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Abstract

The sentence is a fundamental unit in many
NLP applications. Sentence segmentation is
widely used as the first preprocessing task,
where an input text is split into consecutive
sentences considering the end of the sentence
(EOS) as their boundaries. This task formula-
tion relies on a strong assumption that the input
text consists only of sentences, or what we call
the sentential units (SUs). However, real-world
texts often contain non-sentential units (NSUs)
such as metadata, sentence fragments, nonlin-
guistic markers, etc. which are unreasonable
or undesirable to be treated as a part of an SU.
To tackle this issue, we formulate a novel task
of sentence identification, where the goal is to
identify SUs while excluding NSUs in a given
text. To conduct sentence identification, we
propose a simple yet effective method which
combines the beginning of the sentence (BOS)
and EOS labels to determine the most probable
SUs and NSUs based on dynamic program-
ming. To evaluate this task, we design an auto-
matic, language-independent procedure to con-
vert the Universal Dependencies corpora into
sentence identification benchmarks. Finally,
our experiments on the sentence identification
task demonstrate that our proposed method gen-
erally outperforms sentence segmentation base-
lines which only utilize EOS labels.

1 Introduction

The sentence, which we refer to as the sentential
unit (SU), is a fundamental unit of processing in
many NLP applications including syntactic pars-
ing (Dozat and Manning, 2017), semantic parsing
(Dozat and Manning, 2018), and machine transla-
tion (Liu et al., 2020). Existing works mostly rely
on sentence segmentation (a.k.a. sentence bound-
ary detection) as the first preprocessing task, where
we predict the end of the sentence (EOS) to split a
text into consecutive SUs (Kiss and Strunk, 2006;
Gillick, 2009). This approach relies on a strong

assumption that the text only consists of SUs; how-
ever, real-world texts like web contents often con-
tain non-sentential units (NSUs) such as the meta-
data of attachments embedded in the email body,
repetition of symbols for separating texts, irregular
series of nouns, etc. (just to name a few). Such
NSUs may cause detrimental or unexpected results
in the downstream tasks if considered as parts of
the SUs and are more desirable to be distinguished
from SUs in the first preprocessing step.

To tackle this problem, we formulate a novel
task of sentence identification, where the goal is
to identify SUs while excluding NSUs in a given
text (§3). This can be regarded as an SU span ex-
traction task, where each SU span is represented
by the beginning of the sentence (BOS) and the
EOS labels.1 We illustrate the difference between
sentence segmentation and sentence identification
in Table 1. In sentence segmentation, the text frag-
ment of an embedded file (“- TEXT.htm << File:
TEXT.htm >>”) needs to be considered as a part
of an SU. In contrast, sentence identification can
regard it as an NSU and exclude it for downstream
applications such as dependency parsing.

To conduct sentence identification, we propose
a simple method which effectively combines the
BOS and EOS probabilities to determine both SUs
and NSUs (§4). To be specific, we first train
the BOS and EOS labeling models based on ei-
ther the sentence identification dataset (with SUs
and NSUs) or sentence segmentation dataset (only
SUs). Then, we search for the most probable spans
of SUs and NSUs using a simple dynamic program-
ming framework. Theoretically, our method can be
considered as a natural generalization of existing
sentence segmentation algorithms.

To evaluate this task, we design an automatic pro-

1For simplicity, we assume that the input text can be seg-
mented into consecutive, non-overlapping units of SUs and
NSUs. This way, we can also represent and evaluate SU
extraction as an equivalent BIO labeling task (§5-§7).
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Input Text Thank you. - TEXT.htm << File: TEXT.htm >> I was thinking of converting it to a hover
(from EWT) vehicle. I might just sell the car and get you to drive me around all winter.

E

Sentence Thank you. - TEXT.htm << File: TEXT.htm >> I was thinking of converting it to a hover

Segmentation E E

vehicle. I might just sell the car and get you to drive me around all winter.

B E B

Sentence Thank you. - TEXT.htm << File: TEXT.htm >> I was thinking of converting it to a hover

Identification E B E

vehicle. I might just sell the car and get you to drive me around all winter.

Table 1: Illustration of sentence segmentation and sentence identification. In sentence segmentation, EOS labels
(E) are used to segment the input text into consecutive SUs (in blue). In sentence identification, only the spans
bracketed by the BOS (B) and EOS labels are extracted as SUs, while the rest can be excluded as NSUs.

cedure to convert the Universal Dependencies (UD)
corpora (de Marneffe et al., 2021) into sentence
identification benchmarks (§5). To be specific, (i)
we use the original sentence boundaries in UD as
the unit (SU and NSU) boundaries and (ii) classify
each unit as an SU iff it contains at least one clausal
predicate with a core/non-core argument. Impor-
tantly, our classification rule follows the definition
of lexical sentence in linguistics (Nunberg, 1990),
is easily customizable with language-independent
rules, and makes reasonable classification within
the scope of our experiments.

To conduct our experiments, we focus on the
English Web Treebank (Silveira et al., 2014) as the
primary benchmark for sentence identification and
train the BOS/EOS labeling models by finetuning
RoBERTa (Liu et al., 2019) (§6). We also propose
techniques to develop these models using a stan-
dard sentence segmentation dataset, i.e. the Wall
Street Journal corpus (Marcus et al., 1993), which
only contains clean, edited SUs without any NSUs.

Based on our experimental results, we demon-
strate that our proposed method generally outper-
forms sentence segmentation baselines which only
utilize EOS labels (§7). These results highlight
the importance of combining the BOS labels in
addition to the EOS labels for accurate sentence
identification under various conditions.

2 Background

Sentence segmentation, a.k.a. sentence boundary
detection, is the task of segmenting an input text
into the unit of sentences. Despite the long his-
tory of study (Riley, 1989) and its importance in
the entire NLP pipeline (Walker et al., 2001), this
area has received relatively little attention. For
one reason, the task has been recognized as “long

solved” (Read et al., 2012) with the most recent
approach reporting 99.8% F1 score on the standard
English Wall Street Journal (WSJ) dataset (Wicks
and Post, 2021). Their state-of-the-art method ER-
SATZ combines (i) a regular-expression based de-
tector of candidate sentence boundaries, followed
by (ii) a Transformer-based (Vaswani et al., 2017)
binary classifier which predicts whether the can-
didate boundary is EOS based on the local con-
text, i.e. surrounding few words. This modern
context-based approach has been shown to outper-
form competitive, widely used baselines such as
SPLITTA (Gillick, 2009), PUNKT (Kiss and Strunk,
2006), and MOSES (Koehn et al., 2007).

However, two important aspects are not fully ad-
dressed in the current literature. First is the cover-
age of diverse domains, genres, and writing styles.
Existing works (including Wicks and Post, 2021)
focus on formal/edited text and assume the exis-
tence of sentence ending punctuations (e.g. full
stops) at the sentence boundaries. However, social
media texts often lack such punctuations and con-
tain various types of non-linguistic noise, which
can lead to a substantial degradation in the seg-
mentation performance (Read et al., 2012; Rudra-
pal et al., 2015). Speech transcription texts also
usually contain disfluent, ungrammatical, or frag-
mented structures and lack both punctuations and
casing (Wang et al., 2019; Rehbein et al., 2020).
Considering the amount of such informal or non-
standard texts in the real world, it is compelling
to expand the capability of sentence segmentation
beyond formal, standardized text.

