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Abstract

Probing strategies have been shown to detect
the presence of various linguistic features in
large language models; in particular, seman-
tic features intermediate to the “natural logic"
fragment of the Natural Language Inference
task (NLI). In the case of natural logic, the rela-
tion between the intermediate features and the
entailment label is explicitly known: as such,
this provides a ripe setting for interventional
studies on the NLI models’ representations, al-
lowing for stronger causal conjectures and a
deeper critical analysis of interventional prob-
ing methods. In this work, we carry out new
and existing representation-level interventions
to investigate the effect of these semantic fea-
tures on NLI classification: we perform am-
nesic probing (which removes features as di-
rected by learned linear probes) and introduce
the mnestic probing variation (which forgets
all dimensions except the probe-selected ones).
Furthermore, we delve into the limitations of
these methods and outline some pitfalls have
been obscuring the effectivity of interventional
probing studies.

1 Introduction

The probing paradigm has emerged as a useful in-
terpretability methodology which has been shown
to have reasonable information-theoretic underpin-
nings (Pimentel et al., 2020; Voita and Titov, 2020;
Zhu and Rudzicz, 2020), indicating whether a given
feature is captured in the intermediate vector rep-
resentations of neural models. It has been noted
many times that this does not generally imply that
the models are using these learnt features, and they
may represent vestigial information from earlier
training steps (Ravichander et al., 2021; Elazar
et al., 2020).

Only through interventional analyses can we
start to make claims about which modelled fea-
tures are used for a given downstream task: this
is the aim of works such as Elazar et al. (2020);
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Figure 1: Workflow for interventional probing for NLP
classification models: a basis for both the amnesic and
mnuestic intervention strategies.

Giulianelli et al. (2018) and Geiger et al. (2021).
We refer to the case where the interventions are
guided by trained probes as interventional probing.

It has been suggested in Elazar et al. (2020) (as
the guidance for their amnesic probing methodol-
ogy) that if features are strongly detected by probes,
one may use debiasing methods such as iterative
nullspace projection (INLP) (Ravfogel et al., 2020)
to intervene on the corresponding vector representa-
tions and effectively “remove" the features before
re-insertion into the given classifier. Investigat-
ing the effect of these intervention operations on
the classifier performance could allow for stronger
causal claims about the role of the probe-detected
features.

In this work, we delve deeper into the amnesic
probing methodology with an NLI case study and
identify two key limitations. Firstly, there is an
issue of dimensionality: when the number of di-
mensions is high and the number of auxiliary fea-
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ture classes is low, it seems that amnesic probing
is not sufficiently informative. In particular, we
cannot rely on the same control baselines to reach
the kind of conclusions discussed in (Elazar et al.,
2020), as nulling out small numbers of random
directions consistently has no impact on the down-
stream performance. Secondly, in the linguistic
settings explored in Elazar et al. (2020), we do
not have expectations for exactly how or even if
the explored features should be affecting the down-
stream task. This makes it difficult to explore the
effectivity of the methodology itself.

To this end, we propose the use of a controlled
subset of NLI called natural logic (MacCartney
and Manning, 2007). In this setting, the interme-
diate linguistic features of context montonicity and
lexical relations are already known to be highly
extractable from certain NLI models’ hidden lay-
ers (Rozanova et al., 2021b), allowing us a certain
amount of understanding and control of these fea-
tures’ representations in the latent space. Using
the deterministic and well-understood nature of the
problem space where we have concrete expecta-
tions about the theoretical interaction between the
intermediate features and the downstream label, we
may critically analyse the effectivity of interven-
tional probing.

Through the application of probe-based interven-
tions in this setting, we show that blindly applying
the amnesic probing argument structure leads to
unexpected and contradictory conclusions: the two
features which the final label is known to depend
on are shown to have no influence on the final clas-
sification (both jointly and independently). This
further calls into question the suitability of these
methods for situations where a small number of
feature label classes and high dimensionality of
representations is concerned. Even more perplex-
ingly, when we treat the NLI gold label itself as an
intermediate feature which can be nulled out with
INLP, we yet again observe almost no change to
the NLI performance. As such, the feature removal
strategy appears ineffective here: we attribute this
to the disproportionate size of probe-selected fea-
ture subspaces to the very high-dimensional repre-
sentations.

