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Abstract

Current multilingual semantic parsing (MSP)
datasets are almost all collected by translat-
ing the utterances in the existing datasets from
the resource-rich language to the target lan-
guage. However, manual translation is costly.
To reduce the translation effort, this paper pro-
poses the first active learning procedure for
MSP (AL-MSP). AL-MSP selects only a sub-
set from the existing datasets to be translated.
We also propose a novel selection method that
prioritizes the examples diversifying the logi-
cal form structures with more lexical choices,
and a novel hyperparameter tuning method that
needs no extra annotation cost. Our experi-
ments show that AL-MSP significantly reduces
translation costs with ideal selection methods.
Our selection method with proper hyperparam-
eters yields better parsing performance than the
other baselines on two multilingual datasets.

1 Introduction

Multilingual semantic parsing converts multilin-
gual natural language utterances into logical forms
(LFs) using a single model. However, there is a
severe data imbalance among the MSP datasets.
Currently, most semantic parsing datasets are in En-
glish, while only a limited number of non-English
datasets exist. To tackle the data imbalance issue,
almost all current efforts build MSP datasets by
translating utterances in the existing datasets from
the resource-rich language (e.g. English) into other
languages (Duong et al., 2017; Li et al., 2021a).
However, manual translation is slow and labori-
ous. In such cases, active learning is an excellent
solution to lower the translation cost.

Active learning (AL) is a family of methods
that collects training data when the annotation bud-
gets are limited (Lewis and Catlett, 1994). Our
work proposes the first active learning approach
for MSP. Compared to translating the full dataset,
AL-MSP aims to select only a subset from the ex-

isting dataset to be translated, which significantly
reduces the translation cost.

We further study which examples AL-MSP
should select to optimize multilingual parsing per-
formance. Oren et al. (2021) demonstrated that
a training set with diverse LF structures signifi-
cantly enhances compositional generalization of
the parsers. Furthermore, our experiments show
that the examples with LFs aligned with more di-
versified lexical variants in the training set consid-
erably improve the performance of multilingual
parsing during AL. Motivated by both, we propose
a novel strategy for selecting the instances which
include diversified LF structures with more lexical
choices. Our selection method yields better parsing
performance than the other baselines. By translat-
ing just 32% of all examples, the parser achieves
comparable performance on multilingual GEO-
QUERY and NLMAP as translating full datasets.

Prior works obtain the hyperparameters of the
AL methods by either copying configurations from
comparable settings or tuning the hyperparameters
on the seed evaluation data (Duong et al., 2018).
However, the former method is not suitable as our
AL setting is unique, whereas the second method
requires extra annotation costs. In this work, we
provide a cost-free method for our AL scenario for
obtaining optimal hyperparameters.

Our contributions are i) the first active learn-
ing procedure for MSP that reduces the translation
effort, ii) an approach that selects examples for
getting superior parsing performance, and iii) a hy-
perparameter tuning method for the selection that
does not incur any extra annotation costs.

2 Background

Multilingual Semantic Parsing. A multilingual
semantic parser is a parametric model Py(y|x) that
estimates the probability of the LF y € ) condi-
tioned on the natural language utterance € A} in
an arbitrary language from a language set ! € L.



The model is trained on the utterance-LF pairs
{(a:z,yz)}f\il € X x Y where X, = (J;cp X
includes multilingual utterances.
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Figure 1: The example of the compounds in an LF tree,
( lambda $0 e ( and ( state:t $0 ) ( next_to:t $0 s0 ) ) ).

Atoms and Compounds. Each logical form se-
quence can be represented as a semantic tree,
Yy = Ty. Oren et al. (2021); Shaw et al. (2021)
define the nodes and sub-trees in 7, as the atoms
and compounds, respectively. Increasing the diver-
sity of the atoms and compounds in the training
set improves the parser’s compositional general-
ization (Oren et al., 2021; Li et al., 2021b). For
example, an LF “( lambda $0 e ( and ( state:t $0 )
( next_to:t 30 s0 ) ) )” can be expressed as a tree as
in Fig. 1. The atoms are nodes such as “lambda”,
“$0”, “e” in the LF tree. In this work, the com-
pounds are defined as two-level sub-trees such as
“( state:t $0 )", “( next_to:t $0 s0 )”, “( and state:t
next_to:t)”, and “( lambda $0 e and )” in the LF
tree.