The second aspect is the coverage of multiple
languages. Different languages involve different
complexities in sentence segmentation, e.g. Chi-
nese requires the disambiguation of commas as the
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sentence ending punctuation (Xue and Yang, 2011)
and Thai does not mark EOS with any type of punc-
tations (Aroonmanakun et al., 2007; Zhou et al.,
2016). To advance NLP from a multilingual per-
spective, it is crucial to develop and evaluate mod-
els in multiple languages: Wicks and Post (2021)
make an important step in this direction, proposing
a language-agnostic, unified sentence segmentation
model covering a total of 87 languages.

Based on these observations, we first propose to
extend the task of sentence segmentation to sen-
tence identification, which expands the capability
of sentence segmentation beyond formal, standard-
ized text (§3, §4). Secondly, we propose a cross-
lingual method of benchmarking sentence identifi-
cation based on the UD corpora, considering every
word or character as the candidate boundary to
cover diverse domains, genres, and languages that
lack sentence ending punctuations (§5). Finally,
we follow Wicks and Post (2021) to develop mod-
ern neural-based models that require no language-
specific engineering and can be developed for dif-
ferent languages in a unified manner (§6).

3 Task Formulation

3.1 Sentence Segmentation Task

First, we introduce a precise (re-)formulation
of the sentence segmentation task. Let W =
(w0, w1, ..., wN−1) represent the input text, where
each wi denotes a word (but can also be a sub-
word or character). We also define the text span
W [i : j] = (wi, ..., wj−1), their concatenation
W [i : j] ⊕ W [j : k] = W [i : k], and SU bound-
ary indices B = (b0, b1, ..., bM ) where b0 = 0,
bM = N , and

⊕M
i=1W [bi−1 : bi] = W (i.e. the

concatenation of all SUs recovers the input text).
Next, we introduce the SU probability pSU(W [i :

j]) which corresponds to the probability of the text
span W [i :j] being an SU. Based on this probabil-
ity, the task of sentence segmentation can be for-
malized as searching for the boundaries B which
maximize the following probability:2

argmax
B

M∏

i=1

pSU(W [bi−1 :bi]) (1)

The most standard approach is to define pSU(W [i :
j]) based on a pretrained EOS labeling model, as
we describe in §4.1. However, our (re-)formulation

2M is a variable and need not be fixed during the search.

as Eq. (1) is more general and permits other defini-
tions of SU probability as well.

3.2 Sentence Identification Task

In sentence identification, we consider the input
text W can be segmented into consecutive, non-
overlapping units of SUs and NSUs. Hence, we
regard B = (b0, b1, ..., bM ) as the unit (SU and
NSU) boundaries and define the unit indicators
A = (a1, a2, ..., aM ) for each unit as follows:

ai =

{
1 if W [bi−1 :bi] is an SU
0 if W [bi−1 :bi] is an NSU

Next, we introduce the NSU probability
pNSU(W [i : j]) which corresponds to the prob-
ability of the text span W [i : j] being an NSU.
Based on pSU and pNSU , we can formalize the
task of sentence identification as searching for the
unit boundaries B and unit indicators A which
maximize the following probability:

argmax
B,A

M∏

i=1

pSU(W [bi−1 :bi])
ai pNSU(W [bi−1 :bi])

1−ai

(2)
Note that this strictly generalizes the sentence seg-
mentation task in Eq. (1), which is a special case
where ai = 1, ∀ai ∈ A. Based on this task formu-
lation, we discuss how we can define pSU(W [i :j])
and pNSU(W [i :j]) to derive our sentence identifi-
cation algorithm in §4.2.

4 Methods

4.1 Sentence Segmentation Method

In the most standard approach, sentence segmenta-
tion employs an EOS labeling model pEOS to define
the SU probability pSU in Eq. (1). To be specific,
let pEOS(wi|W ; θ) denote the EOS labeling model,
which computes the probability of wi being EOS
in W (θ denotes the model parameters). Typically,
it is straightforward to train this model in a super-
vised learning setup using a dataset annotated with
gold EOS boundaries (Wicks and Post, 2021). For
brevity, we use the notation pEOS(wi) as a short-
hand for pEOS(wi|W ; θ), i.e. we omit W and θ
(unless required) in the rest of this paper.

Based on the pretrained model pEOS , we can
define the SU probability as pSU(W [i : j]) =
pEOS(wj−1)

∏
i≤k<j−1(1 − pEOS(wk)), which re-

quires the last word wj−1 to be EOS and all other
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words to be non-EOS. By substituting this defini-
tion, we can decompose Eq. (1) as follows:

(1) = argmax
B

M∑

i=1

log pSU(W [bi−1 :bi])

= argmax
B

M∑

i=1

{
log pEOS(wbi−1) +

∑

bi−1≤j<bi−1

log (1− pEOS(wj))
}

= argmax
B

∑

i∈BEOS

log pEOS(wi) +
∑

i/∈BEOS

log (1− pEOS(wi))

(3)
where BEOS = {bi − 1 | i ∈ (1, 2, ...,M)} repre-
sents all the EOS indices defined by B.

This is a trivial optimization problem where we
can simply choose BEOS = {i ∈ (0, 1, ..., N −
1) | pEOS(wi) ≥ 0.5} to maximize Eq. (3). This
also shows that sentence segmentation can be con-
ducted by predicting the EOS independently for
each wi based on pEOS(wi). In contrast, sentence
identification involves a more complex optimiza-
tion problem which we solve using dynamic pro-
gramming (§4.2).

4.2 Sentence Identification Method
We extend the method of sentence segmentation
(§4.1) to conduct sentence identification. To be spe-
cific, we employ pretrained BOS and EOS labeling
models pBOS , pEOS to define the SU and NSU prob-
abilities pSU , pNSU in Eq. (2). As a first step, we
need to train the BOS and EOS labeling models:
this can be conducted in a supervised manner using
a dataset containing gold BOS and EOS labels, as
we explain in §6.1.

Based on the pretrained BOS and EOS labeling
models, we can define the SU and NSU probabili-
ties as follows:

pSU(W [i :j]) = pBOS(wi)
∏

i<k≤j−1

(1− pBOS(wk))

× pEOS(wj−1)
∏

i≤k<j−1

(1− pEOS(wk))

pNSU(W [i :j]) =
∏

i≤k≤j−1

(1− pBOS(wk)) ×
∏

i≤k≤j−1

(1− pEOS(wk))

In the SU probability pSU , the first word wi is
required to be BOS, the last word wj−1 to be EOS,
and all other words to be neither BOS nor EOS.
Note that this definition of pSU is a natural gener-
alization from §4.1 which only relies on the EOS
probability pEOS .

In contrast, the NSU probability pNSU requires
all words to be neither BOS nor EOS. Notably, this
definition does not distinguish contiguous NSUs in
the sense that pNSU(W [i :k]) = pNSU(W [i : j])×
pNSU(W [j :k]) if W [i : j]⊕W [j :k] = W [i :k].

This is convenient as we are only interested in the
extraction of SUs and do not need to seek the exact
boundaries between consecutive NSUs.

By substituting these definitions of pSU and pNSU ,
we can decompose Eq. (2) as follows:

(2) = argmax
B,A

M∑

i=1

{
ai log pSU(W [bi−1 :bi])

+ (1− ai) log pNSU(W [bi−1 :bi])
}

= argmax
B,A

∑

i∈BA
BOS

log pBOS(wi) +
∑

i/∈BA
BOS

log (1− pBOS(wi))

+
∑

i∈BA
EOS

log pEOS(wi) +
∑

i/∈BA
EOS

log (1− pEOS(wi))

(4)
where BA

BOS = {bi−1 | i ∈ (1, 2, ...,M), ai = 1}
denotes the BOS indices and BA

EOS = {bi − 1 | i∈
(1, 2, ...,M), ai = 1} denotes the EOS indices,
both defined by B and A.