In response, we introduce and study a variation
which we call mnestic probing, which we show to
be more informative in the high-dimensional, low-
class-count setting: the core idea is to keep only
the directions identified by the iteratively trained

probes. This allows us to analyse much lower di-
mension subspaces, while making better use of
the outputs of the INLP strategy used in amnesic
probing.

We find that mnestic probing leads to more in-
formative observations which are a) in line with
expected behaviour for natural logic, and b) yield
results which seem to better discriminate between
model behaviours.

In summary, the contributions of the paper are
as follows:

1. We propose the setting of natural logic to be
ripe territory for exploration of interventional
probing strategies.

2. We note two limitations of the amnesic prob-
ing methodology, demonstrating both dimen-
sionality limitations for the control baselines
4.4 and contradictory behaviour in the NLI
setting 4.2 (namely that that the expected ef-
fects of semantic features on the downstream
NLI task are notably absent).

3. Building upon previous interventional
methodologies, we introduce an additional
mnestic intervention operation which uses the
outputs of the INLP process in the opposite
way.

4. We contrast the mnestic probing strategy with
the amnesic probing results, and demonstrate
it presents more informative results which are
aligned with the constructed expectations in
our high dimensional, low label class count
setting.

2 Interventional Probing

We may summarise the general setup of interven-
tional probing as follows: suppose we start with
a classification model that may be decomposed as
fog: X — R" where g is an encoder module
which yields a representation which serves as an
input to the classifier head f, and n is the number
of output classes of the final classifier. We aim
to intervene on the output of g and observe the
change in the performance of f (usually in com-
parison with some kind of random control baseline
intervention).

Linear probes (also known as diagnostic clas-
sifiers) are able to identify subspaces in which a
given intermediate feature set is found to be repre-
sented. These may be used as a guide for vector-
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level interventions on the representation space; we
are specifically concerned with interventions which
are vector projections. Otherwise, The exact nature
of this intervention is interchangeable. We consider
two projection strategies in particular: the amnesic
intervention introduced in Elazar et al. (2020) (de-
scribed further in section 2.2) and our mnestic vari-
ation which uses the same INLP technique (section
2.3).

2.1 What Should it Tell Us?

The interventional probing steps are performed on
exactly the representation that would have been an
input to the classifier head f. We may re-insert the
intervened representations and re-calculate the clas-
sifier accuracy (note that the iterative projections
in sections 2.2 and 2.3 maintain the original dimen-
sionality of the vector set but reduce the rank).

We are looking to see if the downstream perfor-
mance of the classifier f drops. If it does, the inter-
ventions have removed information that was neces-
sary for successful classification. However, as any
projection would remove some information, these
results must be viewed in the context of a control
intervention: if the INLP process ends up removing
n directions, a sample of n randomly chosen direc-
tions is selected from the original representation,
Elazar et al. (2020) argue that if the amnesic down-
stream performance drops significantly more than
the random removal control performance, we may
conclude that the features were necessary for the
final downstream classification. On the other hand,
if the performance does not drop at all, the features
were not useful for the classifier in the first place.
In the ensuing sections and results, we demonstrate
that this is not necessarily a valid conclusion.

2.2 The Amnesic Intervention

We follow the procedure in (Elazar et al., 2020) (in
turn based on iterative nullspace projection (Rav-
fogel et al., 2020)): given a set X of encoded rep-
resentations for the textual input (with dimensions
num_examples X embedding_dimension),
we iteratively train linear SVM classifiers accord-
ing to a set of auxiliary feature labels. For each
INLP step i, This yields a linear transformation
W; X + B, where the vectors of WW; define direc-
tions onto which the probe projects the representa-
tions for auxiliary label classification (i.e., these are
the chosen directions most aligned with auxiliary
class separation). For each step ¢, an orthogonal
basis denoted R?; is found for this rowspace. The

projection to the intersection of the nullspaces is
given by a matrix

PX =(I—(Ry+ ..+ Ry))X.

The matrix product PX is a matrix in the original
dimensions of X, but with reduced rank by the
number of iteration steps (as each projection "flat-
tens out" the representation in these directions).

Projection to the intersection of nullspaces is
thus the removal of any information pertaining to
the auxiliary feature labels (or at least, the infor-
mation which allows high performance for a linear
probe). The training terminates these auxiliary task
classifiers start consistently performing at the ma-
jority class baseline, indicating that there is no fur-
ther linearly information to be extracted from the
remaining representation. As such, the resulting
representation is treated as an altered representation
where this feature is removed or forgotten.

