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Abstract

Accounting for different degrees of formality
is crucial for producing contextually appropri-
ate language. To assist NLP applications con-
cerned with this problem and formality anal-
ysis in general, we present the first dataset
of sentences from a wide range of genres as-
sessed on a continuous informal-formal scale
via comparative judgments. It is the first corpus
with a comprehensive perspective on German
sentence-level formality overall. We compare
machine learning models for formality scoring,
a task we treat as a regression problem, on our
dataset. Finally, we investigate the relation be-
tween sentence- and document-level formality
and evaluate leveraging sentence-based annota-
tions for assessing formality on documents.

1 Introduction

Textual style can be approached from various
points of view. We focus on its inherent formality
dimension stretching from informal to formal lan-
guage use. See these two sentences, for example:
(1) We gave thorough thought to an adequate example.
Wir haben griindlich iiber ein addquates
Beispiel nachgedacht.
(2) racked our brains about a niiice example... :D
haben uns den kopf iiber ein schooones
beispiel zermartert... :D

While both sentences transport the same content,
they differ in their degree of formality. (2) is less
formal than (1). It may be suitable only for more
informal discourse contexts and inappropriate in
formal settings. Understanding these different nu-
ances of formality is crucial for effective commu-
nication. Consequently, striking the right tone is
relevant not only for humans but also for various
NLP applications. May it be machine translation in
need to transfer expressions of formality between
different languages adequately (Niu and Carpuat,
2020; Anastasopoulos et al., 2022), chatbots aim-
ing to produce contextually appropriate language
to increase user satisfaction (Chaves et al., 2019;

Elsholz et al., 2019), or writing assistance systems
altering content to be more formal (Saberi et al.,
2020). Hence, intra-lingual formality style transfer,
which deals with generating a formal phrase given
its informal version and vice versa, has recently
also received increased attention (e.g., Shang et al.,
2019 or Zhang et al., 2020).

Our paper addresses a prerequisite for this task:
assessing linguistic formality. Rating the trans-
ferred style strength is necessary for evaluating
formality style transfer models. Further, parallel
corpora with formal and informal language pairs,
often the basis for style transfer, are commonly
built by automatically grading and extracting in-
formal sentences first (Rao and Tetreault, 2018;
Briakou et al., 2021b). For facilitating such formal-
ity assessments and analyzing linguistic formality
in general, we make the following contributions:

1. We present the first dataset of sentences
from a wide range of genres with human formal-
ity assessments on a continuous informal-formal
scale. We ensure a comprehensive perspective on
formality by collecting sentences from diverse do-
mains. Formality annotations are obtained via a
comparative annotation variant (annotators com-
pare items to each other), which is not only more
reliable than the rating scale method (Kiritchenko
and Mohammad, 2017) but also satisfies the princi-
ple that a “continuum of formality” (Heylighen and
Dewaele, 1999) exists rather than categorical dis-
tinctions. The dataset is the first to target German
sentence-level formality unrestrictedly overall.

2. We evaluate several machine learning mod-
els for formality scoring on our dataset, which we
treat as a regression task. Regression models have
been found to be more suitable than classifiers for
evaluating formality style transfer models since
they grasp the broad spectrum of linguistic formal-
ity (Briakou et al., 2021a). Besides fine-tuning
transformers on our dataset, we examine utiliz-
ing formality-informed corpora from different lan-
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guages with coarser or narrower representations
of formality. Further, we employ feature-based
approaches for formality scoring and analyze lin-
guistic properties that constitute formality. For
such analyses, we provide a tool with a variety of
features for profiling characteristics of registers,
genres, and author styles for various languages.

3. We investigate the applicability of sen-
tence-level formality annotations for the formal-
ity assessment of documents. Lately, Jin et al.
(2022) proposed extending formality style trans-
fer, which so far exclusively focuses on the sen-
tence level, to stylistically more complex docu-
ments. However, datasets targeting formality on
this scope are rare and limited in size, probably
because obtaining annotations is more expensive.
Therefore, we analyze how sentence formality con-
tributes to the formality of documents.

2 Related Work

With their continuous formality score based on fre-
quencies of parts of speech, Heylighen and De-
waele (1999) established a milestone for the defini-
tion of formality. Lahiri et al. (2011) adapted this
measure from the document to the sentence level.
Most approaches targeting the lexical dimension
of formality also regarded formality as a contin-
uum (Brooke et al., 2010; Brooke and Hirst, 2014;
Pavlick and Nenkova, 2015; Eder et al., 2021).

