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Abstract

Evidence data for automated fact-checking
(AFC) can be in multiple modalities such as
text, tables, images, audio, or video. While
there is increasing interest in using images for
AFC, previous works mostly focus on detect-
ing manipulated or fake images. We propose
a novel task, chart-based fact-checking, and
introduce ChartBERT as the first model for
AFC against chart evidence. ChartBERT lever-
ages textual, structural and visual information
of charts to determine the veracity of textual
claims. For evaluation, we create ChartFC,
a new dataset of 15, 886 charts. We system-
atically evaluate 75 different vision-language
(VL) baselines and show that ChartBERT out-
performs VL models, achieving 63.8% accu-
racy. Our results suggest that the task is com-
plex yet feasible, with many challenges ahead.

1 Introduction

Charts are often used to present data in news ar-
ticles, reports, scientific publications, and across
social media posts (Lo et al., 2022; Zhang et al.,
2021). For example, in recent years, charts have
been widely used to guide policymakers in decid-
ing health policies and to communicate COVID
information with the general public; a popular ex-
ample is the coronavirus dashboard by Johns Hop-
kins University,1 which was integrated in several
websites (Perkel, 2020).

Misinformation can spread through charts in var-
ious ways. Previous works in data visualization
have discussed how misleading chart design can
cause misinformation (Lo et al., 2022). However, a
more subtle form of misinformation occurs during
chart interpretation (e.g. through invalid compar-
isons, framing correlation as causation, or spread-
ing of misleading claims). To identify these mis-
information types not only the stand-alone chart
but the chart together with its message need to be

1https://coronavirus.jhu.edu/map.html

Claim: Both Thane Baker and Nate Cartmell were ranked
last.

Evidence:

Label: Supports

Figure 1: An example from the ChartFC dataset where
the claim is supported by the evidence chart.

considered jointly (Lo et al., 2022). In this work,
we focus on verifying whether charts support or
refute claims about them.

There has been substantial progress in automated
fact-checking (AFC) in recent years, with a fo-
cus on verifying claims against text (Wang, 2017;
Thorne et al., 2018; Schuster et al., 2021; Thorne
et al., 2021; Diggelmann et al., 2020), table (Aly
et al., 2021; Diggelmann et al., 2020; Chen et al.,
2020a; Akhtar et al., 2022), and image (Yao et al.,
2022; Zlatkova et al., 2019; Qu et al., 2022) evi-
dence. Previous work has widely ignored claim
verification against chart images. There are sev-
eral challenges related to chart fact-checking as
opposed to other evidence modalities: the struc-
tural information, text in charts, and location of
text need to be considered jointly for chart under-
standing. Text plays a key role and is used, for
example, as bar labels, chart titles, or in legends
to explain the use of colors. Moreover, verifying
claims against charts requires different reasoning
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types, e.g. retrieving values, finding extremes, or
calculating a sum.

To address these challenges, we propose the
chart fact-checking task where, given a text claim
and a chart, the goal is to classify if it supports or
refutes the claim. We introduce ChartBERT as the
first model for AFC against chart evidence com-
prising (i) an OCR-based reading component to
extract text and structural information from chart
images; (ii) a sequence generation component to
process the extracted information; and (iii) an en-
coding component that extends the BERT archi-
tecture (Devlin et al., 2019) with three additional
structural embeddings to jointly learn textual and
structural representations of chart images.

Moreover, we release ChartFC as the first bench-
mark for chart-based AFC, created using TabFact
(Chen et al., 2020a) as a seed dataset. Our dataset
contains 15.9k human-written claims and bars of
different colors, orientations, and backgrounds (see
Figure 1 for an example). Our highest-performing
ChartBERT model achieves 63.8% accuracy on
ChartFC. We compare ChartBERT to 75 vision-
language (VL) baselines, combining five vision
encoders, three language encoders, and five fu-
sion methods. The best-performing VL model is
a transformer-based (Vaswani et al., 2017), dual
encoder architecture that uses a simple, yet effec-
tive fusion block: concatenation and gated recur-
rent units (GRUs) (Bahdanau et al., 2015). Our
results suggest that state-of-the-art VL approaches
struggle with the proposed task, calling for more
research.