Data Collection for MSP. Prior data collection
or active learning works annotates the LFs for the
utterances (Duong et al., 2018; Sen and Yilmaz,
2020) or vice versa (Duong et al., 2018; Wang
et al., 2015). But most MSP works (Susanto and
Lu, 2017; Li et al., 2021a) obtain data by translat-
ing existing datasets from high-resource languages
into low-resource languages, which is less costly
since it does not need annotators’ expertise in LFs.
Following the same annotation paradigm, our AL
does not annotate LFs for multilingual utterances,
but instead chooses the utterances to be translated.

3 Active Learning for MSP

AL-MSP considers only a bilingual scenario for
the proof of concept, while extending our AL
method to more than two languages is easy. The
goal of AL-MSP is to minimize the human ef-
fort in translating utterances while the semantic

parser can still achieve a certain level of perfor-
mance on the bilingual test sets. Starting from
a semantic parser initially trained on the dataset
Dy = {(xf,y:)}Y, whose utterances are in the
high-resource language s, AL-MSP selects K, ex-
amples D, = {(:Bf,yz)}fiql from D, followed
by manually translating the utterances in D, into
a target language t, denoted by D; = ts_,t([)s),
where D; = {(xt, yz)}ZK:f‘1 The selection criterion
is based on our proposed acquisition function ¢(e;)
scoring each example, e; = (x5, y). The parser is
re-trained on the union of bt and D;. There will
be () iterations of selection and re-training until
the re-trained parser reaches a good performance
on the bilingual test sets T and 7;. Algorithm 1
describes our experimental settings in detail.

Algorithm 1: AL-MSP

Input :Initial training set D° = DY, budget size
K, number of the selection rounds Q)

Output : A well-learned multilingual parser Py (y|x)
Train the parser P (y|) on the training set D°
for g < 1t0 @ do

Estimate the acquisition ¢(+)

Select a subset D? € DI~ of the size K, based
on the acquisition function ¢(-)

Translate the utterances in D¢ into the target
language, DY = t4_,;(D?).

Combine the training sets, DY = D' U DY

Exclude the selected examples D¢ from
Di=Di"\ Dt

Re-train the parser Py (y|x) on D?

Evaluate parser performance on test sets 7, 1%

end

3.1 Selection Acquisition

Our selection strategy selects the untranslated ex-
amples which maximize the acquisition scores. The
acquisition comprises two individual terms, LF
Structure Diversity and Lexical Choice Diversity.

LF Structure Diversity (LFSD). We give a simple
technique to diversify the LF substructures (atoms
and compounds) in the instances. At gth iteration,
let D!\ = Ug;ll ﬁ; denotes all the translated ex-
amples and DY = D?! be the untranslated ones.
We partition their union D U D! into |D| + K,
clusters with Incremental K-means (Dataiku Lab,
2022). Each example e; = (x5, y) is featurized by
extracting all the atoms and compounds in the LF
tree 7y, followed by calculating the TF-IDF (Salton
and McGill, 1986) value for each atom and com-
pound. Incremental K-means considers each ex-
ample of D' as a fixed clustering centroids and



estimates K, new cluster centroids. For each of the
K, new clusters, we select one example closest to
the centroid.

Such selection strategy is reformulated as se-
lecting K, examples with the highest acquisition
scores one by one at each iteration:
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where f(-) is the feature function, m(-) maps each
LF into its cluster id and ¢; is the center embedding
of the cluster ¢. As in Algo. 1, when a new example
is chosen, none of its cluster mates will be selected
again. The incremental mechanism guarantees the
newly selected examples are structurally different
from those chosen in previous iterations. Since we
use batch-wise AL, we just estimate the clusters
once per iteration to save the estimation cost.
Lexical Choice Diversity (LCD). LCD aims to
select examples whose LFs are aligned with the
most diversified lexicons. We achieve this goal
by choosing the example maximizing the average
entropy of the conditional probability p(xs|a):
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where a is the atom/compound, A, is the set of
all atoms/compounds extracted from y, V; is the
vocabulary of the source language, A; is the set
of atoms/compounds in all selected examples until
now, and p(zs|a) is constructed by counting the co-
occurrence of a and x; in the source-language train-
ing set. To prevent selecting structurally similar
LFs, the score of each selected atom or compound
is penalized by a decay weight 3.

