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Abstract

While there has been a recent burgeoning of ap-
plications at the intersection of natural and pro-
gramming languages, such as code generation
and code summarization, these applications are
usually English-centric. This creates a barrier
for program developers who are not proficient
in English. To mitigate this gap in technol-
ogy development across languages, we propose
a multilingual dataset, MCoNaLa, to bench-
mark code generation from natural language
commands extending beyond English. Mod-
eled off of the methodology from the English
Code/Natural Language Challenge (CoNaLa)
dataset, we annotated a total of 896 NL-Code
pairs in three languages: Spanish, Japanese,
and Russian. We present a systematic evalu-
ation on MCoNalLa by testing state-of-the-art
code generation systems. Although the diffi-
culties vary across three languages, all systems
lag significantly behind their English counter-
parts, revealing the challenges in adapting code
generation to new languages.

1 Introduction

There are an increasing number of applications
related to “code intelligence”, such as code sum-
marization (Allamanis et al., 2016; Hu et al., 2018;
Ahmad et al., 2020) and natural language (NL)
to code generation (Ling et al., 2016; Rabinovich
et al., 2017; Yin et al., 2018a; Xu et al., 2020;
Norouzi et al., 2021; Wang et al., 2021), accompa-
nied by code-specific tasks and benchmarks (Oda
et al., 2015; Zhong et al., 2017; Yin et al., 2018b;
Lu et al., 2021). However, in the cases where
these benchmarks include natural language, that
language is almost invariably English.

There are a few exceptions, but most of them ei-
ther focus on languages of specific domains (Sher-
borne and Lapata, 2021; Sherborne et al., 2020;

*Equal contribution.

'Code and data are available at https://github.com/zorazrw/
multilingual-conala

+Como sumar el campo ‘precio’ de todos los elementos del

modelo ‘Precompra’ en Django?
Spanish | (How to sum the "precio’ field of all the elements of the
‘Precompra’ model in Django?)

totaldos = Precompra.objects.aggregate(Sum(precio)).values()[0])

2R TEEH T arr DBEF L7325 TOARITTELS IO I D D S At &

(Extract only the first value from the 1D array that is the element
Japanese o
of the 2D array ‘arr’)

arr[:, 0]

YCTaHOBUTDH KOZIMPOBKY “My_encode’ /1715l TepeMeHHbIX
OKpY>XEHMs T0JIb30BaTeNs ‘username’

Russian (Set ‘my_encode’ encoding for ‘username’ environment variables)

os.environ(‘username’).decode(my_encode)

Figure 1: Examples in the MCoNalLa dataset, that aim
to generate general-purpose Python code snippets from
source intent of multiple natural languages.

Moradshahi et al., 2020) or types of code (Oda
et al., 2015; Liang et al., 2021), or contain NL in-
tents collected via automatic translation (Li et al.,
2021) (Appendix A). However, similarly to how
Kwiatkowski et al. (2019) argue that “natural ques-
tions” are necessary to appropriately benchmark
QA systems, we argue that ensuring the naturalness
and coverage of questions is essential for bench-
marking code generation systems as well.

A dataset for English code generation based
on natural programming questions is the CoNaLa
dataset (Yin et al., 2018a). It is based on natural
developer questions harvested from the Stack Over-
flow (SO) question answering forum. In fact, in
addition to English, SO also supports four other lan-
guages (Spanish, Portuguese, Japanese, and Rus-
sian) that have strong developer communities and
engage in non-English programming environments.
In this work, we utilize this resource to construct
the MCoNalLa dataset, consisting of 341, 210, and
345 manually curated parallel samples with nat-
ural intents in Spanish, Japanese, and Russian,
along with corresponding Python code snippets.
Like CoNala, these snippets are collected from
language-specific SO sites and annotated by na-
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tive speakers who are also proficient in the Python
programming language.