Our contributions are as follows: 1) we propose
the chart fact-checking task and build ChartBERT
as the first chart fact-checking model; 2) we intro-
duce ChartFC, the first dataset for AFC with chart
evidence; 3) we systematically evaluate state-of-
the-art language/vision encoders and fusion meth-
ods on the proposed task, highlighting challenges
and providing an analysis of common reasoning
types that contribute to failures.2

2 Related Work

2.1 Verifying Claims against Evidence
Evidence-based fact-checking aims to predict
claims’ veracity given evidence data. While many
datasets focus on text (Thorne et al., 2018; Kotonya
and Toni, 2020; Schuster et al., 2021; Wang, 2017)

2The ChartFC dataset and our code are available at https:
//github.com/mubasharaak/ChartFC_chartBERT.

and table evidence (Chen et al., 2020a; Gupta et al.,
2020; Aly et al., 2021; Wang et al., 2021a; Akhtar
et al., 2022), human fact-checkers use a wider range
of modalities for verification (Nakov et al., 2021b;
Alam et al., 2021). They consult experts and extract
information from databases, text, tables, graphics,
and audio/video material from numerous sources.3

Charts influence how messages are perceived
(Pandey et al., 2014). For example, Lee et al. (2021)
use the term “counter-visualization” to describe
data visualizations by the anti-vaccination commu-
nities in the US who created charts from publicly
available data and interpreted them in a way that
challenged the narrative of the pandemic, leading
to disinformation.

2.2 Automated Fact-Checking with Images

Given that claims and evidence can be conveyed
through different modalities, interest in AFC with
images has increased recently (Nakov et al., 2021a;
Cao et al., 2020; Alam et al., 2021; Yao et al., 2022;
Sharma et al., 2022). Previous tasks focus mainly
on detecting manipulated or fake images rather than
on evidence-based claim verification (Blaier et al.,
2021; Kiela et al., 2020; Alam et al., 2021; Sharma
et al., 2022; Abdali, 2022). Whilst manipulated or
fake images can be detected using the image only,
claim verification requires understanding the claim
and evidence jointly.

2.3 Chart Images in other NLP Tasks

Two tasks related to chart fact-checking are
chart question answering and chart summarization.
Given a chart image, the summarization task re-
quires to generate a summary of the chart in natural
language text (Kantharaj et al., 2022; Tan et al.,
2022). For question answering (chartQA) the an-
swer to natural language questions is extracted
from chart images. However, different to claim
verification, questions typically provide strong in-
dicators for the correct answers. Existing chartQA
datasets are either small (Kim et al., 2020) or
comprise automatically-generated, template-based
questions (Chaudhry et al., 2020; Kahou et al.,
2018; Kafle et al., 2018).

3 ChartBERT Model

We introduce ChartBERT, a first BERT-based chart
fact-checking model. Our model consists of (i) a

3https://ballotpedia.org/The_methodologies_of_
fact-checking
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Figure 2: The ChartBERT architecture.

reading component which extracts text and struc-
tural information from charts (Section 3.2); (ii) a
component for generating textual sequences from
the information previously extracted (Section 3.3);
and (iii) a BERT-based encoder with additional
structural embeddings for the text extracted from
charts (Section 3.4). The model architecture is
shown in Figure 2.

3.1 Task Formulation
Following previous AFC work (Chen et al., 2020a;
Aly et al., 2021; Thorne et al., 2018; Wang et al.,
2021b), we view chart fact-checking as a classifi-
cation task where, given a natural language claim
and a piece of evidence (i.e. the chart image), the
goal is to decide if the evidence supports or refutes
the claim. We use support/refute as labels for claim
classification instead of true/false as we only as-
sess the claim veracity given the provided evidence
rather than claiming universal statements.

Each ChartFC sample i = (ci, imgi, yi) com-
prises a natural language claim ci, a chart image
imgi (see Figure 1 for an example), and a label
yi ∈ {supports, refutes}.

3.2 Reading Text from Chart Images
Given an image imgi, the reading component ex-
tracts text and structural information. First, we
detect text regions in the chart using a Tesser-
act OCR model (Kay, 2007). Specifically, for
each image, the model extracts n text regions
Ti = {t1, t2, ..., tn}n

j=1, where each region tj con-
sists of textj , a sequence of m tokens, and a rect-
angular bounding box bj that surrounds the text
region in the chart. The bounding box is a tuple
bj = (xj , yj , wj , hj) where xj and yj are the pixel

coordinates of the top left point of the box, and wj

and hj represent the width and height of the box in
pixels. Thus, for each image imgi we obtain the
following output oi:

oi = fR(imgi) = {(textj , xj , yj , wj , hj)}n
j=1

3.3 Text Sequence Generation

Next, we process the reading component’s output
into a text sequence si consisting of m tokens:

si = fSeqGen(oi) = [s1, s2, ...sm]

We compare two approaches as follows.
Concatenation: The concatenation method pro-
cesses the text regions (i.e. tj ∈ Ti) based on their
coordinates xj and yj so that texts that are close in
the chart are also close in the generated sequence.
The chart text is concatenated into one sequence
and tokens that belong to different text regions are
separated using a [; ] token. Thus, for the chart Fig-
ure 1 we obtain a text sequence starting with “usain
bolt ; 1 ; andy stanfield ; 2 ; [...].”
Template: We use the structural information (i.e.
x, y, wj , hj) to fill templates and generate text se-
quences. We evaluate three templates (an example
for each template, extracted from Figure 1, is pro-
vided in brackets):
tmp1: entry [num] : [lx] is [textx]; [ly] is [texty]
(entry one: athlete is usain bolt ; rank is 1);
tmp2: “row [num] : [lx] is [textx]; [ly] is [texty]”
(“row 0: athlete is usain bolt ; rank is 1”);
tmp3: “[lx] is [textx] when [ly] is [texty]”
(“athlete is usain bolt when rank is 1”).