2.3 A Variation: The Mnestic Intervention

Elazar et al. (2020) perform a series of experi-
ments on various linguistic features which had pre-
viously been shown to be well-captured in language
model representations and use the amnesic prob-
ing methodology to distinguish between features
that are used by the model and those that are not
by comparing post-intervention downstream task
performance to a baseline of randomly removed
directions.

Rather than projecting the embedded representa-
tions to the intersection of nullspaces of the trained
probes (removing the target property), we project
them to the union of the rowspaces with the trans-
formation:

I-P)X=(I-({I—-(Ro+...+Ry)))X
Z(Ro—i-...-f—Rn)X

This has the opposite effect: we use projection to
null out everything except the directions identified
by the probes as indicative of the target feature. As
such, we "remember" only that feature rather than
forgetting it.

3 Experimental Setup

In this study, we use interventional methods !
to study the internal behaviour of NLI models.

'We reuse much of the code included with (Elazar et al.,
2020), but we include our data and reproducible experimen-
tal code at https://github.com/juliarozanova/
mnestic_probing.
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We compare amnesic and mnestic variations of
the INLP strategy, evaluating intermediate feature
probing performance and downstream NLI perfor-
mance after every step of the intervention process.

For each auxiliary feature label and and model,
we perform the interventional probing as outlined
in figure 1.

3.1 Dataset

Our setting for this study is a fragment of NLI
called Natural Logic (MacCartney and Manning,
2007). In particular, we focus on single-step nat-
ural logic inferences in which entailment exam-
ples are generated by replacing a noun phrase in a
sentence with a hyponym, hypernym or unrelated
noun phrase. The context of the substituted term
is either upward or downward monotone, as de-
termined by the composition of negation markers,
generalized quantifiers or determiners present in
the context. The entailment label of the example
is a consequence of this feature and the lexical
relation between the substituted terms.

Context Monotonicity Lexical Relation
Entailment Label

Figure 2

We use the NLI_XY dataset from (Rozanova
et al., 2021b,a). By construction, the NLI_XY
dataset consists of NLI examples which rely on
exactly these two abstract features: context mono-
tonicity and the lexical relation of the substituted
terms.

We perform two flavours of probe-based inter-
ventions (described fully in section 2) with four
feature label sets (described next).

Auxiliary Feature Labels We begin with the two
relevant intermediate features (respectively, con-
text monotonicity and lexical relation) which are
already known to correlate with stronger perfor-
mance on the downstream NLI_XY task (Rozanova
etal., 2021b). We will refer to this as single-feature
interventional probing, as the probing and inter-
vention steps are only applied to one feature set
at a time. Next, we combine the two features in
a cross product, creating a new feature label set
with all possible combinations of these interme-
diate features (in the dataset, they are completely
independent variables by construction (Rozanova

et al., 2021a)). We refer to this as the composite
feature label.

Lastly, we also consider the entailment label
itself (the downstream task label) as an input to
the interventional probing process. The latter is
particularly useful as a diagnostic sanity check,
and aids the critical nature of our findings.

3.2 NLI Models and Encoding

We compare a selection of BErRT (Devlin et al.,
2019) and roBERTa (Liu et al., 2019) models
trained for NLI classification. Firstly, we include
a pair of models trained respectively on the MNLI
(Williams et al., 2018) and SNLI (Bowman et al.,
2015) benchmark datasets. In (Rozanova et al.,
2021b) and (Rozanova et al., 2021a), it is shown
that when roberta-large-mnli (a model which
performs well on benchmarks but poorly on the
targeted NLI_XY challenge set) receives addi-
tional training on the adversarial HELP dataset
(Yanaka et al., 2019) it improves in NLI_XY per-
formance and begins to show high probing per-
formance for the relevant intermediate features,
context monotonicity and lexical relations: this
is the necessary precondition for doing interven-
tional probing. We include two of their models with
this property: roberta-large-mnli-help and
roberta-large-mnli-double-finetuning, with
the other models included for a contextual compar-
ison.

We perform probing and intervention on the final
representation that precedes the NLI classification
head: in the case of BERT and RoBERTa, this is the
[cLs] token of the final layer.