To the best of our knowledge, datasets compris-
ing sentences with human formality assessments on
a continuous informal-formal scale have not been
constructed before. Pavlick and Tetreault (2016)
built an English dataset collecting formality an-
notations on a 7-point Likert scale for sentences
from only four sources (compared to the twelve in
our dataset). They introduced formality detection
as a regression task using features based on ana-
lyzing human perceptions of formality for a ridge
regression model. Other datasets targeting sen-
tence-level formality have binary labels since they
primarily serve as parallel data for formality style
transfer and contain formal and informal language
pairs. They cover English (Rao and Tetreault, 2018;
Cheng et al., 2020), Brazilian Portuguese, French
and Italian (Briakou et al., 2021b), and Hindi, Ben-
gali, Kannada and Telugu (Krishna et al., 2022).

Work on formality style transfer mainly used
classification for measuring style strength and a
handful of different classifiers (e.g., Lai et al.
(2021) employed a CNN, Wang et al. (2019) an

LSTM, and Krishna et al. (2020) transformers).
Evaluating the style strength as a regression task,
Rao and Tetreault (2018) borrowed the approach
from Pavlick and Tetreault (2016), and Briakou
et al. (2021b) relied on fine-tuning transformers.

For the German language, not yet considered
for intra-lingual formality style transfer, two sen-
tence collections with binary formality annotations
based on formal and informal direct address ex-
ist (Faruqui and Pado6, 2012; Nadejde et al., 2022).
(Since these formality levels do not exist in English,
they pose a problem for machine translation (Nade-
jde et al., 2022).) Hence, these datasets target a
very constrained view of formality only.

Focusing on the document level, several works
used traditional machine learning models for bi-
nary formality classification based on linguistic
features. As training data, Abu Sheikha and Inkpen
(2010) assumed binary labels for formality from
the text genre, and Peterson et al. (2011) manually
annotated emails from the English ENRON corpus
(Klimt and Yang, 2004) with four formality classes.
Treating formality assessment on documents as a
regression task, Chhaya et al. (2018) employed lin-
guistic features for formality scoring on ENRON
emails, which have been rated on a 5-point Likert
scale, whereas Eder et al. (2021) evaluated word
formality scoring on emails from the German cor-
pus CodE Alltag (Eder et al., 2020) based on contin-
uous formality annotations. All these manually la-
beled document collections are small in size (~1k)
and built from a single domain only, i.e., emails.
None of these works leverages formality-annotated
sentences nor fine-tunes transformer models to as-
sess the formality of documents.

3 Data

To build our dataset, we collected 3,000 German
(DE) sentences from different domains and let
crowdworkers assess their formality on a continu-
ous formality scale via comparative annotations.

3.1 Collecting Sentences

We chose twelve different text sources, which we
assumed to be related to diverse levels of formality,
to cover the broad spectrum of linguistic formality
best possible. From each source, we took 250 sen-
tences. We picked these sentences randomly, but
they had to consist of at least one word. Addition-
ally, we attempted to enhance language variety by
selecting a minimum number of sentences per au-
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thor. We also tried spreading the data over different
topics whenever such information was available.

We utilized the following sources:

Tweets. We rehydrated tweets from a German
Twitter snapshot (Scheffler, 2014).

Reddit. We extracted posts from the GeRedE
corpus, which contains German communication on
Reddit (Blombach et al., 2020).

Subtitles. To account for spoken language, we
included German sentences from the OpenSubtitles
collection of parallel corpora with movie and TV
subtitles (Lison and Tiedemann, 2016).

Comments. 250 sentences were collected from
the One Million Posts Corpus, which comprises
comments on news articles (Schabus et al., 2017).

Emails. We took sentences from CodE Alltag, a
corpus with German emails (Eder et al., 2020).

Blogs. Using the DWDS platform (Geyken et al.,
2017), we obtained sentences from a blog corpus
(Barbaresi and Wiirzner, 2014).

Fiction. Due to the lack of accessible corpora
covering contemporary fictional texts, we reverted
to an archive that, besides fan fiction, contains orig-
inal work from nonprofessional writers.”> We ex-
tracted 250 sentences from their short stories.

News. We gathered sentences from the German
news corpus from 2020 provided in the Leipzig
Corpora Collection (Goldhahn et al., 2012).

Wikipedia. From the Leipzig Corpora Collec-
tion, we also used sentences from the German
Wikipedia corpus from 2021.

Political. For potentially more formal spoken
language examples, we extracted sentences from
German political speeches that are included in the
parallel corpus EuroParl (Koehn, 2005).

Legal. We gained sentences from the legal do-
main by utilizing a dataset with German court deci-
sions (Leitner et al., 2019).

Science. We used Springer Link® to manually
collect sentences from scientific journals, proceed-
ings, and books published between 2000 and 2022
under open access.

3.2 Human Assessment

We gathered human formality assessments for the
resulting 3,000 sentences using Best-worst scaling
(BWS) (Louviere et al., 2015), a form of compar-
ative annotation. BWS delivers more reliable an-

'For some corpora, we subsumed subreddits, blogs, genres,
or articles, to which comments refer, in place of topic.