The placeholder [lx] is replaced with the x-axis
label from the chart (e.g. “rank” in Figure 1). Simi-
larly, the y-axis label (e.g. “athlete”) replaces [ly].
Based on the coordinates, we classify a bounding
boxes that contain axes labels (i.e. the boxes with
the largest y coordinates).

A counter starting from one replaces [num] and
numbers the bars in the chart. We fill [texty] and
and [textx] with text regions detected as bar labels
and axis ticks given their positions.

3.4 Encoding and Classification

ChartBERT captures the structure of charts through
three learned embeddings: the x coordinate embed-
ding which captures the horizontal location of the
text in the chart, the y coordinate embedding which
captures the vertical location, and the label embed-
ding which takes value 1 if the text region is part
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Figure 3: ChartBERT input representation with the text extracted from the chart and concatenated following
the approach in Section 3.3. We include additional structural embeddings (i.e. x and y coordinates and label
embeddings) to the BERT input embeddings (i.e. token, segment and position embeddings).

of the x-axis label (lx), 2 if the text region is part
of the for y-axis label (ly) and 0 otherwise.

Figure 3 shows an example of the encoder with
the structural embeddings. We concatenate claim
ci and sequence si, separate them with a [SEP ] to-
ken, add [CLS] as the first input token, and feed the
resulting vector as input to ChartBERT which gen-
erates 768-dimensional representations hi ∈ R768.
Finally, we pass hi through a fully connected layer
and determine the predicted label using sigmoid.
ChartBERT uses binary cross entropy to minimize
loss on the training set.

inpi = (ci, si, {xj , yj , lxj, lyj}n
j=1)

hi = fEncoder(inpi)

pi = σ(fFC(hi))

4 Evaluation

For evaluation, we first create a new dataset,
ChartFC. We compare ChartBERT with several
VL baselines, each comprising three components:
a vision encoder, a language encoder, and a fusion
block to obtain joint representations. We evaluate
the dataset size and potential biases, discuss results
obtained with ChartBERT and the baselines, and
analyse reasoning types the models fail on.

4.1 ChartFC Dataset
This section provides an overview of the ChartFC
dataset and its creation process. Each dataset entry
comprises a natural language claim, a chart image,
and a label ∈ {supports, refutes}.

4.1.1 The TabFact Dataset
We use TabFact (Chen et al., 2020a) as a seed
dataset. TabFact is a table fact-checking dataset
of natural language claims and tables extracted
from Wikipedia as evidence, where the veracity
of the claim is decided based on the accompanying
table. Claims were written and evaluated by hu-
man crowdworkers with at least 95% approval rates
for prior tasks and more than 500 accepted HITs
on Amazon Mechanical Turk. The inter-annotator
agreement for the claim verification task is Fleiss
κ = 0.75.

4.1.2 Creation Pipeline
Figure 4 shows the dataset creation process.4 Start-
ing with 117, 784 claims and 16, 000 Wikipedia
tables from TabFact, we first generate sub-tables.
To link the claim text to table columns, we (i) lem-
matize and tokenize the claim and the table con-
tent, (ii) link claim tokens to column headers and
cells using string matching and heuristic rules, and
(iii) decide if a claim token is linked to multiple
columns using the minimum Levenshtein distance

4Figure 8 in the Appendix A illustrates the pipeline.
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Figure 4: Dataset creation process.

Train Valid Test Sum
Support 7,048 896 885 8,829
Refute 5,654 697 706 7,057
Sum 12,702 1,593 1,591 15,886

Table 1: Class distribution across dataset split.

(Levenshtein, 1966), and finally, (iv) filter sub-
tables with a maximum of twenty rows and two
linked columns. This results in a total of 15, 886
pairs of claims and sub-tables.

Finally, we generate charts using the Python li-
braries seaborn and matplotlib. The charts vary
across the dimensions (i) orientation (horizontal,
vertical); (ii) bar colors (green, blue, pink); and
(iii) background (no/white grid lines, white/gray
background color). We show an example in Fig-
ure 1. We partition the dataset into training, val-
idation, and test sets using 8:1:1 ratio and show
statistics in Table 1.