The initial input is a tokenized NLI exam-
ple from the NLI_XY dataset. The findings in
(Rozanova et al., 2021b) show that the intermedi-
ate feature labels (context monotonicity and lexical
relations) are detectable in the concatenated tokens
of the substituted noun phrases: however, for in-
terventional purposes, we perform the probing and
intervention steps on the [cLs] token which serves
as an input to the NLI classifier head: we have
found that the same features are detectable to a
comparable standard, and this is the only position
at which we are able to make a sensible interven-
tion that would allow conclusions about the final
classifier head only.

3.3 Evaluation

The significant metrics for these interventional
probing paradims are the probing accuracy before
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and after the iterative nullspace projection steps (a
decline to random performance indicates the fea-
ture is being “removed" from the representation in
the sense that it is no longer detectable by linear
probes) and the downstream classification accu-
racy on the NLI task the model’s were trained for
(in our case, we report the accuracy on the NLI_XY
task).

For amnesic probing, we report the performance
deltas for both the probing and downstream tasks.
However, for mnestic probing, a slightly more nu-
anced and qualitative view is helpful: it can be
assumed that eventually mnestic probing will reach
comparable performance to the untouched vector
representations, but we are interested in the com-
parative rates at which this happens. As the inter-
ventions are iterative, we may feed the intervened
representations into the classifier head at each step
of the intervention process - we use this to provide
a step-wise presentation of results in linear plots in
figure 5.

While the tabulated deltas in table 1 results are
sufficient to present our observations on amnesic
probing, for comparison we also include the step-
wise graphical presentations in the appendix.

4 Results and Discussion

4.1 Single Feature Amnesic Probing

The results for the standard amnesic probing pro-
cedure are in table 1. In particular, the single fea-
ture results are in the rows with features labelled
insertion relation and context monotonicity. The
amnesic operation is successful - the respective
probing accuracies approach and reach the major-
ity class baseline.

We also include the step-wise plots of both prob-
ing performance and downstream NLI task per-
formance: we single out the case of the insertion
relation label in figures 3 and 4, but include the
full suite of expanded plots for each feature in the
appendix. The length of the iterative amnesic prob-
ing process is indicative of the number of dimen-
sions removed to reach this baseline: it can also
be considered a proxy for the strength of the fea-
ture presence in the representations, or rather, the
dimension of the semantic subspace corresponding
to the target features.

The second phase of this process, i.e. the resub-
stitution of the modified representations as inputs
to the NLI classifier head, can be seen in the right
hand portion of table 1, labelled NLI-XY Perfor-

Probing Accuracy after Amnesic Intervention (On
Insertion Relation Label)

Step

0 10 20 30
bert-base-uncased 1 = bert-base-uncased-snli-help
= roberta-large-mnli-double-finetuning
roberta-large-mnli-help == roberta-large-mnli

Figure 3: Step-wise probing performance throughout
the amnesic probing process: a decrease towards the
random baseline accuracy (roughly 0.3 for this 3-class
task) indicates the feature is less and less extractable
from the remaining representations as the iterative pro-
cess continues.

NLI Accuracy after Amnesic Intervention (On Insertion

Relation Label)
1

Step

0 5 10 15 20 25 30
bert-base-uncased-snl = bert-base-uncased-snli-help
= roberta-large-mnli-double-finetuning
roberta-large-mnli-help == roberta-large-mnli

Figure 4: Downstream performance on NLI_XY after
amnesic intervention (removing lexical relation infor-
mation). For such an important feature to the end-task,
we would expect to see a drop: but we don’t!

mance. The result is unexpected: for each of these
features, the downstream task performance appears
to be unaffected after their removal. This is surpris-
ing when the dataset is explicitly controlled to rely
only on these two features.

4.2 Multi Feature Amnesic Probing

The results for the amnesic probing procedure uti-
lizing both auxiliary feature label sets and the en-
tailment gold label are in the rows of table 1 with
labels composite and entailment label respectively.
We observe that once again, the downstream task
performance is mostly unaffected. Unlike the un-
expected result in the previous section, it’s difficult
to argue away the fact that this is somewhat con-
tradictory: while single feature removal may be
subject to some confounding bias, the removal of
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Probing Performance