Therefore, our goal is to choose BA
BOS and BA

EOS

which maximize Eq. (4). To this end, we need
to consider the restrictions that (i) the first label
should be BOS, (ii) the last label should be EOS,
and (iii) BOS and EOS labels need to appear alter-
nately. These restrictions can be incorporated in
our dynamic programming framework to find the
argmax of Eq. (4). For the precise algorithm, we
refer the readers to Appendix A.

5 Evaluation

Due to the novelty of the task, currently there exists
no benchmark for evaluating sentence identifica-
tion. To address this issue, we propose a fully
automatic procedure to convert the Universal De-
pendencies (UD) corpora (de Marneffe et al., 2021)
into sentence identification benchmarks.

Concretely speaking, we conduct the following
two steps based on the gold UD annotation: (i) the
detection of unit (SU and NSU) boundaries and (ii)
the classification of each unit into SU or NSU. As
for (i), we simply use the original sentence bound-
aries in the UD annotation, where UD uses the term
sentence in a broader sense including both SUs and
NSUs (e.g. sentence fragments). Note that the ex-
act boundaries between consecutive NSUs (which
we call NSU–NSU boundaries) do not need to be
accurate or consistent, since we are only interested
in extracting the spans of SUs. However, we do
expect that the original boundaries are generally
reliable in all other cases (SU–SU and SU–NSU
boundaries), which seems to be the case.

The main problem is (ii), i.e. how to classify
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Table 2: Examples of gold NSUs in the English Web
Treebank (EWT) identified based on our procedure.
Each line corresponds to one example of NSU.

each unit as an SU or NSU. To this end, we fol-
low the notion of lexical sentence in linguistics
(Nunberg, 1990) which defines an SU based on the
dependencies among the lexical items, e.g. a group
of words that contain a subject and predicate. In
this work, we build upon the UD dependency re-
lations and define an SU as a unit that contains at
least one clausal predicate with a core or non-core
argument.3 Here, a clause expresses an event or
proposition which we regard as an essential aspect
of SUs. A clausal predicate and a core argument
form the backbone of a clause, while a non-core
argument modifies it (de Marneffe et al., 2021).

Note that our current definition excludes noun
phrases appearing by themselves, since they only
consist of the nominal dependent relations. How-
ever, we can flexibly customize the definition of
SUs to include or exclude such phrases.

Due to the reliance on UD, our conversion proce-
dure can be applied to a wide variety of languages
supported in UD (currently over 100 languages).
However, as a first set of experiments, we focus on
the English Web Treebank (EWT) (Silveira et al.,
2014) as the primary benchmark of sentence identi-
fication. This dataset comprises five genres of web
media texts: namely weblogs, newsgroup threads,
emails, product reviews, and Q&A websites. Con-
sequently, the dataset contains formal SUs, infor-
mal SUs (e.g. without capitalization or punctua-
tions) as well as a wide variety of NSUs.

We show some examples of NSUs in Table 2
(and more in Appendix B) identified based on our

3To check this condition, we simply need to verify whether
there is at least one core argument (e.g. nsubj, obj, ccomp) or
non-core dependent (e.g. obl, advcl, aux). For a full list of the
UD relations, see https://universaldependencies.org/u/dep/.

Train Dev Test

Total SUs 10,356 1,523 1,490
Total NSUs 2,187 478 587

Word-
Level

B-Label 10,356 1,523 1,490
I-Label 160,127 18,791 18,222

O-Label 6,939 1,302 1,822

Character-
Level

B-Label 10,356 1,523 1,490
I-Label 773,223 92,309 88,441

O-Label 47,107 9,925 13,232

Table 3: EWT dataset statistics.

procedure. As shown by the results, our procedure
can identify various NSUs including nonlinguistic
markers, timestamps, lists, contact information, etc.
We can also see that noun/prepositional phrases
are classified as NSUs based on our criteria. By
excluding such NSUs and identifying SUs, we can
clearly separate the portions of the text that are
worth sophisticated linguistic analyses, e.g. based
on dependency parsing or manual inspection.

Finally, we summarize the dataset statistics of
EWT in Table 3. Overall, 17∼28% of the units
were classified as NSUs, with the test set containing
the highest proportion of NSUs. We also regard SU
extraction as a word-level or character-level BIO
labeling task and report the number of gold BIO
labels in Table 3.4 At the word-level, we can see
that the proportion of O-labels (indicating NSUs) is
only 4∼8% and much smaller than the proportion
of NSUs in terms of units: this is because NSUs
are usually short and contain only a few words.
At the character-level, the proportion of O-labels
is slightly larger (6∼13%): this is because NSUs
often contain extraordinarily long words like URLs
and long sequences of nonlinguistic symbols.

Overall, we could verify that there exists a non-
negligible amount of NSUs in the EWT dataset,
which we aim to exclude with sentence identifica-
tion in our experiments.

6 Experimental Setup

6.1 Model Setup

As we discussed in §4.2, our sentence identification
method requires pretrained BOS and EOS labeling
models to identify SUs and NSUs. To develop
these models, we simply finetune RoBERTaBASE

4B = Beginning of SU, I = Inside of SU, and O = Outside
of SU. Details of how we assign the gold BIO labels (at the
word-level and character-level) are provided in Appendix C.
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by adding a binary BOS/EOS classifier on top of
the encoder.

To enable our models to handle various lengths
of the input texts, we concatenate the consecutive
L units of gold SUs and NSUs as the input during
training, where L is sampled from a geometric
distribution with parameter pCC .5 However, the
RoBERTa encoder has the restriction that the input
text size cannot exceed 512 subwords. Therefore, if
the input text size is too large, we replace L with the
maximum L′ < L which satisfies this restriction.
Note that this is a common procedure to sample
variable (instead of fixed) lengths of concatenated
units (Joshi et al., 2020).

Assuming the existence of the in-domain sen-
tence identification dataset (EWT Train/Dev), it
is straightforward to train the BOS/EOS labeling
models based on our unit concatenation procedure.
However, we may not always have the gold anno-
tation of SUs and NSUs for the target domain. To
take such cases into account, we also consider a
setup where we only have the standard sentence
segmentation dataset (WSJ Train/Dev) to train the
BOS/EOS labeling models.

When using the sentence segmentation dataset
(WSJ), we need to apply the unit concatenation
procedure using only clean, edited SUs. Unfor-
tunately, this can yield the following data priors
which do not actually hold in a sentence identifi-
cation dataset (EWT): (i) an SU (almost) always
starts with a capitalization and ends with punctua-
tion, (ii) the first word of the input is always BOS
and the last word is always EOS, and (iii) BOS
always directly follows EOS.

To address (i) and (ii), we propose a simple data
augmentation technique to alleviate the discrepancy
in the data priors. To address (iii), we propose
an ensembling technique with the unidirectional
(instead of bidirectional) models which are agnostic
to this data prior.