To provide insights in the state of code gen-
eration on this new resource, we conduct com-
prehensive experiments with three state-of-the-art
text generation models in the context of cross-
lingual transfer, by unifying training and testing
NL via translation (Ruder and Sil, 2021; Shi et al.,
2021; Shima and Mitamura, 2010; Hartrumpf et al.,
2008), or utilizing a multilingual NL encoder such
as MBART (Liu et al., 2020). Our results sug-
gest that cross-lingual NL-to-Code generation is
challenging. Among all languages and experiment
settings, the highest average BLEU score is 7.28,
far behind that of English, which achieves 33.41,
presumably because English resembles Python
more than other NLs. In addition, we find models
with task-specific modules and training outperform
generic seq2seq models, yet the discrepancy be-
tween languages are consistent across all baseline
models. In all, our corpus and experiments demon-
strate the varied difficulty of the NL-to-Code gener-
ation task under different languages, emphasizing
the need to develop a language-comprehensive ap-
proach to code intelligence.

2 The MCoNaLa Dataset

2.1 Task Definition

Concerning the task of answering natural language
questions with machine-executable programs, our
focus is to build a benchmark dataset to evaluate
models for their ability to encode NL intents in
multiple languages and generate code snippets. For
each example in Figure 1, the infent above asks
how to achieve a particular goal, and the snippet
below responds with a piece of Python code.

2.2 Annotation Workflow

Our goal is to collect intent-snippet parallel data
in multiple natural languages. In this section, we
outline the main workflow for data annotation: (1)
language source selection, (2) valid SO post identi-
fication, and (3) parallel sample annotation.

Language source and selection Besides the En-
glish version, Stack Overflow also has forums avail-
able in four other languages: Spanish, Portuguese,
Japanese, and Russian. Data annotation in each
language requires a native speaker of that language,
who should also be proficient in both English and
Python. Due to the high cost and difficulty of hiring

3 Verificar que un archivo ‘fname’ exista
C\ Verify that a file ‘fname’ exists
i

rewritten
intent R\

Usando Python, ¢cémo verifico si un archivo existe?, sin usar la sentencia try .

i
i
i
i ¢Cémo verificar que un archivo exista en Python?i
IHow to check that a file exists in Python? i

question

7! Using Python, how do | check if a file exists, without using the try .

+ Check whether a file exists using Python de spence91 { pair }

> {

s.path. isfile

answer

import_os. path
[o5-path. isfite(fnane)

—TTH

Figure 2: Illustration of the annotation process.

reliable annotators with such a specialized skill set,
we only employ one Upwork annotator for each of
Spanish, Japanese, and Russian. From the official
SO data dump2 dated March 2021, we obtained all
posts in these languages. However, we were unsuc-
cessful in finding a Portuguese-speaking annotator
at the time of corpus collection.

Identifying how-to questions Following Yin
et al. (2018a), annotators are first asked to iden-
tify valid posts that contain how-to type questions,
which are imperative utterances seeking particular
goals achievable by code. They are often in the post
title or description, such as the example in Figure 2.

Posts are sent in 100-sample batches, and then
categorized by annotators. To improve annotation
efficiency, we bootstrapped a MBART how-to ques-
tion classifier, with English examples, then itera-
tively multilingual samples. It achieves an accuracy
of 72.50%. We then automatically filter the proba-
ble invalid posts using this classifier and designate
the rest for manual annotation. We collect all valid
posts and extract questions as raw intents, for sub-
sequent parallel data annotation.

Collecting intent-snippet pairs For each post,
we ask the annotators to find at most three snip-
pets of Python code that correctly answer the ex-
tracted question. However, questions from post
title or description are often ambiguous, especially
in respective context of answer snippet, such as
the example in Figure 2, that the question does
not specify the names of “data” and “list” vari-
ables to allow precise code implementation. To
disambiguate the intent and align it with a snip-
pet, we ask annotators to rewrite the intent by:
(1) specifying variable names appearing in the an-
swer snippet, and (2) clarifying commands with
reference question descriptions. Concretely, vari-
able names and data types in the rewritten intent

2https :/larchive.org/details/stackexchange
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train