NLI-XY Performance

Model Feature Start Intervention A Start Intervention A
roberta-large-mnli-help insertion relation 80.58 -40.35 79.79 0.06
context monotonicity  87.65 -46.22  79.79 -0.09
composite 64.48 -43.95 79.79 0.32
entailment label 78.05 -37.49 79.79 -1.57
roberta-large-mnli-double-finetuning insertion relation 62.7 -36.49 80.04 0.11
context monotonicity  89.79 -43.28 80.19 0
composite 57.64 -49.56  80.08 -1.67
entailment label 82.8 -24.94 80.19 -16.53
roberta-large-mnli insertion relation 80.39 -45.59 57.22 8.99
context monotonicity  75.44 -27.49  57.37 -0.43
composite 72.35 -53.51 57.24 -2.27
entailment label 73.6 -15.31 57.37 0.1
bert-base-uncased-snli-help insertion relation 59.53 -19.1 4595 0.28
context monotonicity  82.72 -33.94 4552 -2.35
composite 37.19 -17.08 45.76 13.68
entailment label 47.05 0.38 4591 0
bert-base-uncased-snli insertion relation 60.26 -35.14 48.99 1.05
context monotonicity 81.09 -30.77 49.42 -6.25
composite 35.37 -17.83  50.73 7.45
entailment label 42.44 -0.24 4942 0

Table 1: Amnesic probing performance deltas across models and target feature labels: first listed is the performance
on the probing task with respect to the indicated feature, and then the accuracy on the downstream NLI-XY task.
We note the results pre-intervention and the ensuing change in accuracy.

both features exhausts the variables on which this
classification depends. This is highly unexpected,
and suggests a point of failure for the amnesic prob-
ing process. Naturally, we cannot be without doubt
that despite all our best efforts to work with a con-
trolled dataset that relies only on these two know
(but still complex) features, a model may yet find
unrelated heuristics to exploit that may correlate
so strongly with the downstream task label that it
may perform well without representing and using
these intermediate features. However, we imagine
this to be a rather low probability scenario to be
that the model simultaneously learns such heuris-
tics but simultaneously learn representations that
create strong clusters for the known intermediate
features without using them at all. The models
which we have observed to perform more less well
on NLI-XY (such as roberta-large-mnli) are indeed
estimated to be using sub-par heuristics, but this
also comes with poor probing results for the inter-
mediate features - naturally, this in itself does not
imply anything conclusive, but certainly adds to
our convictions.

On a seprate note, it is noted in Elazar et al.
(2020) that there is no control for the number of
dimensions removed, while there is a clear correla-
tion between downstream task performance and the
number of label classes (and thus removed probe

directions) are in play. Our feature sets have only 2
and 3 classes respectively. In the most analagous
result in (Elazar et al., 2020) where the auxiliary
features had very few classes and no change on
the downstream performance was observed, it was
concluded that the features must have no effect on
the outcome. It is very likely that too little informa-
tion is being removed in this process to observe any
impact on the downstream task performance. This
could potentially be pointing to high redundancy in
the representations which the amnesic intervention
may struggle to remove appropriately.

4.3 Mnestic Probing

Given the possible dimensionality problem, the al-
ternative method of mnestic probing seems promis-
ing: after the mnestic intervention, many dimen-
sions are removed and few remain, so it appears
to be a ripe setting for observing and comparing
effects on downstream NLI accuracy at a finer gran-
ularity. The results for NLI-XY task accuracy after
the mnestic probing procedure are presented as
step-wise plots in figure 5. There is a clear increase
in NLI performance with subsequent addition of
probe-chosen directions to the representations, es-
pecially viewed in the context of section 4.4, where
we compare the performance to random choices
of included directions. In the latter, performance
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NLI Performance after Mnestic Intervention (On
Monotonicity Label)

Step
0 5 10 15 20 25 30
bert-base-uncased-snli = bert-base-uncased-snli-help
= roberta-large-mnli-double-finetuning
roberta-large-mnli-help = roberta-large-mnli

(a) Context Monotonicity Label

NLI Performance after Mnestic Intervention (On

Composite Label)
1

0.8 —_—

0.6 /\/

g

0.2

0 Step
0 10 20 30 40
bert-base-uncased-snli = bert-base-uncased-snli-help

= roberta-large-mnli-double-finetuning
roberta-large-mnli-help = roberta-large-mnli

(c) Composite Label

NLI Performance after Mnestic Intervention (On Insertion
Relation Label))

Step
0 5 10 15 20 25 30
bert-base-uncased-snli = bert-base-uncased-snli-help
= roberta-large-mnli-double-finetuning
roberta-large-mnli-help = roberta-large-mnli

(b) Lexical Relation Label

NLI Performance after Mnestic Intervention (On

Composite Label)
1

0.8 =

NS

L~ —
0.4

0.2

0 Step

0 10 20 30 40

bert-base-uncased-snli = bert-base-uncased-snli-help
= roberta-large-mnli-double-finetuning
roberta-large-mnli-help = roberta-large-mnli

(d) Gold Label

Figure 5: Downstream NLI Task Performance After Mnestic Interventions

varies randomly rather than presenting a structured
increase as seen here.

