is difficult, if possible at all, even
with the supervision considered in this work.

Further studies will need to consider other sig-
nals of ‘wordness’. Some can be extracted from
the way units combine with their neighbours, using
contextual word models; some will require new
sources of supervision, e.g. at the phonological
level. Another extension will be to distinguish be-
tween lexical and grammatical morphemes, which
tend to occur and behave differently.

Limitations

The main limitation comes from the use of the un-
igram dpseg model. Although it has strong and
stable performance on the word-level segmenta-
tion task, comparable to its bigram version in our
settings (Godard et al., 2016), some weaknesses
inherent to the unigram assumption appear as in
Appendix B. Moreover, such an assumption at the

morpheme level means that, for example, adding a
distinction between lexical and grammatical mor-
phemes, as suggested in conclusion, will be of little
use since the probability of a morpheme does not
affect that of others in the word for unigram mod-
els. Nevertheless, in our language documentation
setting, we deem this unigram assumption to have
a small impact on the overall results due to data
size.

For some of our two-level models (pipeline and
hierarchical), we also relied on the assumption that
a word can only have a single morphological de-
composition, as stated in Sections 2.2 and 2.4. Al-
though it may not apply in other situations, this
reasonably holds in our two corpora (as briefly ex-
plained in footnote 5) since we found 51 word types
with several morphological analyses in Japhug and
14 in Tsez.

Besides, our work and observation only rely on
two languages. However, the two-level segmen-
tation for very low-resourced languages, as we
displayed, needs a reference text segmented with
distinct boundaries for words and morphemes for
evaluation in particular. Since word segmentation
usually focuses on tokens in sentences and mor-
pheme segmentation on word types, texts explicitly
segmented in two levels are difficult to obtain, even
so of good quality.

Finally, we reckon that our current implementa-
tion of the Gibbs sampler is not particularly op-
timised. For actual deployment, these models
should be designed and implemented in a more
computationally-efficient way or even another lan-
guage than Python.
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A Word and morpheme distributions

According to Zipf’s law, for a unit of rank R, its nor-
malised frequency f (f = F

N with F the frequency
of the unit and N the total number of units in the
corpus) is computed as follows in Equation (5):

f =
c

Ra
, (5)

with c a normalising constant and a the parameter
of the distribution (Baayen, 2001). Hence, the re-
lationship between the log-(normalised) frequency
and the log-rank is:

log(f) = −a log(R) + log(c) (6)

To visualise the linear relationship shown in
Equation (6), we hence fit a (least square) linear
regression. Thus, Figure 4 plots the value of the
slope −a for words (x-axis) and morphemes (y-
axis).
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Figure 5: Log-normalised frequency of words according
to their log-rank for several languages.

In Figure 5, we compare the Japhug text with
three languages of varying morphological complex-
ity (as in Section 4.4.1).

The Japhug curve lies between the English and
Finnish ones, two languages with a clear contrast in
morphological complexity. If for the most frequent
words (i.e. low Zipf rank, on the left), the Japhug
words follow the English or German trend, for rare
words (i.e. high Zipf rank, on the right), it joins the
Finnish trend.

B Output analysis

supervision sentence

dpseg / a mbroWjme zW kÈzo
parallel-w / a mbro-Wjme z WkÈ zo
parallel-w sentence a-mbro Wjme zW kÈ-zo

reference a-mbro W-jme zW kÈ-zo
Land on my horse’s tail

Figure 6: An example Japhug sentence segmented by
various models, with and without supervision.

The example in Figure 6 displays a Japhug sen-
tence segmented by two models. First, without
supervision, dpseg fuses two units that should be
separated by a word boundary (‘mbroWjme’), and
so does parallel-w with ‘WkÈ’. Apart from dimin-
ishing the three F-scores, this kind of error creates
meaningless units. Besides, some reference mor-
pheme boundaries are not identified: no boundary
at all for ‘W-jme’ and a word boundary in ‘a-mbro’.