6.1.1 Data Augmentation (+AUG)
To address (i), we conduct a unit-level data aug-
mentation, i.e. we modify each unit based on the
following rules with a small probability pDA :

• Convert all words in the unit to lower-case,
upper-case, or title-case (e.g. “hello world”,

5With parameter pCC ∈ (0, 1], the probability mass func-
tion of the geometric distribution is p(L = l) = (1 −
pCC )l−1pCC where l ∈ {1, 2, 3, ...}. As pCC decreases,
the distribution gets more skewed towards larger L. With
pCC = 0, we consider p(L = ∞) = 1.

Orig.
B E B

Joe went to school. After that he ...

(i)
Unit B E B

Aug. Joe went to school AFTER THAT HE ...

(ii)
Unit B E B

Trunc. Joe went to school AFTER THAT HE ...

Table 4: Illustration of our data augmentation technique.
In (i) unit-level augmentation, we randomly change the
casing or remove the last punctuations of each unit. In
(ii) unit truncation, we randomly truncate the first and
last units of the input (and regard them as NSUs).

“HELLO WORLD”, or “Hello World”).

• Remove sentence ending punctuations based
on a regular-expression matcher (following
ERSATZ, Wicks and Post, 2021).

After the unit-level augmentation, we can apply the
unit concatenation in the exact same manner.

Finally, to address (ii), we randomly apply a unit
truncation to the first and last units of the concate-
nated input. To be specific, we choose a random
word in the first (last) unit and remove all words
prior (posterior) to it with a small probability pTR .
If the truncation is conducted, we regard the unit as
an NSU and fix the gold BOS/EOS labels accord-
ingly. See Table 4 for an illustration.

Based on this procedure, we can expect to allevi-
ate the data priors (i) and (ii). For more details, we
refer the readers to Appendix D.

6.1.2 Unidirectional Model (+UNI)
Simply concatenating SUs (without NSUs) yields
the data prior (iii), i.e. BOS always directly fol-
lows EOS. This prior can be easily captured by the
bidirectional models pBOS(wi|W ), pEOS(wi|W )
conditioned on the whole input W , including our
RoBERTa-based models. For instance, as shown in
Figure 1, the model may predict EOS at the end of
the first unit (w2 = #) just because the next word
(w3 = This) is likely predicted as BOS.

To alleviate this issue, we propose to combine
the predictions of the unidirectional models for
BOS and EOS labeling. To be precise, let W≤i =
(w0, ..., wi) and W≥i = (wi, ..., wN−1). Then,
we can represent the unidirectional BOS model as
pUni
BOS

(wi|W≥i) (looking the context right-to-left)
and EOS model as pUni

EOS
(wi|W≤i) (looking left-to-

right). As illustrated in Figure 1, these models are
agnostic to the data prior (iii). In practice, we can
simply use different attention masks and share the
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Figure 1: Illustration of the bidirectional EOS model
(left) and the unidirectional EOS model (right).

encoder parameters (except the last classifier) for
the unidirectional and bidirectional models.

We can utilize these unidirectional models by
taking a linear intepolation with the bidirectional
models as follows:

p+Uni
BOS

(wi|W ) = λ · pUni
BOS

(wi|W≥i) + (1−λ) · pBOS(wi|W )

p+Uni
EOS

(wi|W ) = λ · pUni
EOS

(wi|W≤i) + (1−λ) · pEOS(wi|W )

Then, we can use p+Uni
BOS and p+Uni

EOS in place of
pBOS and pEOS (respectively) to conduct sentence
identification, as described in §4.2.

Finally, we compare our proposed methods
against sentence segmentation baselines which only
utilize EOS labels.6 As for the baselines, we use
the EOS labeling model developed in the same
manner to segment the input text based on EOS.
Note that we can optionally force the last word in
the input to be EOS: in this case, the result will
only contain SUs since all segments will end with
EOS. By default, we do not force the last EOS: in
this case, the segment after the last EOS (if exists)
is considered as an NSU.

As a default configuration, we use pCC = 0.5,
pDA = 0.3, pTR = 0.1, and λ = 0.5 in our ex-
periments. To ensure reproducibility, we report
more details on the hyperparameters and model
setup in Appendix D. For the precise procedure on
how we convert between the word-, character-, and
subword-level labels (for RoBERTa), we refer the
readers to Appendix C.

6.2 Evaluation Setup

In the evaluation phase, we consider three ways of
assembling the input texts on which we conduct
sentence identification. Firstly, we can apply the
same unit concatenation procedure as described in
§6.1. To be specific, we use pCC =0.5 (same as the

6This EOS-only method is the most reasonable baseline to
quantify the precise advantage from combining BOS labels in
addition to EOS, which is proposed in our methods.

training phase) and pCC =0 (which concatenates
the units up to the maximal length) to simulate both
shorter and longer lengths of the input texts.

However, this approach is relatively synthetic in
the sense that we take the gold unit boundaries for
granted. They are usually unavailable at the infer-
ence time, so we should consider a more realistic
setting for evaluating the methods without relying
on the gold unit boundaries.

To this end, we propose to evaluate sentence
identification as a postprocessing of sentence seg-
mentation. To be specific, we first apply the state-
of-the-art method ERSATZ (Wicks and Post, 2021)
on the raw text of EWT and then apply sentence
identification to each segmented text. Note that ER-
SATZ has high precision but still predicts false EOS
which can fragment a gold SU: in such cases, we
consider the fragmented SUs as NSUs and fix the
labels accordingly (just as we did in unit truncation,
cf. §6.1 and Table 4).

As for the evaluation metrics, we convert the
predictions of our methods into word/character-
level BIO labels (cf. Appendix C) and compute
the F1 score for each label prediction. Then, we
summarize the results as the macro average F1
and weighted average F1. We also compute the
F1 score of the exact SU span extraction at the
word/character-level. Finally, we run each exper-
iment (from model training to testing) five times
with different random seeds and report the average
and standard deviation as the final results.

7 Results

Table 5 summarizes the word-level evaluation re-
sults. The results for the character-level evaluation
show similar tendencies, so we put them in Ap-
pendix E. The F1 score for each BIO label predic-
tion is also available in Appendix E.

Firstly, we take a look at the results when we
have the in-domain sentence identification dataset
(EWT Train/Dev) for model development. In this
setup, we can verify that our proposed method
(BOS&EOS) significantly outperforms the base-
lines (EOS-Only) in all metrics. For instance, our
method achieves consistently high performance of
84∼89% F1 for the exact SU span extraction, both
at the word- and character-level. This is a very
promising result that demonstrates the effective-
ness of our method when we can leverage the gold
SUs and NSUs from the target domain.