4.1.3 Dataset Evaluation
To assess the data quality, we apply human and
automated evaluation. We evaluate the sub-table
generation step (step 2 in Figure 4) by checking
the verifiability of claims against the extracted sub-
tables with TableBERT (Chen et al., 2020a). We
obtain 69.3% accuracy on our test set, comparable
to 65.1% accuracy reported by Chen et al. (2020a)
on their test set.

For human validation, we extract 100 random
dataset entries and manually evaluate the claims
against sub-tables and charts. Of the 100 claims, 92
were successfully verifiable against their sub-tables
and chart images, six claims were not verifiable
because a relevant column was missing in the sub-
table, and two claims were already mislabelled in
the TabFact dataset.

4.1.4 Chart Reasoning Types
We label 100 random test samples with chart rea-
soning types, using a taxonomy of common reason-
ing types humans apply while interacting with data

Figure 5: Number of chart reasoning types found in
100 dataset entries.

visualisations (Amar et al., 2005). We find seven
reasoning types present in our data: retrieve value,
filter, comparison, compute derived value, find ex-
tremum, determine range, and find anomalies.5 On
average, we find 1.4 different types per claim with
most claims including either one or two different
reasoning types (see Figure 5). The reasoning type
retrieve value, which requires extracting a value
from the chart image given certain criteria, occurs
most frequently (51%), followed by find extremum,
i.e. highest or lowest values in the chart, and fil-
ter, which occur in approximately a quarter of all
labelled claims. More complex types such as com-
pute derived value or extracting all values in a given
range are less frequent.

4.2 Vision-Language Baselines

We evaluate our task with several VL baselines,
which jointly use claim text and visual information
from images for claim verification. We also assess
the top-3 VL baselines with OCR-extracted chart
text as additional input. Each baseline consists of
a language encoder, a vision encoder, and a fu-
sion component to obtain joint representations. We
systematically evaluate various state-of-the-art en-
coders and fusion techniques: we use shallow (e.g.
BERT Embedder (Chen et al., 2020b)) and deep
encoders (e.g. DenseNet (Huang et al., 2017)), as
well as model-agnostic (e.g. concatenation) and
model-based (e.g. transformer layers) fusion meth-
ods.

Language encoders: Given a claim ci, we use a
language encoder to obtain a feature vector:

htext
i = fLangEncoder(ci)

We experiment with three language encoders:
BERT Embedder: Following Chen et al. (2020b),

5We describe the chart reasoning types in detail and give
examples in Appendix B.
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we tokenize the claim text into sub-words. For each
token, we add the word and position embeddings to
obtain the text representation which we then pass
through a normalization (Ba et al., 2016) layer.
LSTM: We encode the text with 32-dimensional
word embeddings and pass them through two
LSTMs (Hochreiter and Schmidhuber, 1997) with
768-dimensional hidden states in each layer. We
use the hidden states of the second layer as text
representations.
BERT: We use a twelve-layer BERT encoder, ini-
tialized with weights from a pretrained BERT-base
model.

Vision encoders: We use a vision encoder to
extract representations for the chart images:

himg
i = fV isEncoder(imgi)

We evaluate five vision encoders:
Fully connected layer: We use a fully connected
layer to extract 768-dimensional representations
per image himg

i ∈ R768.
AlexNet: Using AlexNet (Krizhevsky et al., 2012),
for each image, we obtain a representation vector
himg

i ∈ R1024 by extracting the model output after
the third max pooling layer.
ResNet: We use ResNet-152 (He et al., 2016) to
obtain 2048-dimensional image representations by
extracting the model output before the two final
layers of ResNet-152, i.e. before the average pool-
ing layer.
DenseNet: We use a DenseNet (DN) (Huang et al.,
2017) comprising three dense blocks, with 6, 12,
and 24 layers, respectively. We extract and concate-
nate the output of the first and third dense block
as low- and high-level feature vectors: himg

i =
fconcat(fDN [block1](imgi); fDN [block3](imgi)).
Vision Transformer (ViT): We split images into
sequences of n 16x16 patches before using them as
input to a pretrained base-ViT model (Dosovitskiy
et al., 2021).6 We extract the hidden states from
the model’s final layer and use them as image rep-
resentations, resulting in 768-dimensional vectors
for each patch: himg

i = [h ∈ R768]n.
Fusion methods: We then fuse the text and

image representations:

hjoint
i = fFusion(h

img
i ;htext

i )

We experiment with five fusion methods:
Concatenation and multiplication: Concatena-