Once supervised, the parallel-w model cor-
rects its initial error (‘WkÈ’ is segmented) and finds
morpheme boundaries. Indeed, the model seems to
benefit from the supervision data, which contained

the words ‘a-mbro’ and ‘kÈ-zo’. The remaining
error (‘Wjme’) can be explained by the fact that in
the corpus, all occurrences of the morpheme ‘jme’
are always preceded by ‘W-’. The model thus does
not identify nor recreate ‘jme’ as a unit but keeps
‘Wjme’. The negative effect of collocations consti-
tutes an inherent limit of the unigram dpseg model,
already discussed by Goldwater et al. (2006).

C Reproducibility

All presented experiments have been obtained with
the same three random seeds (42, 142, and 1234)
for a fair comparison. Details about the hyperpa-
rameters are in Section 3.3.

The Adaptor Grammar was run with the hyper-
parameter values indicated for MorphAGram11 (Es-
kander et al., 2020).

For reference, a processor of 6 cores and
12 threads takes around two days for a hierarchical
model on the Tsez 2K corpus (20,000 iterations of
Gibbs sampling). With the same setting, a parallel
model takes approximately one day.

D Complete results

This section displays the full results for all our
experimental settings: each model will be un-
supervised or supervised with the sentence or
dictionary supervision and will segment the Ja-
phug and Tsez corpora. The tables also report the
precision and recall for each evaluation tier (BP and
BR for Boundary Precision and Boundary Recall;
WP, WR, and LP, LR, respectively for token and
type evaluation). Bold values are the best score in
a given experimental situation.

D.1 Japhug
Tables 3, 4, and 5 display the full results for the
Japhug text.

D.2 Tsez
Similarly, Tables 6, 7, and 8 display the full results
for the Tsez text.

D.3 Fully supervised model
For the sentence supervision method of Sec-
tion 2.7, we also report the results of a CRF
(Conditional Random Field, Lafferty et al. 2001),
mainly inspired by the methodology of Moeller and
Hulden (2018). Each training sentence is labelled
as in Figure 7.

11https://github.com/rnd2110/MorphAGram.
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Original sentence XpWn W–pW
Translation (EN) little monk

X p W n W p W
B-w I I I B-w B-m I

Figure 7: Example of Japhug sentence labelled for CRF

The ‘B-w’ label indicates the beginning of a
word, while ‘B-m’ marks the start of a morpheme
inside a word. The ‘I’ label is used for all other
characters (inside a morpheme). We use Wapiti12

(Lavergne et al., 2010) for the CRF implementation.
Our feature set only includes basic unigram and
bigram features.

The results in Table 4 and Table 7 show that, on
average, full supervision yields better segmentation
scores than weakly supervised models at the word
level; contrarily, we observe worse scores at the
morpheme level for both languages.

We also note that the CRF model identifies more
than 4,000 morpheme types in both languages (i.e.
much more than what exist in the reference or
our models), which results in less than 36 in F-
score on morpheme types (LF). This suggests that
morphemes are difficult to distinguish from words,
even in this favourable setting, confirming one of
our main conclusions: statistical cues alone do not
seem to be enough to correctly separate these two
types of units.

12https://github.com/Jekub/Wapiti.
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model AG dpseg pipeline parallel-w parallel-m hier-type -final hier-iter
level word morph. word morph. word morph. word morph. word morph. word morph. morph word morph.