2https://www.fanfiktion.de/
3https://link. springer.com/

notations than the rating scale method mitigating
issues such as a scale region bias or inconsistent
annotations (Kiritchenko and Mohammad, 2017).
Further, it complies with the notion of formality as
a continuum (Heylighen and Dewaele, 1999).

For BWS, annotators are presented with n items
at a time (typically n = 4). They have to decide
which item from the n-tuple is the best and which is
the worst (i.e., the highest and the lowest regarding
the property of interest). To get real-valued scores
from these BWS annotations, the percentage of
times the term is chosen as worst is subtracted from
the percentage of times the term is chosen as best
(Counts Analysis (Orme, 2009)). Thus, each item
receives a score between +1 (most formal) and —1
(most informal).

We randomly generated 2N 4-tuples (where N
denotes the number of sentences) under the premise
that each term occurs only once in eight different
tuples and each tuple is unique.* For the annota-
tion process proper, we chose crowdsourcing to
ensure the heterogeneity of annotators. Using the
crowdsourcing platform Clickworker®, German na-
tive speakers assessed each of the 6,000 tuples five
times. Thus, we collected 30,000 annotations from
1,084 different annotators, with an average of 27.7
annotations per annotator.

All five annotators agreed in 19% of the annota-
tions. In two-thirds, three or four annotators chose
the same item, while only in 15% just two of the an-
swers matched. The higher the difference between
the real-valued formality scores of two sentences,
the higher the agreement of the crowdworkers. For
a score difference of just 0.1, the agreement is 64%.
It rises to over 70% for higher score differences,
with over 80% for differences higher than 0.4 and
at least 90% for differences over 0.7.

We computed the split-half reliability* for our
formality-assessed dataset by randomly splitting
the annotations of a tuple into two halves, calcu-
lating scores independently for these halves, and
measuring the correlation between the resulting
two sets of scores. We got an average Spearman’s
p of 0.919 (4+0.002) over 100 trials, which indi-
cates a high reliability of the annotations.

3.3 The Final Dataset

Figure 1 displays the distribution of human-as-
sessed formality scores for each of the twelve

*We employed scripts developed for emotion scaling by
Kiritchenko and Mohammad (2016, 2017).
5https: //www.clickworker.de
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Figure 1: Distribution of formality scores for our 3,000
sentences per each of the twelve sources ordered by the
average formality score of the source.

sources of the 3,000 sentences in our dataset. As
expected, sentences from online communication
or sources with more spontaneous language use,
e.g., tweets or comments, tend to be linked to lower
scores, while sentences with more elaborated lan-
guage use, €.g., legal or scientific texts, have higher
scores. However, sources scatter broadly, and as-
suming the same degree of formality per genre
seems inappropriate.
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Figure 2: Averages of simple linguistic characteristics
(scaled to a range between 0 and 1) of sentences for
each source; sources ordered by their mean formality.

In Figure 2, we plot some simple linguistic fea-
tures, which have been studied in relation to for-
mality (Heylighen and Dewaele, 1999; Pavlick and
Tetreault, 2016, i.a.) for each source. The mean
word formality, token length, sentence length and
parse tree height rise for sources with higher av-

erage sentence formality scores. The proportion
of punctuation characters tends to sink, whereas
the ratios of upper- or lower-case tokens are more
stable. Heylighen and Dewaele’s (1999) F-score in-
dicates a higher formality and the readability score
Flesch Reading Ease (Flesch, 1948) signals a lower
readability for sources with higher mean formality.
In the following, we explore such properties for
scoring the formality of the individual sentences.

4 Formality Scoring on Sentences

We compared different models for predicting for-
mality scores for sentences on our dataset.

4.1 Within-Dataset Experiments

Transformers. We experimented with fine-tuning
transformer models on our dataset. For that, we em-
ployed GBERT-base (Chan et al., 2020), a German
BERT language model.® For all transformer-based
experiments, we used the NLP library FLAIR (Ak-
bik et al., 2019) as a framework.

Feature-based Models. We evaluated two
feature-based models, which allowed us to ex-
amine the influence of linguistic characteristics
more directly. The first ridge regression model em-
ploys eleven different feature groups and was devel-
oped for scoring the formality of English sentences
(Pavlick and Tetreault, 2016). The second was cre-
ated for English documents, more precisely emails
(Chhaya et al., 2018). It borrows features from the
first model and extends them with affect-based fea-
tures. We adapted these feature sets to German and
adjusted them to work on sentences and documents.
We also employed a ridge regression model. Table
5 in the Appendix contains a detailed breakdown
of the features we implemented.