Secondly, we focus on the results where we
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Train/Dev
Datasets Model

EWT Test (pCC = 0.5) EWT Test (pCC = 0) EWT Test (Postprocess)

BIO BIO
Span

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted Macro Weighted

EWT
Train/Dev

EOS-Only 83.2±1.5 93.9±0.6 72.8±1.8 59.7±0.2 86.4±0.1 58.2±1.1 86.3±2.7 94.6±1.1 81.6±2.4

EOS-Only (force last) 58.6±0.1 86.6±0.0 60.4±0.8 57.6±0.2 85.9±0.1 57.7±1.0 59.1±0.1 85.7±0.0 62.3±0.3

BOS&EOS 93.0±1.4 97.3±0.6 87.3±1.6 91.0±1.8 96.4±0.7 84.1±2.6 92.3±1.0 96.7±0.4 88.8±0.9

WSJ
Train/Dev

EOS-Only 71.7±0.7 88.9±0.4 59.2±2.4 56.9±0.6 85.2±0.3 48.2±2.5 71.5±0.3 87.8±0.3 67.8±0.3

EOS-Only (force last) 57.5±0.3 86.2±0.2 53.6±2.1 55.4±0.7 85.0±0.3 48.2±2.5 58.9±0.1 85.7±0.0 61.1±0.2

EOS-Only (+AUG) 66.4±1.5 88.3±0.4 59.5±1.4 58.3±0.5 86.1±0.3 54.4±2.5 71.1±1.3 88.5±0.6 66.2±1.9

BOS&EOS 71.5±0.2 89.1±0.2 59.1±1.5 57.7±0.9 85.4±0.2 48.8±1.6 71.0±0.3 87.9±0.2 68.4±0.3

BOS&EOS (+UNI) 70.4±0.7 88.2±0.3 60.0±1.1 63.3±0.8 86.0±0.4 53.0±1.3 70.8±0.4 87.6±0.2 68.4±0.1

BOS&EOS (+UNI +AUG) 72.5±0.4 89.5±0.1 66.6±0.2 72.4±1.3 89.1±0.5 63.7±1.0 74.3±1.1 89.6±0.4 71.9±1.4

Table 5: Overall Results (Word-Level). We report the macro/weighted average F1 of the BIO labeling task and the
F1 score of the exact SU span extraction task. Details of our experimental setup are discussed in §6.

only utilize the standard sentence segmentation
dataset (WSJ Train/Dev) for model development.
In this setup, we also report the results of applying
our data augmentation (+AUG) and unidirectional
model (+UNI) techniques from §6.1.7

Due to the data discrepancy between WSJ and
EWT, we find a natural drop in performance com-
pared to the previous setup using in-domain EWT
Train/Dev. However, we can verify that our tech-
niques (+AUG, +UNI) generally help to alleviate
this issue, and our proposed method performs on
par or slightly better than the EOS-only baselines
when applying these techniques. It is especially
worth noting the improvement in the exact SU
span extraction task (reaching 64∼72% F1), where
the advantage of our method is the most conspic-
uous and consistent in both word- and character-
level evaluation. This improvement can also be
explained by the higher performance in the B-label
prediction with our method (Appendix E), which
is a prerequisite for accurate SU span extraction.

Finally, we note that the EOS-only baseline with-
out forcing the last EOS can be quite competitive
with shorter inputs (pCC = 0.5 and postprocessing)
but performs considerably worse when the input
texts are longer (pCC = 0). This is because the
baseline can only predict the last segment of the
input as an NSU, which is less problematic when
the input texts are shorter but becomes increasingly
problematic with longer inputs (since most NSUs
will not be able to be removed). In contrast, our
proposed method performs much more robustly
under various input lengths.

Through further experiments and analyses, we

7We did not observe any improvement from applying these
techniques to the in-domain dataset (EWT Train/Dev), which
is consistent with our motivation and expectation.

found that (i) the results are stable across different
hyperparameter choices, (ii) predictions are reason-
able especially when using the in-domain dataset
(EWT Train/Dev) for model development, and (iii)
our methods do not sacrifice performance on the
formal/edited texts of the sentence segmentation
dataset (WSJ Test). These detailed evidences can
be found in Appendix F.

8 Conclusion

In this paper, we introduced a novel task of sen-
tence identification, where we aim to identify SUs
while excluding NSUs in a given text (§3). Through
sentence identification, we can clearly distinguish
the portions of the text that are appropriate (or not)
for the prediction and evaluation of sophisticated
linguistic analyses, such as dependency parsing,
semantic role labeling, etc.

To conduct sentence identification, we proposed
a simple yet effective method of combining the
BOS and EOS labeling models to determine the
SUs and NSUs (§4). To evaluate sentence iden-
tification, we designed an automatic, language-
independent procedure to convert the UD corpora
into sentence identification benchmarks (§5).

In our experiments, we developed the BOS/EOS
labeling models by finetuning pretrained RoBERTa
(§6). Based on the experimental results, we showed
that our proposed method combining the BOS and
EOS labels outperforms sentence segmentation
baselines which only utilize EOS labels in all of
the considered settings (§7). Overall, we expect
sentence identification to be a fundamental frame-
work for the preprocessing of noisy, informal, or
non-standard texts in the real world.
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Limitations

Firstly, our current experiments are limited to En-
glish and cover only five domains of web media
texts in EWT. However, our task formulation (§3),
method (§4), and evaluation framework (§5) are
fully agnostic to the language and domain. Hence
it is straightforward to conduct experiments in dif-
ferent languages or domains (as long as they are
supported in the UD). While we expect similar re-
sults with different languages/domains, we leave
further investigation as a future work.

Secondly, while our method performs reliably
when the in-domain dataset is available, there is
still a huge room left for improvement without re-
lying on such resources (e.g. only using the stan-
dard sentence segmentation dataset). To make our
method fully practical, we still need to improve on
the accuracy and robustness in such cross-domain
scenarios. One potential approach is to refine the
definitions of SU and NSU probabilities from §4.2
to make sentence identification more robust. For
instance, we can incorporate span-level scores in-
stead of only using word-level BOS/EOS probabil-
ities to define the SU/NSU probabilities. We leave
further improvement and extension of our approach
as an important future work.

Finally, our methods are currently evaluated on
the (exact) SU span extraction task. Ideally, we
should also evaluate the methods on downstream
applications such as POS tagging, syntactic pars-
ing, semantic role labeling, etc. However, we still
expect that the (exact) SU span extraction will play
a primary role in the evaluation, since accurate
(say human-level) identification of SUs/NSUs will
likely provide unprecedented benefits on a wide va-
riety of NLP applications dealing with real-world
texts. While we leave the precise analyses on down-
stream applications as future work, our contribu-
tions make the first foundational step towards ex-
panding the capability of the long-established sen-
tence segmentation task.
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A Dynamic Programming Algorithm

To find the maximum value (and the argmax) of
Eq. 4 from §4.2, we rely on a simple dynamic
programming framework. To be specific, we con-
sider the partial labeling of BOS and EOS up to
W≤k = (w0, ..., wk), where k ≤ N − 1. Then,
we aim to compute the maximum log probability
of Eq. 4 based on the partial labeling, i.e. using
W≤k in place of W .

Since the labeling is partial, W≤k may end in-
side the SU (i.e. the last label is BOS) or outside the
SU (i.e. the last label is EOS). Let log pIS(k+1) de-
note the maximum log probability when W≤k ends
inside the SU and log pOS(k + 1) the maximum
log probability when W≤k ends outside the SU.
Then, we can initialize log pIS(0) = log 0 = −∞,
log pOS(0) = log 1 = 0 (since we always start out-
side the SU) and iteratively update the two values
as follows:

log p′
IS
(i) = max { log pIS(i) + log (1−pBOS(wi)),

log pOS(i) + log pBOS(wi) }
log p′

OS
(i) = log pOS(i) + log (1−pBOS(wi))

log pIS(i+1) = log p′
IS
(i) + log (1−pEOS(wi))

log pOS(i+1) = max { log p′
IS
(i) + log pEOS(wi),

log p′
OS
(i) + log (1−pEOS(wi)) }

(5)
Note that we first update pIS(i) → p′

IS
(i) and

pOS(i) → p′
OS
(i) based on the BOS probability

pBOS(wi). Then, we update p′
IS
(i)→pIS(i+1) and

p′
OS
(i)→pOS(i+1) based on the EOS probability

pEOS(wi).8 The iterative procedure is illustrated in
Figure 2.