Our intuition has two premises. First, the parser

trained on example pairs whose LFs have more lex-
ical choices generalizes better. Second, LFs with
more source-language lexical choices will have
more target-language lexical choices as well.
LF Structure and Lexical Choice Diversity (LFS-
LC-D). We eventually aggregate the two terms to
get their joint benefits, ¢(xs,y) = ags(xs,y) +
¢c(xs,y), where « is the weight that balances the
importance of two terms. We normalize the two
terms using quantile normalization (Bolstad et al.,
2003) in order to conveniently tune a.

Hyperparameter Tuning. Because our setup is
unique, we can not copy hyperparameters from ex-
isting works. The other efforts (Duong et al., 2018)
get hyperparameters by evaluating algorithms on
seed annotated data. To tune our AL hyperparam-
eters, o and (3, a straightforward practice using
seed data is to sample multiple sets of examples
from the source-language data, the target-language
counterparts of which are in seed data, by varying
different hyperparameter configurations and reveal
their translations in the target language, respec-
tively. The parser is trained on different bilingual
datasets and evaluated on the rarget-side dev set.
We use the one, which results in the best parsing
performance, as the experimental configuration.

Such a method still requires translation costs on
the seed data. We assume if the selected examples
help the parser generalize well in parsing source-
language utterances, their translations should ben-
efit the parser in parsing target languages. Given
this assumption, we propose a novel cost-free hy-
perparameter tuning approach. First, we acquire
different sets of source-language samples by vary-
ing hyperparameters. Then, we train the parser on
each subset and evaluate the parser on the source-
side dev set. Finally, we use the hyperparameters
with the best dev set performance.

4 Experiments

Datasets. We experiment with multilingual GEO-
QUERY and NLMAP. GEOQUERY utterances are
in English (EN), German (DE), Thai (TH), and
Greek (EL); NLMAP utterances are in English and
German. Neither corpora include a development
set, so we use 20% of the training sets of GEO-
QUERY and NLMAP in each language as the de-
velopment sets for tuning the hyperparameters. To
simulate AL process, we consider English as the
resource-rich language and others as the target lan-
guages. After the examples are selected from the
English datasets, we reveal their translations in the
target languages and add them to the training sets.
AL Setting. We perform six iterations, accumula-
tively selecting 1%, 2%, 4%, 8%, 16% and 32% of
examples from English GEOQUERY and NLMAP.
Baselines. We compare four selection baselines
and the oracle setting: 1) Random picks En-
glish utterances randomly to be translated, ii) S2S
(FW) (Duong et al., 2018) selects examples with
the lowest parser confidence on their LFs, iii)
CSSE (Hu and Neubig, 2021) selects the most rep-



resentative and diversified utterances for machine
translation, iv) Max Compound (Oren et al., 2021)
selects examples that diversify the atoms and com-
pounds in the LFs, v) ORACLE trains the parser on
the full bilingual training set.

Evaluation. We adopt the exact match accuracy
of LFs for all the experiments. We only report the
parser accuracy on the target languages as we found
the influence of new data is negligible to the parser
accuracy on English data (See Appendix A.2).
Base Parser. We employ BERT-LSTM (Morad-
shahi et al., 2020) as our multilingual parser. Please
see Appendix A.1 for its detailed description.

4.1 Hyperparameter Tuning

Table 1 displays the experiment results with the hy-
perparameters tuned using only English data (EN)
and the hyperparameters tuned using seed data on
i) English data plus a small subset (10% of train
data plus development data) in the target language
(EN + 10%), ii) the full bilingual data (EN + full),
iii) the same dataset in a different pair of languages
from our experiment languages (Diff Lang), iv)
a different dataset in the same languages as our
experiment (Diff Data).