4.2 Cross-Dataset Experiments

Learning from Other Languages. We examined
using English sentences with formality scores de-
termined via averaging over individual annotations
on a 7-point Likert scale (Pavlick and Tetreault,
2016). This dataset (PT16 in the following) con-
tains about 11k sentences from four sources: news
and blogs from Lahiri (2015) extended by emails
and Q&A sites. We evaluated three different set-
tings. We fine-tuned GBERT-base transformers
on PT16 translated to German and tested them on

%Other German transformers (Chan et al., 2020; Minix-
hofer et al., 2022) either yielded no significant difference or
performed worse (see Table 3 in the Appendix).
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Training | Testing | Model | Spearman’s p |
ours (de) ours (de) | GBERT 0.919 (£0.009)
ours (de) ours (de) | feature-based (~ Pavlick and Tetreault, 2016) | 0.857* (+0.007)

., | ours (de) ., | ours (de) | feature-based (~ Chhaya et al., 2018) 0.830* (£0.018)
§ PT16 (de) § ours (de) | GBERT 0.877* (£0.018)
S | PT16 (en) S | ours (de) | XLM-RoBERTa 0.847* (£0.017)
§ | PT16 (en) § | ours (en) | BERT 0.844* (££0.022)
XFORMAL (br-pt+fr-+it) ours (de) | XLM-RoBERTa 0.768* (£0.020)
GYAFC (en) ours (de) | XLM-RoBERTa 0.716* (£0.023)
FP12 (de) ours (de) | GBERT 0.595* (£0.042)

Table 1: Evaluation of different models for formality scoring on our sentences; ‘*’ stands for a statistically significant
difference of p < 0.005 with respect to best model (using two-sided Wilcoxon signed-rank test on Spearman’s p);
language(s) of datasets in brackets, translated data underlined.

our dataset. Consequently, we utilized BERT-base
(Devlin et al., 2019) for fine-tuning on the original
English PT16 and testing on the English translation
of our dataset. Further, we fine-tuned multilingual
XLM-RoBERTa-base transformers (Conneau et al.,
2020) on the English PT16 and tested them on our
German sentences. For the translations in both
directions, we employed the models from Edunov
et al. (2018) via the fairseq toolkit (Ott et al., 2019).

Formality Classifiers. Since there are huge
datasets with binary formality annotations, we eval-
uated binary formality classifiers leveraging these
data. We used the probability of the class deter-
mined by the classifiers as a prediction of a for-
mality score. For the informal class, we took the
probability as a negative number, thus ending up
with scores from —1 to +1. Lacking more com-
prehensive German data, we experimented with a
dataset from Faruqui and Padé (2012) that com-
prises 60k German sentences with binary formality
annotations based only on formal and informal di-
rect address (unmarked in English yet explicitly
marked in German). We fine-tuned GBERT on this
dataset, FP12 in the following, for binary classifi-
cation. As FPI2 is limited to this particular case
of formality, we further utilized parallel datasets
with formal and informal language pairs from lan-
guages other than German. These parallel datasets,
containing informal sentences from a Q&A forum
and their formal rewrites, are GYAFC with 110k
English sentences (Rao and Tetreault, 2018) and
XFORMAL with 23k Brazilian Portuguese, French
and Italian sentences (Briakou et al., 2021b). We
employed binary XLM-RoBERTa-based classifiers
fine-tuned on GYAFC” and XFORMALS.

7https ://github.com/martiansideofthemoon/
style-transfer-paraphrase (Krishna et al., 2020)

8https://huggingface.co/SkolkovoInstitute/
xImr_formality_classifier

4.3 Evaluation

Table 1 reports the average Spearman’s p for the
different setups. Evaluated in a 10-fold cross-val-
idation manner, the two feature-based models
yielded high results. To explore their relation to for-
mality, Figure 3 shows several linguistic features
used by these models per the formality score of the
sentences. While sentiment seems to be a relatively
constant feature across the formality scale, other
factors correlate better with formality. The punc-
tuation ratio and the Flesch readability score tend
to sink, whereas word formality, token length, con-
stituency tree height, and the number of tokens rise
with increasing sentence formality. According to
SHAP (Lundberg and Lee, 2017)°, among the most
important features of the approach by Chhaya et al.
(2018) are indeed the sentence length, the average
word formality, the Flesch score and the average
token length (already achieving 0.8 Spearman’s p
on their own). This shows that such simple linguis-
tic properties are good indicators of formality, at
least at the sentence level.

—— Avg. Word Formality
o —=- Avg. Token Length
! L Sentence Length
--=- Flesch Reading Ease
e Parse Tree Height
., Punctuation
‘V\‘»' Sentiment

084 7 Y/ P, e,
X

o
o

Scaled Value
o
~

0.2

004

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Sentence Formality Score

Figure 3: Relation between several linguistic features
(scaled values) and the formality scores of the sentences.

9SHAP is a game theoretic approach that facilitates inter-
preting predictions of machine learning models.
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However, fine-tuning transformers significantly
outperformed the feature-based approaches (Table
1). In Figure 4, we plot the predictions of GBERT
transformers fine-tuned on our dataset versus the
human-assessed formality scores. The errors are
lower on both ends of the scale. Sentences nearer to
the scale’s middle are more difficult to predict for
the model since they carry fewer linguistic markers
than sentences with extreme (in)formality scores.
But in general, predictions are relatively accurate.