Finally, we can compute the log probability
log pOS(N) (since we always end outside the SU),
which corresponds to the maximum value of Eq. 4.
To obtain the argmax, we can simply incorporate
backtracking during the iterative updates of Eq. 5.
Through this dynamic programming framework,
we can ensure that the restrictions from §4.2 are
satisfied: namely, (i) the first label should be BOS,
(ii) the last label should be EOS, and (iii) BOS and
EOS labels need to appear alternately.

In practice, we can limit the candidates of BOS
indices to the subset where pBOS(wi) is higher
than a certain threshold c. This can be efficiently
implemented by simply skipping the updates of
p′
IS
(i) and p′

OS
(i), i.e. using p′

IS
(i) = pIS(i) and

p′
OS
(i) = pOS(i), if pBOS(wi) < c.9 Likewise, we

8Note that if a single word wi is labeled as both BOS and
EOS at the same time, we can extract it as a single SU.

9This is equivalent to forcing wi to be non-BOS, i.e. setting

can limit the candidates of EOS indices by skip-
ping the updates of pIS(i+1) and pOS(i+1) if
pEOS(wi) < c. Generally speaking, this leads to
a more efficient algorithm: therefore, we use the
candidate threshold of c = 0.1 for restricting both
BOS and EOS indices throughout our experiments.

B SU and NSU Examples

In Table 6, we provide more examples of SUs and
NSUs identified based on our procedure described
in §5. As for the SUs, we can verify that EWT con-
tains clean, formal SUs with appropriate capitaliza-
tion and punctuation. We can also verify that EWT
contains various types of informal SUs, e.g. that
lack capitalization/punctuation, use non-standard
casing, end with emoticons, include spelling errors,
concatenate consecutive SUs without a space, etc.

C Label Assignment and Conversion

In this section, we explain the precise procedure
on how we (i) assign the gold character-level
labels, (ii) convert the character-level labels to
word/subword-level labels, and (iii) convert the
subword-level labels to character/word-level labels.
We limit our explanation to BIO labels, since it is
straightforward to convert them to the combination
of BOS and EOS labels (and vice versa).

Firstly, we can assign the gold character-level
labels from the UD annotation by taking the
character-level alignment, which determines the
exact spans of SUs and NSUs. From the character-
level labels, we can assign the word- or subword-
level labels based on the following rule:

• If the word (or subword) contains a character
with the B-label, assign it the B-label.

• Else if it contains a character with the I-label,
assign the I-label.

• Otherwise assign the O-label.

For instance, this procedure is used to create the
subword-level labels for training our BOS/EOS
labeling models.

To evaluate our methods, we need to convert
the subword-level labels produced by our methods
into the character-level labels, which can then be
converted into the word-level labels (based on the
previous procedure). To convert a subword-level
label into a sequence of character-level labels, we

pBOS(wi) = 0 in Eq. 5.

353



Figure 2: Illustration of the dynamic programming procedure.

SUs

President Bush on Tuesday nominated two individuals to replace retiring jurists on federal courts in the Washington area.
Unfortunately, Mr. Lay will be in San Jose, CA participating in a conference, where he is a speaker, on June 14.
“In 1972, there was an enormous glut of pilots,” Campenni says.
PS – There is a happy hour tonight at Scudeiros on Dallas Street (just west of the Met Garage) beginning around 5:00.
2) Your vet would not prescribe them if they didn’t think it would be helpful.
BUT EVERYONE HAS THERE OWN WAY!!!!!!
The motel is very well maintained, and the managers are so accomodating, it’s kind of like visiting family each year! ;-)
where can I find the best tours to the Mekong Delta at reasonable prices?
it seems like its healthier too, but its prolly not.
I have wifi at my house, but thats just at my house...is there anyway i can buy some card to make the ipod itself have wifi?

NSUs

—->===}*{===<—-
- Lisa_coverletter.doc << File: Lisa_coverletter.doc >>
Thur. Sept. 28 - Paris (Versailles or Fontainbleu - half day side trip)
9.3m - Number of US unemployed in April 2004.
Game 1: Monday, May 28 @ 2:00PM vs. Los Angeles SPARKS
Mixed Tempura.....................8.25 Shrimp or vegetable tempura & salad.
Infinity stereo, bucket seats, nerf bars, tool box, bed liner, camper tow package, 5 speed manual.
printing, printing, copies, printing, copies, printing,
A++++ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Dear Sir / Madam,

Table 6: Examples of gold SUs and NSUs in the English Web Treebank (EWT) identified based on our procedure
(§5). Each line corresponds to one example of SU or NSU.

apply the following rule (where n denotes the num-
ber of characters in the subword):

• If the subword has the B-label, the character-
level labels are 1 B-label followed by n − 1
I-labels.

• If the subword has the I-label, the character-
level labels are n I-labels.

• If the subword has the O-label, the character-
level labels are n O-labels.

D Details on the Model Setup

As discussed in §6.1, we finetune the pretrained
RoBERTaBASE publicly available on the Hugging-
Face model hub10. We add a binary BOS/EOS
classifier on top of the encoder, which is a single-
layer MLP with a hidden size of 768. We share the
encoder parameters and use different classifiers for
the BOS/EOS predictions. The BOS/EOS models
are trained jointly by summing their losses.

10https://huggingface.co/models

When we combine the unidirectional models
(+UNI), we take the same approach and use differ-
ent classifiers for the unidirectional/bidirectional
models. Again, the encoder parameters are shared
and all models are trained jointly.

As for the training data preparation, we apply the
unit concatenation and data augmentation (+AUG)
on the fly, i.e. we see different concatenation and
augmentation of the units in each iteration. The
same procedure is applied on the validation set.

During data augmentation, we remove the last
sentence ending punctuation based on the following
regular-expression, similar to the candidate bound-
ary detector in ERSATZ (Wicks and Post, 2021):

• (.∗PeP
∗) where P denotes the set of punctua-

tions and Pe ⊂ P denotes the sentence ending
punctuations.

Since our experiments are conducted on English,
we use P = {.?!")’} and Pe = {.?!}.

Finally, all models are implemented in Pytorch
and trained on a single Tesla V100-SXM2-32GB

354



GPU. We use a batch size of 8, accumulate the
gradients for 32 batches, and apply the gradient
clipping at 1.0 before updating the model weights.
As for the optimizer, we use Adam with the initial
learning rate of 0.0001 and exponentially decay the
learning rate by γ = 0.95 after each epoch. We
check the validation loss every 200 batches and
stop the training early if there is no improvement
for 5 consecutive evaluations.

E The Full Experimental Results

In this section, we report the full results of our
experiments which did not fit in §7. Table 7 shows
the word-level F1 scores for each B-, I-, and O-
label prediction. Table 8 shows the overall results
for the character-level evaluation.

Generally speaking, we can confirm the same
results as observed in §7. Firstly, our proposed
method significantly outperforms the baselines
when we use the EWT Train/Dev dataset for model
development. Secondly, our method performs
slightly better than (or at least on par with) the
baselines when developed on the WSJ Train/Dev
dataset. Finally, the baseline without forcing the
last EOS is competitive with shorter inputs (pCC =
0.5 and postprocessing) but performs considerably
worse when the input texts are longer (pCC = 0).

F Further Experiments and Analyses

In this section, we provide further experiments
and analyses to complement our study. To be spe-
cific, we provide discussions on the effect of the
choice of hyperparameters (F.1), qualitative anal-
yses based on example model outputs (F.2), and
evaluation of sentence identification based on the
sentence segmentation dataset (F.3).