GEOQUERY NLMAP
DE TH EL DE
EN (Ours) 73.86 74.57 7757 6943
EN+10% 7386 74.57 77.57 69.02
EN+full 73.86 7457 77.14 6943
Diff Lang 73.86 74.04 77.57 -
Diff Data  71.36 - 67.72

Table 1: The parsing accuracies on GEOQUERY and
NLMAP test sets in various target languages after trans-
lating 16% of the English examples selected by LFS-
LC-D with the optimal hyperparameters obtained by
different tuning approaches.

From Table 1, we can see our approach takes sig-
nificantly fewer annotation resources than others
to find optimum hyperparameters. Adding more
target-language data does not help obtain better
hyperparameters, validating our assumption that
English data is enough for LFS-LC-D to obtain
good hyperparameters. Surprisingly, the hyperpa-
rameters tuned on a different language pair do not
significantly worsen the selection choices. How-
ever, tuning hyperparameters from other datasets
results in inferior parsing performance, which is
anticipated as different datasets include different
LFs, but the performance of LES-LC-D is closely
related to the LF structures.

4.2 Active Learning Results

Effectiveness of AL-MSP. Fig. 2 shows that only
a small amount of target-language data signif-
icantly improves the parsing performance over
the zero-shot performance. For example, merely
1% of training data improves the parsing accura-
cies by up to 13%, 12%, 15% and 6% on GEO-
QUERY(DE), GEOQUERY(TH), GEOQUERY(EL)
and NLMAP(DE), respectively. With the best se-
lection approach LFS-LC-D, translating 32% of
instances yields parsing accuracies on multilingual
GEOQUERY and NLMAP that are comparable to
translating the whole dataset, with an accuracy gap
of less than 5%, showing that our AL-MSP might
greatly minimize the translation effort.
Effectiveness of LFS-LC-D. LFS-LC-D consis-
tently outperforms alternative baselines on both
multilingual datasets when the sampling rate is
lower than 32%. In contrast, S2S(FW) consis-
tently yields worse parser performance than the
other baselines. Our inspection reveals that the
parser is confident in instances with similar LFs.
MAX COMPOUND diversifies LF structures as
LFS-LC-D, however it does not perform well on
GEOQUERY(TH). CSSE diversifies utterances yet
performs poorly. We hypothesize that diversifying
LF structures is more advantageous to the semantic
parser than diversifying utterances. RANDOM also
performs consistently across all settings but at a
lesser level than LFS-LC-D.

Individual Terms of LFS-LC-D. We also inspect
each individual term, LFSD and LCD, in LFS-
LC-D. As in Fig. 3, both terms have overall lower
performance than LFS-LC-D, indicating the com-
bination of two terms is necessary. Specifically,
LFSD performs poorly on NLMAP at the low sam-
pling region. We inspect that NLMAP includes 5x
more compounds than GEOQUERY. Therefore, it is
difficult for the small number of chosen examples
to encompass all types of compounds. LCD per-
forms poorly on GEOQUERY(TH). We notice that
Thai is an analytic language linguistically distinct
from English, German or Greek, so the entropy
values of the probability p(xs|a) over lexicons in
Thai (p=0.03) is statistically more different to the
ones over English than German (p=5.80e-30), and
Greek (p:1.4le—30)1. Overall, the two terms could
benefit each other, so LFS-LC-D performs steadily
across different settings.