0.75 A

0.50 -

0.25 -

0.00 -

—0.25 A

Predicted Formality Score

—0.50 -

—0.75 A

T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
True Formality Score

Figure 4: Predictions of the best model versus gold for-
mality scores (brighter colors mean higher predictions).

Table 1 also shows that from the settings uti-
lizing the PT16 dataset, the model fine-tuned on
PT16 translated to German performed best. The
formalization effect of machine translation (infor-
mal sentences get more formal through translation
(Briakou et al., 2021b)) seems to influence the mod-
els using translated data since they tended to predict
higher formality scores, especially for more neutral
sentences. However, the results indicate that this
is less critical when compared to the cross-lingual
regression model fine-tuned on English and tested
on German data. Contrasted to fine-tuning and
testing on our dataset, the P716 models were still
significantly worse, although PT16 comprises over
three times more sentences than our dataset. This
may also be ascribed to its narrower scale of for-
mality. PT16 models tended to yield lower results
on more formal domains of our dataset (science,
legal and Wikipedia). Scoring these genres seems
more challenging for those models since news, the
most formal source in PT16 (Pavlick and Tetreault,
2016), has only the fifth-highest average formality
score in our dataset (see Figure 1).

The probabilities for being either formal or infor-
mal from the binary formality classifiers fine-tuned
on GYAFC and XFORMAL in a cross-lingual set-

300 - formal prediction
minformal prediction

.

o

S
L

Number of Sentences

-1.0-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10.0 010203 04 0.5 0.6 0.7 0.8 0.9 1.0
Formality Score Bin

Figure 5: Formal and informal predictions of the
GYAFC model per formality score bin of our sentences.

ting also showed a correlation to the human assess-
ments (Table 1). However, these models performed
worse than regression models. Figure 5 exempli-
fies the class predictions of the binary formality
classifier fine-tuned on GYAFC per formality score
bin (formality scores rounded to one decimal place)
on our dataset. It shows that sentences with lower
formality scores tended to be classified as informal
and sentences with higher scores as formal. How-
ever, formal and informal sentences were predicted
in nearly every formality score bin. From that, we
infer that a binary separation of formality into for-
mal and informal sentences is not reasonable.

25

formal address (Sie)
® informal address (du, Du)

= = 8}
=] [ =}
L L L

Number of Sentences

o
L

-1.0-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10.0 0.1 0.20.3 04 05 0.6 0.7 0.8 0.9 1.0
Formality Score Bin

Figure 6: Distribution of formality scores of sentences
with formal and informal address.

The monolingual binary classifier fine-tuned on
FP12, which includes only formal and informal
address sentences, performed significantly worse
than all other setups. Figure 6 shows the number
of sentences with formal and informal address in
our dataset (only 137 in total) per formality score
bin. Although they lean towards the lower end,
even these sentences scatter broadly over the for-
mality scale (average formality scores are —0.10
(£0.30) for formal and —0.36 (40.25) for infor-
mal address). Formality is not only expressed via
these different forms of address. (3) shows a sen-
tence from our dataset with formal address but a
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[ Training [ Testing | Model | Spearman’s p |

~< | E21(de) E21 (de) | GBERT 0.891 (40.059)

| ours (de) E21 (de) | GBERT 0.847 (£0.028)
§ ours (de) E21 (de) | feature-based (~ Pavlick and Tetreault, 2016) | 0.686%* (£0.039)
“ ours (de) *E E21 (de) | feature-based (~ Chhaya et al., 2018) 0.603* (4+0.095)
~ | C18 (en) § C18 (en) | BERT 0.827 (+0.041)
% | ours (en) § CI8 (en) | BERT 0.729* (£0.059)
N ours (de) < | C18 (en) | XLM-RoBERTa 0.703* (4+0.054)
§ ours (de) C18 (de) | GBERT 0.674* (+0.054)
$ | PTI16 (en) C18 (en) | BERT 0.603* (+0.063)

Table 2: Results for formality scoring on documents; statistically significant differences (calculated with the
two-sided Wilcoxon signed-rank test) are marked with “*’ for p < 0.005 with respect to the best models; language(s)

of datasets in brackets, translated data underlined.

low formality score because of other indicators.
Consequently, formality is a much broader concept,
and restricting it to this use case is insufficient for
comprehensive formality analysis.

(3) Wollen Sie format address nicht reinguckenin formai?
Don’t you want to have a look?

5 Formality Scoring on Documents

Documents may assemble an even more diverse
range of clues for degrees of formality than sen-
tences. Only recently, Jin et al. (2022) proposed
extending style transfer to the more complex doc-
ument level, but manual formality annotations
of documents are more expensive to obtain than
sentence-level assessments. Therefore, this section
investigates how single sentences and linguistic
properties contribute to the overall document for-
mality. We examine if sentence-level formality
annotations are useful for assessing formality on
documents.