<English> translate-test

Concatenate elements of a list 'x" of
multiple integers to a single integer.
sum(d * 10 ** i for i, d in enumerate(x[::-1]))

<Spanish>, translated from English

Concatena los elementos de una lista x" de
varios enteros en un solo entero.

sum(d * 10 ** i for i, d in enumerate(x[:-11)) translate-train

<English>, translated from Spanish
How to sum the “precio’ field of all elements of the ‘Precompra’
model in Django?

totaldos = Precompra.objects.aggregate(Sum(precio)).values()[0])

171

<Spanish>
Cémo sumar el campo “precio” de todos los elementos del modelo
‘Precompra’ en Django?

totaldos = Precompra.objects.aggregate(Sum(precio)).values()[0])

Figure 3: Example usage on the original English and Multilingual samples in three settings.

need to be surrounded by the ASCII grave accent
marks (e.g., “data”), string literals or file paths
should use singular typographic quotation marks
(e.g., ‘filel.txt’, ‘https://www.abc.com/’).

The final MCoNaLa dataset consists of 341, 210,
and 345 intent-snippet pairs in Spanish, Japanese,
and Russian. It is noteworthy that the goal of
MCoNal.a is to benchmark cross-lingual NL-to-
Code generation task and mainly for testing pur-
poses, instead of curating large-scale dataset for
training. While its size is relatively small given the
collection difficulty, we show that it can reliably
inform significant method improvements (§ 3.3).
We believe it is important for our dataset to be rep-
resentative of the naturally occurring questions in
respective language environments.

2.3 Quality Analysis

To ensure high data quality as intended, we checked
15 random samples from each language subset.
Each rater score NL intents and code snippets from
1 to 5 based on their correctness and specificity.

The results demonstrate the high quality of our
dataset, achieving 4.78, 4.65, 4.78 points on Span-
ish, Japanese, and Russian intents; and 4.84, 4.89,
4.78 points on their corresponding code snippets.
Meanwhile, three raters present high agreement —
the Fleiss’ Kappa measure is 64.29 for NL intents
and 69.49 for code snippets — both numbers indi-
cate substantial agreement among the raters.

3 Method

To provide insights about evaluating on MCoNala,
we demonstrate potential dataset usage in three
train-test settings (§ 3.1), and propose to adapt three
baseline models from either multilingual (NL) or
code understanding to achieve both ends (§ 3.2).
Because the size of MCoNalL a allows only test-
ing purposes, we resort to its larger English counter-

part, CoNaLa (Yin et al., 2018a), to allow training.
CoNal.a contains 2,879 manually annotated sam-
ples and 600k samples extracted from English SO
forum and API documents, which can serve as a
sufficient source for training. Given this usage, we
denote the three test languages as target languages.

3.1 Train-Test Settings

We adopt three settings from two paradigms (Hu
et al., 2020) as illustrated in Figure 3: (1) trans-
lating intents in train (translate-train) or test
(translate-test) sets to bridge the language gap, (2)
using multilingual encoder to transfer from English
to target languages (zero-shot).

For each target language, we can align the lan-
guages of training and testing intents and use a
monolingual encoder. The translate-train setting
translates English intents in CoNaLa to each target
language for training and then tests with MCoNaLa
samples. translate-test translates MCoNalLa intents
in three target languages into English. Because it
is not feasible to manually translate 600/ + intents,
we use existing multilingual machine translation
(MMT) models to automate translation. We bench-
marked several open-source options, as elaborated
in § 4.2, and settled on the M2M-124 model used
on the FLORES-101 dataset (Goyal et al., 2022).

Also, we can train models on English samples
and directly evaluate on MCoNalL.a samples in tar-
get languages zero-shot, requiring models to en-
code multiple NLs, further, transfer the code gener-
ation ability from English context to target ones.

3.2 Baseline Models

We introduce three baseline methods targeting the
above train-test settings. We encourage readers to
refer to the original papers for more details.