6https://huggingface.co/google/
vit-base-patch16-224

tion and multiplication are common baseline ap-
proaches for multimodal fusion (Baltrušaitis et al.,
2018). We reshape the text and image representa-
tions and either (i) concatenate both vectors, or (ii)
perform element-wise multiplication.
Concatenation with GRUs: Inspired by Kafle
et al. (2020), we concatenate the text and image rep-
resentations and pass the resulting vector through
m 1x1 convolutional layers and two GRUs. The
first GRU takes the input in a forward direction,
while the second GRU processes the input vector
in a backwards direction to incorporate contextual
information:

hconcat
i = fconv(fconcat{himg

i ;htext
i })

hjoint
i = fconcat{f−−−→GRU(h

concat
i ); f←−−−GRU(h

concat
i )}

Multimodal Compact Bilinear Pooling (MCB):
MCB is an efficient and popular baseline for multi-
modal fusion (Fukui et al., 2016). The text and im-
age representations are each projected to a higher
dimensional space using the projection function
Count Sketch (Charikar et al., 2004). The outer
product of the projected vectors is then calculated
in Fast Fourier Transform space to obtain a joint
representation for both modalities and thus reduce
the amount of learnable parameters during model
training.
Transformer layers: Given the recent popularity
of transformer layers used for joining text and vi-
sual representations (Tan and Bansal, 2019; Chen
et al., 2020b; Yang et al., 2021), we use a three-
layer transformer to get cross-modal embeddings.

The representation hjoint
i is passed through two

fully-connected layers and sigmoid to obtain the
classification. We use binary cross entropy loss
and stratified sampling in each training batch to
minimize the loss on the training set.

4.3 Experimental Setup

We perform hyper-parameter search on the valida-
tion set and select the best-performing combination
from the following values: {8, 16, 32} for batch
size, {1e−3, 7e−4, 5e−5, 5e−6, 5e−7} for learning
rate, {1, ..., 50} for training epochs with early stop-
ping. We also experimented with different learning
rates for the language and vision encoders. Ulti-
mately, we used one learning rate for the entire VL
model as the modality-specific learning rates did
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SeqGen Val Acc Val F1 Test Acc Test F1

concat. 59.2 55.1 60.6 57.0
temp. tmp1 62.4 59.1 63.3 61.0
temp. tmp2 62.0 59.4 61.9 58.7
temp. tmp3 62.1 59.7 63.8 61.1

Table 2: Results for ChartBERT with different sequence
generation (SeqGen) approaches: concatenation and
template.

V-Encoder Fusion no OCR text concat
ViT concat GRU 59.8 60.5

ResNet mult 60.1 61.3
ResNet concat 59.8 62.7

Table 3: Test accuracy of top-3 VL baselines: without
(no OCR) chart text and chart text concatenated. All
models use BERT as language encoder.

not provide any performance gains.7

We run all experiments on a single NVIDIA
Tesla V100 GPU with 32GB RAM. We measure
model performance with prediction accuracy and
(macro) F1 on the test dataset.

4.4 Results & Discussion

How does ChartBERT perform on the task?
How do different approaches for sequence gen-
eration influence model performance?

Table 2 gives an overview of the results obtained
by ChartBERT. The best ChartBERT variant yields
63.8% test accuracy and processes chart text into
text sequences using the template tmp3. Com-
pared to the concatenation approach, using tmp3
increases the accuracy by +3.2%.

Interestingly, the choice of template design im-
pacts the model performance only slightly. While
template tmp3 might seem more “natural” to hu-
mans, it does not yield much higher performance
compared to tmp2.
How do VL baselines perform on ChartFC?
How does the selection of encoder or fusion
method impact model performance?

In contrast to many state-of-the-art VL ap-
proaches that use simple vision encoders and
attention-based fusion (Chen et al., 2020b; Kim
et al., 2021; Xia et al., 2021), the three best-
performing VL models on ChartFC use BERT as
language encoder, ViT or ResNet to obtain image
representations, and either concatenation, multipli-
cation, or concatenation with GRUs as a fusion
method. Using only the claim and chart as input

7The hyper-parameters for each VL baseline can be found
in our GitHub repo.

(i.e. without the OCR-extracted chart text), the
highest test accuracy we obtain is 60.1% with the
model consisting of BERT, ResNet, and multiplica-
tion fusion (see Table 3).

Regarding the language encoder,8 models that
use BERT perform best, irrespectively of the vi-
sion encoder and fusion method: the best LSTM-
based model achieves 56.1% test accuracy and the
best model with BERT embedder yields 56.5% ac-
curacy, both lower than the best BERT-based VL
model with 60.1% accuracy. In contrast, we obtain
similar accuracy scores across different vision en-
coder: for example, replacing ResNet in Table 3
row two with a fully connected layer reduces the
accuracy slightly by 0.6% to 59.7%. The choice
of fusion method does not impact performance
strongly: while using multiplication mostly outper-
forms other methods by a small margin, no fusion
method stands out across all vision and language
encoders. We also evaluate the chartQA model
PReFIL (Kafle et al., 2020), which uses LSTM as
language encoder, DenseNet for image representa-
tions, and concatenation with GRUs for fusion, and
obtain on ChartFC a low test accuracy of 55.6%.
How does OCR-extracted chart text influence
performance of VL models?