BP 70.9 77.3 61.3 87.8 61.3 69.3 61.5 84.9 64.5 87.6 67.6 48.4 73.6 69.6 73.5
BR 71.1 90.4 90.6 75.2 90.6 96.3 90.8 82.4 84.5 75.0 83.4 88.2 93.4 77.8 91.2
BF 71.0 83.4 73.1 81.0 73.1 80.6 73.3 83.6 73.2 80.8 74.7 62.5 82.3 73.5 81.4

WP 45.8 58.3 39.4 59.3 39.4 50.1 39.7 62.1 41.1 58.9 44.6 19.2 54.9 44.9 53.7
WR 45.9 67.3 55.9 51.5 55.9 68.2 56.2 60.4 52.3 51.1 53.7 33.8 68.5 49.6 65.7
WF 45.8 62.5 46.2 55.1 46.2 57.8 46.5 61.3 46.0 54.7 48.7 24.5 60.9 47.2 59.1

LP 34.3 49.9 40.6 45.7 40.6 43.3 41.1 50.5 39.4 45.4 40.0 31.5 46.7 37.5 47.6
LR 28.4 20.3 13.6 37.8 13.6 11.0 13.8 33.9 17.1 37.9 22.6 11.7 15.6 27.4 16.7
LF 31.1 28.9 20.4 41.4 20.4 17.5 20.6 40.5 23.8 41.4 28.8 17.0 23.4 31.7 24.7

WL 4.72 2.51 3.34 3.34 2.13 3.34 2.98 3.73 3.35 3.93 1.65 2.32 4.29 2.37
TL 6.60 3.27 4.22 4.22 2.64 4.23 3.99 4.77 4.21 4.78 2.83 2.87 5.12 2.88
Ntype 5582 1113 2260 2260 694 2257 1834 2921 2281 3806 1013 911 4925 956
Ntoken 28.6k 53.9k 40.5k 40.5k 63.4k 40.5k 45.4k 36.3k 40.4k 34.4k 82.1k 58.2k 31.5k 57.0k

Table 3: Results on the Japhug corpus for unsupervised dpseg and its two-level versions. Bold numbers denote the
best results per metrics. Reference Ntype: 6,739 for words and 2,731 for morphemes.

model CRF dpseg pipe. parallel-w parallel-m hier-type -final hier-iter
level word morph. word morph. morph. word morph. word morph. word morph. morph. word morph.

BP 73.5 83.2 63.8 88.1 79.2 64.0 86.4 66.4 88.9 70.9 63.7 80.9 72.4 80.1
BR 80.8 85.2 91.4 79.6 97.4 91.4 83.7 86.3 77.7 84.0 92.2 96.0 80.2 94.5
BF 77.0 84.2 75.1 83.6 87.3 75.3 85.1 75.0 82.9 76.9 75.4 87.8 76.1 86.7

WP 52.6 66.4 43.7 64.3 67.2 43.9 65.6 44.8 63.6 49.6 43.8 68.5 49.8 66.9
WR 57.3 67.8 60.2 58.7 81.5 60.3 63.7 56.5 56.3 57.5 61.9 80.3 54.5 78.0
WF 54.9 67.1 50.6 61.4 73.6 50.8 64.7 50.0 59.7 53.3 51.3 74.0 52.1 72.0

LP 39.4 27.5 50.7 53.9 61.6 51.2 55.3 47.2 51.1 46.3 49.4 59.6 43.2 60.8
LR 49.5 50.3 19.6 40.2 23.5 19.9 39.4 22.3 42.7 30.0 23.2 25.9 33.4 26.4
LF 43.9 35.5 28.3 45.8 34.0 28.7 46.0 30.3 46.5 36.4 31.6 36.1 37.6 36.8

WL 4.35 2.84 3.44 3.19 2.39 3.45 2.99 3.75 3.28 4.08 2.05 2.48 4.32 2.49
TL 6.67 5.09 4.66 4.25 3.44 4.66 4.12 5.04 4.30 5.13 3.36 3.47 5.33 3.46
Ntype 8453 4999 2610 2061 1040 2627 1946 3182 2283 4363 1285 1186 5208 1185
Ntoken 31.1k 47.6k 39.4k 42.5k 56.5k 39.2k 45.3k 36.0k 41.2k 33.2k 65.9k 54.6k 31.3k 54.4k

Table 4: Results on the Japhug corpus for dpseg and its two-level versions, supervised with dense annotations
(sentence). 200 sentences are used as supervision data.

model dpseg pipe. parallel-w parallel-m hier-type -final hier-iter
level word morph. morph. word morph. word morph. word morph. morph. word morph.