In a monolingual context, models should func-
tion in target languages for translate-train and En-
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glish for translate-test. TRANX (Yin and Neubig,
2018) is a BILSTM-based encoder-decoder model
that uses a transition-based abstract syntax parser
to map NLs into formal meaning representations
(MR) such as Python programs. It is agnostic to
input languages and hence can be evaluated on both
translated settings. TAE (Norouzi et al., 2021) is
the state-of-the-art method on CoNaLa by training
a generic transformer with an added target autoen-
coder (TAE) objective. However, it is built with
(English-)BERT and is intended for English scenar-
ios, therefore only tested on translate-test.

As is required by zero-shot evaluation, we adopt
a multilingual model, MBART (Liu et al., 2020),
which is a seq2seq model pre-trained on 25 natu-
ral languages including our target ones. Note that
MBART can also function in monolingual contexts,
for both translate-train and translate-test settings.

3.3 Experiment

We train baseline models in their available settings,
then tokenize the generated and reference code
snippets following Yin and Neubig (2018) to eval-
uate the BLEU-4 scores. We report the average
scores of five rounds using different random seeds.

Model Setting Language
en ‘ es ja ru avg.
translate-test 2.38 3.07 2.04 250
MBART translate-train 25.20 | 2.64 3.45 2.65 2091
zero-shot 249 1.83 228 220
translate-test 246 834 8.12 631
TRANX anslate-train 220 ‘ 244 611 602 4386
TAE  translate-test 33.41 | 239 9.90 9.56 7.28

Table 1: BLEU scores of baselines for various train-test
settings in English (en) and target languages (es, ja, ru).

In Table 1, first, scores on target languages av-
erage to at most 7.28, much lower than 33.41
on English, revealing the similarity of English
and Python, and the difficulty of generating code
from other languages. Second, models with code-
specific designs and training (TRANX and TAE)
performs better in general. The lower scores of
MBART potentially suggest a certain representa-
tion gap between NL and PL. Third, results on two
code-specific models show consistent variations
across languages: scores are lower for Spanish,
but rise similarly on Japanese and Russian. As we
will discuss in § 4.1, this is possibly due to the
distributional gap between languages with varied
complexity.

3.4 Significance Test

To verify the effectiveness of MCoNaLa, we per-
form significance tests (Dror et al., 2018) to show
its capability of showing significant differences
between systems. We conduct paired bootstrap re-
sampling tests with each pair of models in their
available settings, using a sample rate of 0.5 and a
sample size of 10, 000.

Setting Languag ‘ Win Rate (%) ‘ Tie ‘p-value
| MBART TRANX TAE | |
0532 0402 - [0066 | 0468
es 0522 - 0396|0102 | 0478
- 0508 0448 | 0.044 | 0492
| 0.000 1000 - |0.000 | 0.000
translate-test ja 0.000 . 1.000 | 0.000 | 0.000
- 0.002  0.998 | 0.000 | 0.002
0.000 1000 - |0.000| 0.000
ru 0.000 - 1.000 | 0.000 | 0.000
- 0.001 0998 | 0.001 | 0.002
es | 0592 0408 | 0.000 | 0.408
wanslae-train 5, 0,000 1,000 | 0.000 | 0.000
m | 0000  1.000 | 0.000 | 0.000

Table 2: Significance testing results between each pair
of baseline models. ‘-> marks the model not in the pair.

In both translate-test and translate-train set-
tings of Table 2, code-specific systems (TRANX
and TAE) significantly outperform MBART on
Japanese and Russian. However, no significant dif-
ferences are shown in Spanish, as expected given
its relative difficulty. With significance testing, one
can obtain reliable results even on a small dataset.
While small sizes are not entirely desirable for in-
formative evaluation, we view them as practical
reflections of data scarcity, supporting our call for
more non-English resources.

4 Analysis

4.1 Variations between Languages

We first study the differences in size and snippet
length between languages subsets in MCoNala.
As listed in Table 3, snippet lengths vary across lan-
guages, and the average snippet length in Spanish
is around 2.5/1.3 times of that in Japanese/Russian.
A longer snippet is presumably more complex, sug-
gesting that snippets in Spanish samples are harder
to generate, and hence models perform poorer.