In addition to claim text and chart images used
in VL baselines, we also include the text extracted
from the charts through OCR as input (see Sections
Sections 3.2 and 3.3 for details). Table 3 shows that
using the concatenated chart text as input improves
accuracy compared to the models that do no use
the chart text (e.g. from 59.8% to 62.7%). The
highest accuracy 62.7% is obtained with the BERT-
ResNet-concatenation baseline.
Do models fail on particular chart reasoning
types?

We evaluate the best VL baseline, consisting of
BERT, ViT, and concatenation with GRUs, on the
chart reasoning types present in ChartFC and de-
scribed in Section 4.1.4. We find that the model
performs best on the reasoning types retrieve value,
filter, and finding extremum, while struggling partic-
ularly with compute derived values. Figure 6 shows
that the model classifies correctly 65% (i.e. 33 out
of 51) of claims that require retrieval and 61% of
claims that require filtering. However, only 50%
of comparison claims and 38% of claims required
to compute derived values are correctly predicted.

8The complete set of results obtained with different en-
coders and fusion methods can be found in Tables 5, 6, and 7
in the Appendix.
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Figure 6: Chart reasoning types: total count and correct
predictions of manually annotated test samples.

These results are in line with previous works that
discuss limitations of state-of-the-art models in
tasks requiring numerical reasoning capabilities
(Thawani et al., 2021).
Is the dataset size sufficient for our proposed
task? Do ChartFC claims contain biases?

We evaluate the size of the dataset by training
our VL baseline (i.e. using BERT, ViT, and con-
catenation with GRUs) on various subsets of the
training data as shown in Table 4 and report the
accuracy on the test set. The performance on the
test set improves as the number of training sam-
ples increases. While the performance gain is high
when increasing the training set from 1% to 25%
(51.6% accuracy compared to 57%), the difference
in accuracy between the baseline trained on half
of the training data and the entire training data is
only 2.6%, indicating that our training set has a
reasonable size.

We also train a claim-only BERT model to deter-
mine whether claims contain biases that allow the
model to correctly predict the label while ignoring
the evidence charts. Trained on the claim text only,
the model achieves 52% accuracy on the test set,
compared to ChartBERT’s accuracy of (63.8%).
We conclude that the claim text itself is not suffi-
cient for correct classification.
What are the dis-/advantages of an automated
dataset pipeline for chart fact-checking?

We automatically create ChartFC using a table
fact-checking dataset as seed by identifying sub-
tables relevant to the claims and then building the

Training Samples Test Accuracy
127 (1%) 51.6

3,175 (25%) 57.0
6,351 (50%) 57.1
9,526 (75%) 58.0

12,702 (100%) 59.8

Table 4: Performance of VL baseline (BERT, ViT, and
concatenation with GRUs) with different training set
sizes.

charts. ChartFC includes common stylistic varia-
tions: bars of different colors, horizontal/vertical
orientations, different backgrounds (light/dark, grid
lines/no grid lines). While natural charts come with
large stylistic variation, using them results in re-
duced control over task complexity and dataset.
In future work, we plan to explore two alterna-
tive dataset creation pipelines: first, automated
pipelines for other charts types to extend the cur-
rent dataset, and second, a pipeline with natural
charts where we would create claims for charts.

Using natural charts would require a multi-step
annotation process: selecting and separating charts
from other images (Vougiouklis et al., 2020); writ-
ing claims which support/refute them; evaluating
the claims to check for correctness, typos, etc. We
would require annotators with proficiency in inter-
preting charts, and with basic mathematical and
language skills to create claims with different rea-
soning types (see Figure 5).

5 Conclusion and Future work

We propose the chart fact-checking task and intro-
duce ChartBERT, a novel model for fact-checking
claims against chart images comprising three main
components: a reading component, a sequence
generation component, and an encoder that ex-
tends BERT’s encoder with structural embeddings.
We also introduce ChartFC as the first dataset for
fact-checking against chart images, consisting of
15, 886 claims and chart images.

ChartBERT achieves 63.8% accuracy on
ChartFC. We systematically evaluate 75 different
VL baselines, using various language encoders, vi-
sion encoders, and fusion methods. The highest-
performing VL baseline uses BERT as language
encoder, ResNet to extract image representations,
and concatenation to obtain joint representations
for both modalities. The model achieves 62.7%
test accuracy. Our results indicate that chart fact-
checking, which requires extracting and reasoning
over text and structural information from charts, is
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a challenging task for future research on AFC and
VL methods.