5.1 Evaluation on German Documents

We conducted experiments and analyses on Ger-
man documents. For that, we utilized 800 emails
with continuous formality scores (Eder et al., 2021).
Sentences from emails show the highest standard
deviation of formality of all domains in our dataset
and the corpus from Pavlick and Tetreault (2016).
Thus they possess a high stylistic variability. We
denote the dataset E21 in the following.

We compared transformers and feature-based
approaches trained on our formality-informed sen-
tences with transformer models fine-tuned on E2/
for predicting formality on this document collec-
tion. The upper half of Table 2 presents the aver-
age Spearman’s p for these models. Fine-tuning
GBERT on E2] itself (10-fold cross-validation)
performed best, but there is no statistically signifi-
cant difference between utilizing the documents

or our formality-assessed sentences as training
data. The transformer models grasped the con-
cept of formality more comprehensively since the
feature-based ridge regression models yielded sig-
nificantly worse results. It seems that linguistic
features do not generalize well. Figure 7 shows
some of the most predictive linguistic features for
formality scoring on the sentence level for the doc-
uments. The average word formality and the Flesch
Reading Ease correlate with document formality
in a similar way than with sentence formality (Fig-
ure 3). However, the average sentence length and
average token length are comparably more static
across the formality scale of documents and thus
less suitable features.

\
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Figure 7: Linguistic characteristics (scaled values) of
the documents per their formality scores.

To further understand how the formality of a
document is affected by its sentences, we split the
documents of E2/ into separate sentences. Then,
we ran the GBERT model fine-tuned on our dataset
on these sentences to determine their formality.
Taking the average of the calculated scores as
document score still returned a Spearman’s p of
0.801. Although this result is significantly worse
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(p < 0.01) than running the model on the docu-
ments directly, it still shows a strong correlation
between the scores of the sentences and the docu-
ment formality score. In Figure 8, we plot the num-
ber of sentences per calculated formality score bin
for each formality score bin of the corresponding
documents. The sentence and document formal-
ity scores show some overlap. Nevertheless, the
sentences in the documents have quite a range of
formality scores.

Predicted Sentence Formality Score
OCO0OO0O0O00O00COCO0OO0
WNFHFOFEFNWRU OO
[ T T T A R

()] o] =
o o (=]
o

-0.8 - -20

Figure 8: Frequency of calculated formality scores of
sentences per formality score bin of documents.

How the formality of sentences changes through-
out a document is shown in Figure 9, which depicts
the mean sentence formality by position in the doc-
uments. The formality tends to decrease with in-
creasing position in the text. This observation is in
line with the assumption of Heylighen and Dewaele
(1999) that formality is higher at the beginning of
a text because of the lack of previous discourse to
relate to. For threaded online discussions, Pavlick
and Tetreault (2016) reported congruent findings.

—0.10 A

—0.15 A

—0.20 -

—0.25 A

Avg. Sentence Formality Score

—0.30 -

—0.35 A

1 2 3 4 5 6 7 8 9 10
Scaled Sentence Position

Figure 9: Average sentence formality score by position
in documents; sentence positions are scaled to ten bins.

Concluding, fine-tuning transformers on sen-
tences is applicable for assessing the formality of
documents, as our results show. However, due to
the variety of sentence formality scores, it may not
be helpful to map formality assessments of docu-
ments to their sentences to save annotation efforts
or assume mono-style documents regarding the for-
mality dimension.

5.2 Evaluation on English Documents

To investigate the applicability of transformer mod-
els fine-tuned on our sentences for other languages,
we evaluated them on English documents. We
used 960 emails (C18 in the following) with for-
mality annotations obtained via averaging over
individual assessments on a 5-point Likert scale
(Chhaya et al., 2018). The lower half of Table
2 shows the results. Fine-tuning on the docu-
ments (10-fold cross-validation) significantly out-
performed sentence-based models. We ascribe this
performance decline also to the manual annota-
tions of CI8 since we only calculated an aver-
age split-half reliability of 0.573 (£0.015) Spear-
man’s p over 100 trials. Given these conditions, a
BERT model fine-tuned on our translated dataset
still achieved a high correlation also compared to
the English PT76 model. Hence, we assume our
dataset is beneficial for formality assessment of
English-language documents too.

6 Conclusion

We presented the first dataset of sentences with
highly reliable human formality assessments on a
continuous informal-formal dimension obtained
via Best-worst scaling. Our dataset comprises
3,000 sentences evenly distributed over twelve dif-
ferent domains to cover the broad spectrum of for-
mality best possible. It is the first for the Ger-
man language with a comprehensive perspective
on sentence-level formality altogether.