4.2 Intent Auto-translation

In § 3.1 we use MMT models for intent trans-
lation. To optimize translation quality, we com-
pare three best performing MMT models: OPUS-
MT (Tiedemann and Thottingal, 2020), M2M-
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original intent (English)

translated intent (Spanish)

Prepend string ‘hello’ to all items in list ‘a’

Preparacion (prepare) de la cadena ‘hello’ a todos los elementos en la lista ‘a’

snippet ['hello{0}'.format(i) foriin a]
original intent (English)

translated intent (Japanese)

add a colorbar to plot “plt’ using image ‘im’ on axes ‘ax’

W im 2 - T ax D F— /S —Z 380

snippet plt.colorbar(im, ax=ax)
original intent (English)

translated intent (Russian)

extend dictionary ‘a’ with key/value pairs of dictionary ‘b’

paclMpuUThb CJIOBAph ‘' C KJIIOYEBbIMY,/3HaYHTEIbHBIMH (significant) mapamu cioapst ‘b’

snippet a.update(b)

Figure 4: Examples showing that the translation errors or omits critical words in the original intent.

Language | Size |  #Snippet Tokens
| | average max min
English | 2,879 | 182 170 2
Spanish 341 42.6 343 4
Japanese 210 17.7 94 2
Russian 345 32.0 243 3

Table 3: Data size and snippet length (in number of
tokens) of MCoNaLa samples between target languages.

100 (Fan et al., 2021), and M2M-124 used in
FLORES-101 (Goyal et al., 2022). Since com-
paring in translate-train needs intensive re-training
with different model translations, we ablate in the
translate-test setting, using each model to translate
test intents and evaluate NL-to-Code respectively.

Baseline ~ MMT Language
Spanish  Japanese Russian

M2M-124 2.38 3.08 2.04
MBART OPUS-MT 2.28 3.21 2.46
M2M-100 1.83 2.79 2.00
M2M-124 2.46 8.41 8.09
TRANX  OPUS-MT 2.46 5.09 5.00
M2M-100 2.04 7.38 8.48
M2M-124 2.39 9.88 9.57
TAE OPUS-MT 3.15 3.89 5.30
M2M-100 2.21 8.20 9.32

Table 4: Comparing MMT models under translate-test.

As in Table 4, their results are close, but M2M-
124 tends to be more stable across languages and
baselines. Despite its relative superiority, its trans-
lation quality may still lag behind human perfor-
mance, with more examples in § 4.3.

4.3 Quality of Auto-translation

To better measure the quality of translated intents,
we manually check the semantic alignment be-

tween the original and translated intents, with the
assistance of the Google Translate API and dictio-
naries. Concretely, we take 20 English CoNaLa in-
tents and check if their semantics preserve after be-
ing translated into three target languages (translate-
train). We similarly examine 20 MCoNaLa intents
in each target language and check their English
translations (translate-test). We use the M2M-124
translations given its best results. As shown in Fig-
ure 4, MMT translations are still sub-optimal: often
mis-translate, even omit, the key words. This is es-
pecially severe on verbs that indicate certain Python
operations. Hence, the translation step may impair
intent-snippet alignment, being one of the major
factors to the poor results in translated settings.

5 Conclusion

In this work, we extend the task of NL-to-Code
generation from English-centric to multilingual sce-
narios. We establish the MCoNaLa benchmark that
contains NL intent and code snippet pairs available
in Spanish, Japanese, and Russian. Our benchmark
serves for the multilingual code generation task, re-
quiring models of both multilingual understanding
and code synthesis. We conduct systematic experi-
ments on three baseline models and show varying
difficulty across languages and settings. We hope to
reveal the necessity to develop, and serve as a solid
test bed for language-comprehensive approaches
regarding code intelligence.
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Limitations

Although the MCoNaLa dataset makes a first step
to include more natural languages aside from En-
glish, it is currently limited to the languages sup-
ported by the StackOverflow forum, since SO pro-
vides the source data for the MCoNaLa creation.
This can be mitigated by extending to more lan-
guages using programming forums in other lan-
guages that have a similar purpose to SO. Besides,
MCoNalLa dataset only supports literal evaluation
methods such as BLEU. Given the executable na-
ture of Python programs, it is beneficial to support
more evaluation metrics such as functional correct-
ness, robustness, and conciseness.