Limitations

The TabFact dataset (Chen et al., 2020a) has been
a valuable resource for creating ChartFC. However,
using it as (the sole) seed dataset has limitations.

ChartFC consists of bar charts only; indeed,
given the claims and tables found in TabFact, the
bar chart was deemed the most appropriate chart
type. Various types of charts exist (e.g. pie charts,
line charts) and their effectiveness in different data
contexts and tasks has been investigated in the lit-
erature. For example, Saket et al. (2019) evaluated
the effectiveness of chart types using crowdsourc-
ing experiments across the chart reasoning types
we discussed in Section 4.1.4. In the context of
small datasets, i.e. up to 34 rows and two columns
which is similar to our setting, Saket et al. (2019)
found bar charts to be the most accurate visualiza-
tion type for the given chart reasoning types. In
addition to bar charts, other types of charts used as
evidence for fact-checking tasks ought to be inves-
tigated. Behrisch et al. (2018) studied visualization
methods for different data types (i.e. multi- and
high-dimensional data, relational data, geo-spatial
data, sequential and temporal data, and text data).
For example, they found that scatter plots were ap-
propriate visualization types for queries regarding
data distribution (e.g. correlations and clusters),
while line charts were more appropriate for queries
about temporal aspects of data. To extend ChartFC
with other chart types, we require more diverse
data types (e.g. sequential and temporal data) and
appropriate claims.

Moreover, ChartFC claims are restricted to En-
glish, whereas misinformation is commonly spread
in different languages. Future work is necessary to
address the limited availability of non-English fact-
checking datasets and to contribute to the efforts
done in this space (Gupta and Srikumar, 2021).
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A Dataset Pipeline

ChartFC charts vary across the dimensions (i)
orientation (horizontal, vertical); (ii) bar colors
(green, blue, pink); and (iii) background (no/white
grid lines, white/gray background color). Figure 7
shows multiple chart examples.

In Figure 8, we give an example of the dataset
creation pipeline. Starting with the claim and initial
TabFact table, we first filter columns required to de-
cide the claims veracity label: “age at appointment”
and “prior occupation”. This sub-table is used to
create the evidence chart (bottom right).

B Chart Reasoning Types

We label 100 random test set samples with chart
reasoning types. Next, we briefly describe each
type, for more details we refer to the taxonomy by
Amar et al. (2005):

• Retrieve Value: Given some conditions, re-
trieve a single value from the chart image.

• Filter: Find all data points in the chart that
fulfill some specified conditions.

• Compute Derived Value: Calculate an aggre-
gated value (e.g. average or count) using data
points extracted from the chart.

• Find Extremum: Extract the top-n data points
given some conditions.

• Determine Range: Based on some conditions,
find a span of values such that all extracted
data points fulfil the conditions.

• Find Anomalies: Find any anomalies in a spec-
ified set of data points.

• Compare: Compare the values of different
data points to each other.
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Figure 7: Examples from the ChartFC dataset.

Figure 8: Example for dataset creation process.
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Figure 9: Encoders and fusion methods used in VL
baselines.

C VL Baselines

Figure 9 provides an overview of all encoders and
fusion methods we use in our evaluation.

Table 5, 6, and 7 provide an overview of all VL
baselines we evaluated on ChartFC.
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Lang Encoder Vis Encoder Fusion Val Acc Val F1 Test Acc Test F1

BERT Emb FC concatenation 56.7 37.8 55.6 36.6
BERT Emb FC concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb FC multiplication 56.6 52.8 56.5 52.3
BERT Emb FC MCB 56.2 36.1 55.6 35.7
BERT Emb FC Transformer layers 56.2 36.0 55.6 35.7
BERT Emb AlexNet concatenation 56.5 40.2 55.1 38.1
BERT Emb AlexNet concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb AlexNet multiplication 57.0 41.4 55.9 39.9
BERT Emb AlexNet MCB 56.2 36.0 55.6 35.7
BERT Emb AlexNet Transformer layers 56.2 36.0 55.6 35.7
BERT Emb ResNet 152 concatenation 56.5 45.4 56.2 45.5
BERT Emb ResNet 152 concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb ResNet 152 multiplication 56.6 38.3 56.3 38.8
BERT Emb ResNet 152 MCB 56.2 36.0 55.6 35.7
BERT Emb ResNet 152 Transformer layers 56.2 36.0 55.6 35.7
BERT Emb DenseNet (6, 12, 24) concatenation 56.5 43.7 54.0 40.7
BERT Emb DenseNet (6, 12, 24) concatenation, biGRU 56.6 45.3 54.1 42.2
BERT Emb DenseNet (6, 12, 24) multiplication 56.5 37.1 55.6 36.4
BERT Emb DenseNet (6, 12, 24) MCB 56.2 36.1 55.6 35.7
BERT Emb DenseNet (6, 12, 24) Transformer layers 56.2 36.0 55.6 35.7
BERT Emb ViT concatenation 56.2 36.0 55.6 35.7
BERT Emb ViT concatenation, biGRU 56.2 36.0 55.6 35.7
BERT Emb ViT multiplication 57.1 42.1 54.8 37.6
BERT Emb ViT MCB 56.2 36.0 55.6 35.7
BERT Emb ViT Transformer layers 56.2 36.0 55.6 35.7