F.1 Effect of Hyperparameters

As a default configuration, we used pDA =
0.3, pTR =0.1 for the data augmentation (+AUG)
and λ = 0.5 for the unidirectional model ensem-
bling (+UNI). To examine the effect of the choice
of these hyperparameters, we conducted further
experiments by changing these default hyperpa-
rameters. Note that all evaluation results in this
subsection are based on BOS&EOS (+UNI +AUG)
developed on WSJ Train/Dev.

Firstly, we focus on the data augmentation and
report the results of our method trained with dif-
ferent sets of pDA and pTR (with λ fixed at 0.5).
Since increasing pDA leads to higher recall (and

lower precision) of SU extraction and increasing
pTR leads to higher precision (and lower recall),
we used a fixed ratio of pDA : pTR = 3 : 1 which
seemed to make a good trade-off. As shown in
Table 9, the results are generally stable with the
different choices of the hyperparameters. However,
more data augmentation (with larger values of pDA

and pTR) tends to slightly improve the performance,
especially for the exact SU span extraction.

Secondly, we focus on the unidirectional model
ensembling and report the results of changing the
linear interpolation rate λ ∈ [0, 1], where λ = 0 is
equivalent to using only the bidirectional models
and λ = 1 only the unidirectional models. We fix
pDA =0.3 and pTR =0.1 and only change λ at the
inference time without retraining the unidirectional
or bidirectional models. As shown in Figure 3, we
found that unidirectional and bidirectional models
generally have complementary benefits, and choos-
ing the intermediate value of λ leads to the best
performance. The results also indicate that we may
be able to obtain further improvement by tuning
λ on the validation set, although we simply fixed
λ = 0.5 throughout our experiments.

F.2 Qualitative Analyses
In Table 10 and 11, we show the actual predictions
made by our proposed method developed on EWT
Train/Dev and WSJ Train/Dev. For the latter, we
applied +UNI and +AUG with the default hyperpa-
rameters.

In the first example (Table 10), we can verify
that both models identify the correct SU span while
removing the non-sentential header as the NSU.
This is a relatively easy example, since the start of
the SU is capitalized and less ambiguous.

In the second example (Table 11), we can ob-
serve that our method using in-domain data (EWT
Train/Dev) extracts the correct SU span, while our
method developed on out-of-domain data (WSJ
Train/Dev) incorrectly excludes a part of an SU.
This seems to be a relatively difficult example,
since the start of the SU is not capitalized and more
ambiguous. It is worth noting that such SUs can
be reliably extracted when we can leverage the in-
domain annotation of gold SUs and NSUs.

F.3 Evaluation on the Sentence Segmentation
Dataset

Finally, we report the results of sentence identifica-
tion on the standard sentence segmentation dataset
(WSJ Test).
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Train/Dev
Datasets Model

EWT Test (pCC = 0.5) EWT Test (pCC = 0.0) EWT Test (Postprocess)

B-Label I-Label O-Label B-Label I-Label O-Label B-Label I-Label O-Label

EWT
Train/Dev

EOS-Only 85.6±0.8 97.3±0.3 66.6±3.5 78.0±0.6 95.1±0.1 6.0±0.4 90.2±1.2 97.5±0.5 71.3±6.6

EOS-Only (force last) 79.8±0.2 95.9±0.0 0.0±0.0 77.8±0.6 95.1±0.1 0.0±0.0 81.7±0.2 95.7±0.0 0.0±0.0

BOS&EOS 94.3±0.6 98.7±0.3 86.1±3.5 93.0±1.0 98.2±0.4 81.7±4.0 94.7±0.3 98.4±0.2 83.9±2.4

WSJ
Train/Dev

EOS-Only 78.7±1.3 94.4±0.4 42.1±1.3 71.8±1.9 94.3±0.2 4.5±0.4 83.3±0.2 93.8±0.3 37.3±0.9

EOS-Only (force last) 76.7±0.9 95.6±0.1 0.0±0.0 71.7±1.9 94.6±0.2 0.0±0.0 81.0±0.4 95.6±0.0 0.0±0.0

EOS-Only (+AUG) 79.4±1.0 95.4±0.2 24.5±4.1 78.1±1.8 93.3±0.2 1.4±1.1 82.7±1.1 94.9±0.5 35.6±3.2

BOS&EOS 79.4±0.9 94.8±0.2 40.5±0.6 72.9±1.2 94.3±0.2 5.8±2.0 83.9±0.2 94.1±0.2 35.2±0.9

BOS&EOS (+UNI) 79.8±0.6 93.9±0.2 37.5±1.5 76.2±1.3 93.3±0.3 20.2±1.2 83.8±0.1 93.8±0.1 34.7±0.9

BOS&EOS (+UNI +AUG) 83.7±0.1 95.0±0.2 38.7±1.2 83.0±0.6 94.6±0.3 39.7±3.5 85.9±0.6 95.2±0.2 41.9±2.8

Table 7: BIO Labeling Results (Word-Level). We report the F1 scores for each B-, I- and O-label prediction.

Train/Dev
Datasets Model

EWT Test (pCC = 0.5) EWT Test (pCC = 0.0) EWT Test (Postprocess)

BIO BIO
Span

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted Macro Weighted

EWT
Train/Dev

EOS-Only 83.8±1.1 92.7±0.5 72.8±1.8 58.5±0.2 81.5±0.0 58.2±1.1 87.7±2.3 93.9±1.2 81.6±2.4

EOS-Only (force last) 57.7±0.1 81.0±0.0 60.4±0.8 56.9±0.2 80.9±0.0 57.7±1.0 58.1±0.1 79.9±0.0 62.3±0.3

BOS&EOS 94.0±1.0 97.2±0.6 87.3±1.6 92.2±1.5 96.3±0.7 84.1±2.6 93.5±0.6 96.6±0.4 88.9±0.8

WSJ
Train/Dev

EOS-Only 72.8±0.6 86.9±0.4 59.1±2.3 56.0±0.6 80.9±0.1 48.2±2.5 73.3±0.4 85.6±0.2 67.7±0.4

EOS-Only (force last) 56.6±0.3 80.9±0.0 53.5±2.0 54.9±0.6 80.7±0.1 48.2±2.5 57.8±0.2 79.9±0.0 61.0±0.3

EOS-Only (+AUG) 64.3±1.5 83.5±0.6 59.5±1.4 57.4±0.5 81.0±0.2 54.4±2.5 69.2±1.7 84.0±0.8 66.2±1.9

BOS&EOS 72.7±0.7 87.1±0.2 59.1±1.5 57.8±1.9 81.6±0.7 48.8±1.6 72.4±1.0 85.2±0.5 68.3±0.3

BOS&EOS (+UNI) 72.4±0.6 86.3±0.3 59.6±1.0 65.3±1.0 83.6±0.5 52.9±1.3 72.8±0.4 85.3±0.2 68.0±0.2

BOS&EOS (+UNI +AUG) 72.2±1.3 86.1±0.6 66.5±0.3 72.8±1.8 86.5±0.9 63.6±1.0 73.2±1.9 85.7±0.9 71.8±1.5

Table 8: Overall Results (Character-Level). We report the macro/weighted average F1 of the BIO labeling task and
the F1 score of the exact SU span extraction task.