Comparison with Machine Translation. We also

"We use the Student’s t-test (Demsar, 2006).
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Figure 2: The parsing accuracies at different iterations on the test sets of GEOQUERY and NLMAP in German (De),
Thai (Th), and Greek (El) using different selection approaches. All experiments are run five times with different

seeds.
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Figure 3: The parsing accuracies at different iterations on the test sets of GEOQUERY and NLMAP in German (De),
Thai (Th) and Greek (El) using LFSD, LCD, and LFS-LC-D, respectively.

evaluate the parsers that utilize machine transla-
tion services. The parsers are trained on a com-
bination of English data and data translated into
the target language by Google Translation (Wu
et al., 2016). The accuracy of parsers evaluated
on test sets of Geo(De), Geo(Th), Geo(El), and
NIMap(De) was 49%, 58%, 75%, and 75%, re-
spectively. These parsing accuracies are signifi-
cantly lower than those attained by parsers trained
on data provided through human translation, which
achieved 80%, 80%, 81%, and 83%, respectively.
This suggests that the performance of the parser
is tightly correlated to the quality of the employed
machine translation system. Clearly, human trans-
lation delivers a greater output quality compared
to machine translation. In addition, the results re-
veal that parsers employing AL methods can easily
outperform those employing machine translation
methods, particularly when the sampling rate for
AL is more than 1%, 4%, 8%, and 32% in the four
data settings.

5 Conclusion

We conducted the first in-depth empirical study to
investigate active learning for multilingual seman-
tic parsing. In addition, we proposed a method to
select examples that maximize MSP performance
and a cost-free hyperparameter tuning method.

Our experiments showed that our method with
the proper hyperparameters selects better examples
than the other baselines. Our AL procedure with
the ideal example selection significantly reduced
the translation effort for the data collection of MSP.

Limitations

To reduce annotation costs, existing data collec-
tion methods for MSP also utilize machine trans-
lation (Moradshahi et al., 2020). Despite the gen-
erally lower quality of machine-generated transla-
tions compared to human translations, the cost of
machine translation services is notably more eco-
nomical. Our study pioneers the investigation into
the feasibility of reducing annotation costs by man-
ually translating only selective portions of the utter-
ance pool. In our work, we provide an initial eval-
uation of parsers using machine translation versus
those using AL methods. Further research is nec-
essary to thoroughly compare these cost-reduction
approaches, highlighting their respective advan-
tages and limitations, which we intend to pursue as
part of our future work.
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A Appendix

A.1 Implementation Details

BERT-LSTM BERT-LSTM is a Sequence-to-
Sequence model (Sutskever et al., 2014) with the
XLM-RoBERTa-base (Liu et al., 2019) as its en-
coder and an LSTM (Hochreiter and Schmidhuber,
1997) as its decoder.

Hyperparameters of the Parsers We tune the
hyperparameters of BERT-LSTM on English data.
For a fair comparison, we fix the hyperparameters
of the parser while evaluating the active learning
methods. Specifically, we set the learning rate to
0.001, batch size to 128, LSTM decoder layers to 2,
embedding size for the LF token to 256, and epochs
to 240 and 120 for the training on GEOQUERY and
NLMAP, respectively.

Hyperparameters of ALL  For tuning the hyper-
parameters of the active learning method, we grid
search the decay weight 5 in 0, 0.25, 0.5, 0.75 and
the weight balance rate o in 0.25, 0.5, 0.75, 1. The
optimal hyperparameters are 0.75 and 0.75 for all
language pairs of GEOQUERY and 0.75 and 0.25
for multilingual NLMAP.

In the Diff Lang setting, we assume we can ac-
cess the data in a language pair other than the exper-
imental one. For selecting English utterances to be
translated into German, Thai, and Greek, we tune
the hyperparameters on the data of En-Th, En-EL,
and En-De pairs, respectively.

In the Diff Data setting, we assume we can ac-
cess the data in the same language pair as our ex-
perimental one but in a different domain with a
different type of LF. For selecting English utter-
ances in GEOQUERY for translation, we tune the
hyperparameters on the bilingual NLMAP. For
selecting utterances in NLMAP, we tune the hy-
perparameters on the GEOQUERY in the language
pair, En-De.

A.2 Parser Accuracies on English Test Sets

As in Fig. 4, training the parser on the data in
the target language does not significantly influence
the parser’s performance on the English test sets.
Therefore, in Sec. 4, we only report the experimen-
tal results on the test sets in the target languages.
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Figure 4: The parsing accuracies at different iterations
on the English test sets of GEOQUERY and NLMAP af-
ter selecting data in German (De), Thai (Th) and Greek
(ED) using LFS-LC-D, respectively.