BP 76.6 93.2 87.0 76.6 91.0 76.4 93.0 66.4 58.4 83.6 66.6 84.3
BR 81.0 64.3 83.1 81.2 71.3 74.9 64.2 89.6 89.9 90.2 90.1 90.8
BF 78.7 76.1 85.0 78.8 80.0 75.6 76.0 76.2 70.8 86.8 76.6 87.4

WP 54.4 54.8 65.9 54.5 60.1 51.6 54.4 45.6 30.4 67.2 46.0 68.7
WR 57.1 39.2 63.2 57.4 48.1 50.7 38.9 59.6 45.6 72.1 60.1 73.6
WF 55.7 45.7 64.5 55.9 53.5 51.1 45.4 51.7 36.5 69.6 52.1 71.1

LP 49.9 37.0 47.0 50.5 40.9 46.4 37.2 46.4 51.1 56.0 47.3 57.9
LR 37.3 54.8 43.5 37.8 52.3 36.8 54.8 21.6 30.2 34.3 21.9 34.9
LF 42.7 44.2 45.2 43.2 45.9 41.1 44.3 29.5 38.0 42.5 29.9 43.6

WL 4.51 4.06 3.03 4.49 3.62 4.81 4.06 3.63 1.94 2.71 3.62 2.71
TL 6.18 5.40 4.45 6.16 5.14 6.49 5.38 4.46 3.77 3.84 4.52 3.86
Ntype 5041 4044 2524 5040 3492 5356 4027 3141 1618 1671 3116 1646
Ntoken 30.0k 33.3k 44.7k 30.1k 37.3k 28.1k 33.3k 37.3k 69.9k 50.0k 37.4k 49.9k

Table 5: Results on the Japhug corpus for dpseg and its two-level versions, supervised with a dictionary
(dictionary). 200 sentences are used as supervision data.
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model AG dpseg pipeline parallel-w hier-type -final hier-iter
level word morph. word morph. word morph. word morph. word morph. morph word morph.

BP 67.3 78.1 59.9 91.8 59.9 69.9 59.6 89.3 64.0 47.8 74.4 64.7 74.7
BR 76.6 85.5 87.9 63.9 87.9 88.8 87.4 71.6 83.0 81.7 86.1 77.6 85.1
BF 71.6 81.6 71.3 75.3 71.3 78.2 70.9 79.5 72.2 60.3 79.8 70.6 79.6

WP 41.6 55.6 33.3 52.1 33.3 46.0 32.8 57.7 38.2 19.0 50.8 38.8 51.4
WR 46.7 60.5 47.4 37.1 47.4 57.8 46.6 46.8 48.4 31.9 58.3 45.7 58.2
WF 44.0 57.9 39.1 43.4 39.1 51.2 38.5 51.7 42.7 23.8 54.3 42.0 54.6

LP 45.9 51.3 49.6 41.4 49.6 41.2 49.0 47.7 47.3 24.2 41.1 42.3 43.1
LR 28.8 28.0 16.9 50.4 16.9 16.6 16.7 47.6 22.6 13.1 20.1 25.5 21.8
LF 35.4 36.2 25.2 45.5 25.2 23.6 25.0 47.7 30.5 17.0 27.0 31.8 29.0

WL 4.99 2.58 3.95 3.95 2.24 3.95 3.46 4.43 1.68 2.45 4.76 2.48
TL 6.52 3.52 4.53 4.53 2.89 4.52 4.32 4.95 2.87 3.07 5.35 3.08
Ntype 3597 875 1950 1950 646 1958 1600 2732 867 786 3456 812
Ntoken 22.7k 43.8k 28.6k 28.6k 50.5k 28.6k 32.7k 25.6k 67.4k 46.2k 23.8k 45.5k

Table 6: Results on the Tsez corpus for unsupervised dpseg and its two-level versions. Bold numbers denote the
best results per metrics. Reference Ntype: 5,732 for words and 1,603 for morphemes.

model CRF dpseg pipe. parallel-w hier-type -final hier-iter
level word morph. word morph. morph. word morph. word morph. morph. word morph.