In Table 12, we summarize the WSJ dataset
statistics. Note that WSJ only contains SUs and
do not contain any NSUs (O-labels). However, we
can still evaluate the performance using the same
metrics, i.e. the macro/weighted average F1 of the
BIO labeling task and the F1 of the exact SU span
extraction task.11

Table 13 summarizes the word-level evaluation
results. Since we are evaluating on WSJ Test, the
performance is naturally better when the models
are trained on WSJ Train/Dev rather than EWT
Train/Dev (which is now out-of-domain).

When the models are trained on EWT, we found
that the baseline (EOS-Only) forcing the last EOS
performs the best. This is natural, since this base-
line better reflects the nature of the sentence seg-
mentation dataset where all units are SUs. How-
ever, our method (BOS&EOS) is still comparable
to this baseline and do not (or minimally) sacrifice
performance on such datasets.

When the models are trained on WSJ, we found
that our method without +UNI or +AUG performs

11Since the O-label does not exist, we report the macro
average F1 as the average F1 scores of the B-label and I-label
predictions.

the best. This is most likely because we can lever-
age the knowledge of BOS to predict EOS. When
we apply the data augmentation (+AUG) and uni-
directional model ensembling (+UNI), we observe
a slight decrease in performance compared to our
vanilla method. However, the results are still com-
parable and even outperforms the baselines in some
metrics (e.g. the exact SU span extraction task).

Overall, we can conclude that our methods do
not sacrifice the performance on the the clean,
edited texts of the sentence segmentation dataset.
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Evaluation Augmentation Rates
EWT Test (pCC = 0.5) EWT Test (pCC = 0) EWT Test (Postprocess)

BIO BIO
Span

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted Macro Weighted

Word-Level
pDA =0.15, pTR =0.05 71.3±1.1 89.0±0.5 65.7±1.3 71.5±0.9 88.6±0.5 62.3±1.7 73.5±1.4 89.2±0.6 71.2±1.8

pDA =0.3, pTR =0.1 72.5±0.4 89.5±0.1 66.6±0.2 72.4±1.3 89.1±0.5 63.7±1.0 74.3±1.1 89.6±0.4 71.9±1.4

pDA =0.45, pTR =0.15 73.2±1.0 90.0±0.1 67.3±0.8 73.0±0.9 89.5±0.6 64.0±1.8 75.1±1.3 90.0±0.4 72.1±0.7

Character-
Level

pDA =0.15, pTR =0.05 72.3±1.9 86.3±1.0 65.4±1.4 73.6±0.7 86.8±0.3 62.2±1.7 73.8±1.5 86.1±0.8 71.0±1.8

pDA =0.3, pTR =0.1 72.2±1.3 86.1±0.6 66.5±0.3 72.8±1.8 86.5±0.9 63.6±1.0 73.2±1.9 85.7±0.9 71.8±1.5

pDA =0.45, pTR =0.15 71.9±1.1 86.1±0.3 67.2±0.8 72.3±0.9 86.3±0.6 64.0±1.8 73.6±1.5 86.0±0.6 72.1±0.7

Table 9: Effect of Data Augmentation Rates (Word/Character-Level). We use different data augmentation rates
(p

DA
and p

TR
) and evaluate BOS&EOS (+UNI +AUG) developed on WSJ Train/Dev. We report the macro/weighted

average F1 of the BIO labeling task and the F1 score of the exact SU span extraction task.

B

Developed ... 06/04/2001 05:54 PM Can you pass this along to Elizabeth to ensure Sanders

on EWT E

is on board as well?

B

Developed ... 06/04/2001 05:54 PM Can you pass this along to Elizabeth to ensure Sanders

on WSJ E

is on board as well?

Table 10: Example Outputs (Both Correct). We show the predictions made by our proposed method (BOS&EOS)
developed on EWT Train/Dev (top) or WSJ Train/Dev (bottom). We can verify that both methods identify the
correct SU span while removing the non-sentential header as the NSU.

B

Developed with my breakfast I like bacon and sausage when I having a big breakfast like

on EWT E

a grand slam with pancakes and the works.

B

Developed with my breakfast I like bacon and sausage when I having a big breakfast like

on WSJ E

a grand slam with pancakes and the works.

Table 11: Example Output with One Incorrect Case. We show the predictions made by our proposed method
(BOS&EOS) developed on EWT Train/Dev (top) or WSJ Train/Dev (bottom). We can verify that the former extracts
the correct SU span, while the latter incorrectly excludes the first prepositional phrase as an NSU.

Train Dev Test

Total SUs 37,447 2,021 7,442
Total NSUs 0 0 0

Word-Level
B-Label 37,447 2,021 7,442
I-Label 805,387 44,354 163,132

O-Label 0 0 0

Character-Level
B-Label 37,447 2,021 7,442
I-Label 4,308,729 236,798 876,461

O-Label 0 0 0

Table 12: WSJ dataset statistics.
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(a) EWT Test (pCC =0.5), BIO Macro (b) EWT Test (pCC =0.5), BIO Weighted (c) EWT Test (pCC =0.5), Span

(d) EWT Test (pCC =0.0), BIO Macro (e) EWT Test (pCC =0.0), BIO Weighted (f) EWT Test (pCC =0.0), Span

(g) EWT Test (Postproc.), BIO Macro (h) EWT Test (Postproc.), BIO Weighted (i) EWT Test (Postproc.), Span

Figure 3: Effect of the Unidirectional Model Interpolation Rate (Word-Level). We change λ ∈ [0, 1] and report
the macro/weighted average F1 of the BIO labeling task and the F1 score of the exact SU span extraction task.
Interpolated results are shown in blue and non-interpolated results (i.e. λ = 0) shown in red. The line shows the
mean and the shade shows the standard deviation from the five experimental runs.

Train/Dev
Datasets Model

WSJ Test (pCC = 0.5) WSJ Test (pCC = 0)

BIO BIO
Span

BIO BIO
Span

Macro Weighted Macro Weighted

EWT
Train/Dev

EOS-Only 97.4±0.1 99.5±0.0 87.3±0.3 97.3±0.0 99.5±0.0 87.2±0.2

EOS-Only (force last) 97.6±0.1 99.9±0.0 87.8±0.3 97.3±0.0 99.6±0.0 87.3±0.2

BOS&EOS 97.1±0.2 99.4±0.0 86.7±0.5 97.0±0.1 99.3±0.0 86.5±0.3

WSJ
Train/Dev

EOS-Only 98.4±0.6 99.7±0.1 92.1±2.9 98.2±0.4 99.7±0.1 90.6±1.8

EOS-Only (force last) 98.4±0.6 99.7±0.1 92.1±2.9 98.2±0.4 99.7±0.1 90.6±1.8

EOS-Only (+AUG) 98.2±1.1 99.1±1.0 92.6±2.5 97.3±1.9 99.3±0.8 87.8±6.3

BOS&EOS 99.2±0.2 99.7±0.3 95.5±0.5 98.7±0.1 99.7±0.2 93.1±0.4

BOS&EOS (+UNI) 98.5±0.3 98.9±0.5 92.9±1.0 98.1±0.3 98.8±0.5 91.4±0.8

BOS&EOS (+UNI +AUG) 98.7±0.2 99.3±0.4 94.0±0.7 98.2±0.3 99.1±0.3 91.8±1.1

Table 13: Overall Results on WSJ Test (RoBERTa, Word-Level). We report the macro/weighted average F1 of the
BIO labeling task and the F1 score of the exact SU span extraction task.
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