Ethics Statement

The MCoNalLa dataset is built to serve as a testbed
for evaluating code generation systems from nat-
ural languages extending beyond English, given
that an English-centric setting can harm universal
accessibility to language technologies.

We hire annotators who are proficient in target
languages and assist them with clearly documented
instructions, flexible annotation interfaces (e.g.,
Google Sheets), and automated methods (e.g., us-
ing a neural classifier to filter out possibly invalid
cases) to optimize the annotation efficiency. We
carefully check in line with our instructions and
standards, to ensure the quality of both the ques-
tion posts given and the annotation results back
from our annotators. We emphasize the differences
between samples in different languages, because
they are natural reflections of the questions that pro-
grammers asked in each specific language, similar
to many works in fields such as multilingual ques-
tion answering (Clark et al., 2020) and named entity
recognition (Nothman et al., 2013). We reckon that
it is of paramount importance to evaluate on data
that was originally produced in the target language,
and results may be less reliable otherwise.

Nevertheless, with the advances in models capa-
ble of generating code from natural language in-
puts, we should be aware of the potentially harmful
usage such as concealing malicious code (Wallace
et al., 2020), or generating code with security vul-
nerabilities (Verdi et al., 2020; Pearce et al., 2021).
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A Related Work

Natural Language to Code Generation Datasets
There have been several benchmark datasets for
NL-to-Code generation, such as Hearthstone (Ling
et al., 2016), Django (Oda et al., 2015), CON-
CODE (Iyer et al., 2018), and CoNaLa (Yin
et al., 2018a). Other examples include datasets
for problem solving, such as HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and
APPS (Hendrycks et al., 2021). A number of meth-
ods have been proposed to mine intent-snippet pairs
for the purpose of code search, summarization, or
generation. While our work falls in the line of
mining from SO (Wong et al., 2013; Iyer et al.,
2016; Yao et al., 2018; Yin et al., 2018b), other
work also attempts to exploit other data sources
such as API documentation (Chatterjee et al., 2009;
Movshovitz-Attias and Cohen, 2013; Xu et al.,
2020), code comments (Wong et al., 2015), special-
ized sites (Quirk et al., 2015), and developer com-
munications (Panichella et al., 2012). One prior
methodology to automatically collect large-scale
parallel data is using heuristics to extract intent-
snippet pairs (Chatterjee et al., 2009; Wong et al.,
2013; Zagalsky et al., 2012), but this often results
in compromised data quality (Xu et al., 2020). Our
work resorts to a manual annotation strategy that
often yields accurately aligned intent-snippet pairs.

Multilingual Learning While the bulk of code-
related tasks have their NL components in English,
program developers native in other languages can-
not enjoy the advances in code intelligence tech-
niques, leading to the current lacunae in multilin-
gual learning. Our work intends to mitigate this
gap by facilitating NL-to-Code generation in multi-
ple languages beyond English. To enable language
understanding across multiple languages, a number
of works propose to train language models with
corpus in multiple languages (Devlin, 2018; Liu
et al., 2020; Conneau et al., 2020; Xue et al., 2021).
In addition to multilingual training, other data aug-
mentation techniques commonly used in machine
translation (MT), such as back-translation (Edunov
et al., 2018), monolingual (Sennrich et al., 2016;
Siddhant et al., 2020) or generalized data augmen-
tation (Xia et al., 2019), also inspired our experi-
ments. However, these techniques have rarely been
utilized for NL-conditioned code generation. We
present preliminary attempts in the experiments.
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