We evaluated various machine learning models
for the regression task of assessing formality on
our dataset. We found that a transformer model
fine-tuned on an existing German dataset including
only sentences of formal and informal address (Sie
vs. Duldu) yielded the worst results. Hence, this
restricted view on formality is insufficient to cap-
ture a more comprehensive concept of formality.
Cross-lingual settings utilizing transformer-based
classifiers pre-trained on huge datasets with for-
mal and informal language pairs not restricted
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to a particular form of formality performed bet-
ter. However, a binary categorization of formal-
ity strikes as inappropriate since ridge regression
models employing simple linguistic features out-
performed them. Fine-tuning transformers for re-
gression on an English dataset produced similar
(for the cross-lingual setting or the English trans-
lation of our dataset) or higher (for the German
translation of the training data) results. In compari-
son, a transformer model fine-tuned on our dataset
with its broader formality scale outperformed all
other settings significantly.

Expanding the scope to longer texts, a requested
future research direction of style transfer (Jin et al.,
2022), we investigated the influence of the formal-
ity of sentences on a document’s formality. We
observed that the sentences included in the doc-
uments cover a wide spectrum of formality with
higher formality scores at the beginning. Our re-
sults indicate that a transformer model fine-tuned
for formality scoring on our sentences generalizes
better across text levels than linguistic features and
can be used to predict the degree of formality of
German and English documents. We anticipate our
dataset to facilitate future work on German formal-
ity style transfer and formality analysis in general
on both the document and the sentence level. It
may also be valuable for other languages.

Our dataset and a tool for analyzing styles
with a wide range of linguistic features are
available under https://github.com/ee-2/in_
formal_sentences and https://github.com/
ee-2/register.

Limitations

This work assesses the formality of texts in isola-
tion, excluding any conventional and situational
contexts. However, for different genres and situ-
ations different expectations have to be met. For
example, an expression regarded as formal in one
genre may be perceived as too informal in another.
We also do not take forms of formality beyond
the pure text level into account. Properties that
contribute to formality besides the text itself may
include the structure of a text (e.g., blank lines
in emails (Chhaya et al., 2018)) or the volume,
the pitch, the speech rate, or the rhythm of speech
(Labov, 1972). For future research and downstream
applications, it might be helpful to consider the con-
textual circumstances and non-textual varieties of
formality too.

Our experiments on the document level include
only emails due to the lack of other corpora with
formality annotations on this text level. With their
composition, often including greeting, signoff, and
signature, emails present a particular genre. Poten-
tially, the greeting provides already a good indica-
tion of the formality of the text that follows (e.g.,
‘Dear Mrs. Doe’ vs. ‘Hi Jane’). Although we
anticipate congruent findings, future work should
experiment with other types of documents, possibly
more challenging to assess. Further, extending the
cross-lingual experiments on the document level to
languages other than English (e.g., languages with
multiple forms of honorifics, such as Japanese) will
be required.

Ethical Considerations

We ensured that our dataset can be made publicly
available (sentences from comments are restricted
to non-commercial use only). Since our data orig-
inates from several different domains, we gave
careful consideration to finding a balance between
copyright and data privacy regulations. Finally,
we pseudonymized text spans containing personal
information in user-generated content where nec-
essary (tweets, Reddit posts, comments and blogs).
This means we replaced sensitive text with auto-
matically generated substitutes, e.g., female names
with other female names or locations with other
locations. We only release the IDs for tweets, Red-
dit posts and comments. For blogs, we follow the
license requirements and publish the respective ref-
erence. The corpora with emails and legal texts had
been pseudonymized already, no information on au-
thors is available. For less-privacy-sensitive text
sources, such as subtitles, political speeches, news
and Wikipedia, we report all information shared
in the original corpus, e.g., URLs. The sentences
from fiction and science, which we collected our-
selves, are cited appropriately in order to acknowl-
edge intellectual property rights. People involved
in creating our dataset were compensated at least
following minimum wage requirements.
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A Appendix

A.1 Models for Formality Scoring

Fine-tuned Transformer Models. For fine-tun-
ing transformers, we used the recommended and
default parameter settings of the FLAIR framework
(Akbik et al., 2019) (version 0.10):

* learning rate = 5.0e-5

* maximal epochs = 10

* optimizer = AdamW

* scheduler = linear scheduler with warmup
» warmup fraction = 0.1

* mini batch size =4

Table 3 shows the results for fine-tuning dif-
ferent transformers on our dataset in a 10-fold
cross-validation setting. We experimented with
the German transformer models GBERT-base,
GBERT-large, GELECTRA-base, GELECTRA-
large (all from Chan et al. (2020)), and WECHSEL-
RoBERTa-base-german (Minixhofer et al., 2022).
The large models possess a high fluctuation in per-
formance. Therefore, we chose the best-performing

Model \ Spearman’s p ‘
GBERT-base 0.919 (40.009)
GELECTRA-base 0.918 (£0.011)
GBERT-large 0.109%* (£0.274)

GELECTRA-large
WECHSEL-RoBERTa-base

0.322% (+£0.426)
0.912* (£0.009)

Table 3: Results for different transformer models on
our dataset (10-fold cross-validation); significant differ-
ences (at least p < 0.05) are marked with “*’.