Table 5: VL baselines using BERT embedder for text encoding, different vision encoders, and fusion methods

Lang Encoder Vis Encoder Fusion Val Acc Val F1 Test Acc Test F1

LSTM FC concatenation 56.6 36.9 55.5 35.8
LSTM FC concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM FC multiplication 56.2 36.0 55.6 35.7
LSTM FC MCB 56.2 36.0 55.6 35.7
LSTM FC Transformer layers 56.2 36.0 55.6 35.7
LSTM AlexNet concatenation 56.3 39.6 56.1 39.8
LSTM AlexNet concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM AlexNet multiplication 56.2 36.0 55.6 35.7
LSTM AlexNet MCB 56.2 36.0 55.6 35.7
LSTM AlexNet Transformer layers 56.2 36.0 55.6 35.7
LSTM ResNet 152 concatenation 56.2 36.0 55.6 35.7
LSTM ResNet 152 concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM ResNet 152 multiplication 56.2 36.0 55.6 35.7
LSTM ResNet 152 MCB 56.4 36.3 56.0 35.9
LSTM ResNet 152 Transformer layers 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) concatenation 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) multiplication 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) MCB 56.2 36.0 55.6 35.7
LSTM DenseNet (6, 12, 24) Transformer layers 56.2 36.0 55.6 35.7
LSTM ViT concatenation 56.2 36.0 55.6 35.7
LSTM ViT concatenation, biGRU 56.2 36.0 55.6 35.7
LSTM ViT multiplication 56.2 36.0 55.6 35.7
LSTM ViT MCB 56.3 36.7 55.7 36.5
LSTM ViT Transformer layers 56.2 36.0 55.6 35.7

Table 6: VL baselines with LSTM as language encoder, different vision encoders, and fusion methods
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Lang Encoder Vis Encoder Fusion Val Acc Val F1 Test Acc Test F1

BERT FC concatenation 59.3 50.7 59.6 51.0
BERT FC concatenation, biGRU 58.8 51.1 58.5 50.2
BERT FC multiplication 59.4 54.5 59.7 54.9
BERT FC MCB 59.7 49.6 59.1 49.3
BERT FC Transformer layers 56.2 36.0 55.6 35.7
BERT AlexNet concatenation 59.5 47.9 59.1 47.6
BERT AlexNet concatenation, biGRU 59.2 48.2 58.0 47.0
BERT AlexNet multiplication 59.0 56.2 59.6 57.0
BERT AlexNet MCB 58.8 45.2 57.4 43.9
BERT AlexNet Transformer layers 57.6 50.8 59.5 52.6
BERT ResNet 152 concatenation 59.8 50.9 59.8 50.8
BERT ResNet 152 concatenation, biGRU 59.1 47.0 58.8 46.7
BERT ResNet 152 multiplication 59.3 52.2 60.1 53.6
BERT ResNet 152 MCB 58.2 47.0 58.7 48.9
BERT ResNet 152 Transformer layers 56.2 36.0 55.6 35.7
BERT DenseNet (6, 12, 24) concatenation 59.1 51.4 59.1 52.4
BERT DenseNet (6, 12, 24) concatenation, biGRU 60.2 53.0 59.0 51.0
BERT DenseNet (6, 12, 24) multiplication 59.4 49.2 58.7 48.7
BERT DenseNet (6, 12, 24) MCB 59.9 49.6 58.8 48.6
BERT DenseNet (6, 12, 24) Transformer layers 58.7 48.0 58.1 46.8
BERT ViT concatenation 56.2 36.0 55.6 35.7
BERT ViT concatenation, biGRU 59.0 51.2 59.8 51.7
BERT ViT multiplication 58.0 42.7 56.6 41.1
BERT ViT MCB 59.2 49.5 59.2 49.6
BERT ViT Transformer layers 57.1 40.8 55.9 39.1

Table 7: VL baselines with BERT as language encoder, different vision encoders, and fusion methods
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