BP 83.3 85.9 65.4 93.3 83.2 65.3 90.6 69.1 65.6 85.0 69.5 84.0
BR 78.3 82.5 90.7 69.3 95.9 90.6 74.7 83.6 88.7 92.9 80.7 91.7
BF 80.7 84.2 76.0 79.5 89.1 75.9 81.9 75.7 75.4 88.8 74.7 87.7

WP 64.5 67.8 42.5 61.8 71.9 42.2 63.2 46.6 46.4 72.5 46.9 70.6
WR 60.9 65.3 57.3 46.7 82.4 56.9 52.6 55.4 62.0 79.0 53.8 76.8
WF 62.6 66.6 48.8 53.2 76.8 48.4 57.4 50.6 53.1 75.6 50.1 73.6

LP 47.6 21.9 62.7 49.1 61.9 62.4 53.4 53.8 46.5 59.8 50.6 59.3
LR 61.0 62.0 26.9 57.5 36.7 26.7 54.6 32.7 33.8 38.9 34.4 38.5
LF 53.5 32.4 37.6 53.0 46.1 37.3 54.0 40.6 39.1 47.1 41.0 46.7

WL 5.94 2.92 4.16 3.72 2.46 4.16 3.38 4.72 2.11 2.58 4.90 2.59
TL 7.83 5.98 5.02 4.58 3.67 5.03 4.40 5.43 3.49 3.70 5.61 3.67
Ntype 7343 4537 2458 1877 950 2450 1639 3479 1165 1043 3902 1041
Ntoken 19.0k 38.7k 27.2k 30.4k 46.1k 27.2k 33.5k 24.0k 53.7k 43.8k 23.1k 43.7k

Table 7: Results on the Tsez corpus for dpseg and its two-level versions, supervised with dense annotations
(sentence). 200 sentences are used as supervision data.

model dpseg pipe. parallel-w hier-type -final hier-iter
level word morph. morph. word morph. word morph. morph. word morph.

BP 73.2 95.8 90.6 73.4 94.3 66.0 58.0 87.1 66.6 87.7
BR 84.9 58.5 79.6 84.9 63.1 91.2 82.0 84.5 90.5 85.4
BF 78.6 72.6 84.7 78.7 75.6 76.6 67.9 85.8 76.7 86.5

WP 50.3 49.7 66.1 50.5 53.1 43.0 29.1 65.8 43.6 67.7
WR 57.6 31.3 58.4 57.7 36.4 57.7 40.5 64.0 57.7 66.1
WF 53.7 38.4 62.0 53.9 43.2 49.3 33.8 64.9 49.7 66.9

LP 62.0 38.0 49.8 62.1 41.5 59.9 43.2 53.7 60.4 55.2
LR 37.2 64.6 54.1 37.3 63.1 26.9 36.2 44.9 27.7 45.9
LF 46.5 47.9 51.9 46.6 50.0 37.1 39.4 48.9 37.9 50.1

WL 4.91 4.47 3.18 4.92 4.10 4.18 2.02 2.89 4.24 2.88
TL 5.86 5.39 4.38 5.88 5.11 4.82 3.73 3.94 4.88 3.94
Ntype 3442 2725 1744 3449 2441 2571 1342 1339 2624 1332
Ntoken 23.1k 25.3k 35.6k 23.0k 27.6k 27.1k 56.1k 39.1k 26.7k 39.2k

Table 8: Results on the Tsez corpus for dpseg and its two-level versions, supervised with a dictionary (dictionary).
200 sentences are used as supervision data. Reference Ntype: 5,732 for words and 1,603 for morphemes.
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