(and less expensive) GBERT-base model for our
experiments on German data.

Table 4 displays the performances of transformer
models used in a cross-dataset setting on the orig-
inal data. We report results for fine-tuning regres-
sion models on our dataset and P7/6 in a 10-fold
cross-validation setting. For the formality classi-
fier we fine-tuned ourselves, the GBERT model
fine-tuned on FP12, we achieved perfect accuracy
on the original test split of this dataset.

] Dataset \ Model \ Spearman’s p ‘
ours (de) | XLM-RoBERTa | 0.893 (4+0.010)
ours (en) | BERT 0.891 (£0.010)
PT16 (de) | GBERT 0.762 (£0.011)
PT16 (en) | XLM-RoBERTa | 0.776 (£0.016)
PT16 (en) | BERT 0.820 (£0.010)

Table 4: Results for transformer-based regression mod-
els used in a cross-dataset setting on the original dataset
(10-fold cross-validation).

Feature-based Models. For the feature-based
models, we used spaCy (3.3) (Honnibal et al., 2020)
and its language model de_core_news_sm for basic
NLP processing routines. We utilized the benepar
library (Kitaev and Klein, 2018; Kitaev et al., 2019)
(version 0.2) for constituency parsing and scored
the formality of a word given its word embedding
as proposed by Eder et al. (2021). Emotional fea-
tures are based on the lexicon by Buechel et al.
(2020), whereas sentiment was determined with
the German TextBlob module (0.4.3).'° We used
scikit-learn.org (1.0.2) for the ridge regression im-
plementation with the default parameters. We com-
pared two sets of features adapted from Pavlick and
Tetreault (2016) and Chhaya et al. (2018). In Table
5, we list the concrete features we employed per
setting.

10https: //textblob-de.readthedocs.io/
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~ Pavlick and Tetreault (2016)

~ Chhaya et al. (2018)

e average token length e average sentence length in tokens
o Flesch Reading Ease e proportion of hedge phrases
e proportion of first person pronouns e proportion of third person pronouns
e proportion of upper case words e proportion of lower case words e proportion of title case words
e proportion of punctuation e proportion of emoticons and emojis e proportion of contractions
e one-hot features for named entity types (e.g., person, location)
e average word formality score @ sentiment

e average sentence length in characters
e one-hot features for token uni-, bi- and trigrams
o relative frequencies of POS tags
e average height of constituency trees
e relative frequencies of constituency productions
e one-hot features for combinations of
dependency relation, POS tag of governor
and POS tag of subordinate
e GBERT embeddings

e average word values for the emotions:
valence, arousal, dominance,

joy, anger, sadness, fear and disgust

Table 5: Linguistic features used for formality scoring.

Number of Parameters. Table 6 shows the num-
ber of parameters for the feature-based architec-
tures and the transformer models.

Model \ Parameters ‘
~ Chhaya et al. (2018) 26

~ Pavlick and Tetreault (2016) 106K
GBERT-base 110M
BERT-base 110M
XLM-RoBERTa-base 125M
GELECTRA-base 110M
GBERT-large 335M
GELECTRA-large 335M
WECHSEL-RoBERTa-base 125M

Table 6: Number of parameters per model.

A.2 Annotation

We restricted the pool of crowdworkers to Ger-
man native speakers from Germany, Austria, and
Switzerland who were older than 18 years. No fur-
ther information on the demographics of the annota-
tors is accessible. The crowdworkers were compen-
sated following the minimum wage defined by the
German government (€ 9.60 per hour at the time
of annotation). Clickworker, the crowdsourcing
platform we used, does not provide separate qual-
ification tests. Rather it ensures the qualification

of the crowdworkers by their own filtering meth-
ods (e.g., project-independent online tests/training
or evaluation of the work results). The German
annotation guidelines can be found in the project
repository alongside the dataset.

A.3 Computing Details

We carried out our experiments on a NVIDIA
RTX A40 GPU with 48GB RAM. We estimate
a total computational budget of 72 GPU hours.
Fine-tuning GBERT-base, BERT-base, or XLM-
RoBERTa-base on our dataset took under 15
minutes per model. Fine-tuning these models
on PTI6 required about 45 minutes per model.
Fine-tuning GBERT on FPI2 took about two
hours, and fine-tuning models on German or
English documents needed under five minutes.
Training ten ridge regression models for 10-fold
cross-validation was completed in under two min-
utes for the feature set based on Chhaya et al.
(2018) and in under 15 minutes for the feature set
based on Pavlick and Tetreault (2016).
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