We observe that the composite label and the gold
entailment label are reflected in line with expecta-
tions in the mnestic probing experiments: the inclu-
sion of the probe-selected dimensions with respect
to these labels introduces a sharp and immediate
increase in the NLI classifier performance. This
is significantly steeper than the baseline increase
observed in random addition of representation di-
rections. Similarly, the increase is nearly as sharp
for the lexical relation label. However, although
an increase is observed during the iterative mnestic
probing intervention for context montonicity, this
increase is not at a dramatically higher rate than
adding subsequently more directions from the orig-
inal representation. For monotonicity specifically,
this is not enough to conclude that the feature (or
at least, the corresponding probe-selected dimen-
sions) are critical to the final classifier.

Nevertheless, we have been able to make clearer
observations than were possible in the amnesic
probing setting.

4.4 Control Comparison

Amnesic Control: NLI Performance after Removing N

Random Directions
1

0.8

0.6

0.4

0.2

0 Step
0 10 20 30 40
bert-base-uncased-snli = bert-base-uncased-snli-help

= roberta-large-mnli-double-finetuning
roberta-large-mnli-help = roberta-large-mnli

Figure 6: Amnesic control experiment: Downstream
NLI accuracy upon the removal of n random directions
of the original representation.

We contextualise all the preceding results with a
set of control experiments both for amnesic (figure
6) and mnestic (figure 7) probing. Note in partic-
ular that even with very few random dimensions
kept, downstream performance starts approaching
comparable levels to the full representations. As
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Mnestic Control: NLI Performance after Selecting N

Random Dimensions
1

0.8 —
0.6 ~—F7 " =

0.4
0.2
0

Dimensions (N)

2 4 6 8 10 12

= bert-base-uncased-snli-help
= roberta-large-mnli-double-finetuning
roberta-large-mnli-help == roberta-large-mnli

Figure 7: Mnestic control experiment: downstream NLI
accuracy upon the selection of n random directions of
the original representation.

such, a single random baseline as in Elazar et al.
(2020) can be misleading: there is enough variabil-
ity in the random direction results so as to allow
for a false claim of feature irrelevance by simply
getting lucky; as few as 3 dimensions can perform
at the original model’s performance level or arbi-
trarily lower.

Lastly, we compare to the mnestic probing re-
sults in figure 5: with the probe-selected mnestic
dimension choices, the increase in downstream per-
formance does seem to happen faster and in a more
consistent fashion, while the selection of n ran-
domly chosen directions introduces very haphaz-
ard performance spikes. This suggests the probe-
selected dimensions are consistently adding to the
model’s access to the relevant information, amd
this may be stronger evidence for the usefulness of
the examined features for the final classification.

5 Related Work

The use of probing as an interpretability strategy
dates back as far as works such as Alain and Bengio
(2018) and (Conneau et al., 2018), but a core set of
work on the detailed development of the method-
ology includes Hewitt and Liang (2019); Belinkov
and Glass (2019); Voita and Titov (2020); Pimentel
et al. (2020). For a full survey, see Belinkov (2022).

The application of probing strategies to natural
logic components has been explored in Rozanova
etal. (2021b) and Geiger et al. (2020). In Rozanova
et al. (2021b), probing experiments have proven
effective in detecting the presence or absence of
features such as context monotonicity and phrase-
pair relations in the internal representations of NLI
models.

Regarding interventions as interpretability tools
for machine learning classifiers, there are two broad
categories: those that modify the raw input (such
as image or text) in a controlled way, and those that
modify the hidden/latent vector representations of
the data at various stages of the models’ input pro-
cessing. While input-level interventions are more
common as they are usually easier to control and
are strongly interpretable, they don’t allow us to
explore and conjecture about exact high-level rep-
resentational mechanisms in the latent space. We
tabulate a few relevant interventional interpretabil-
ity methods in table 2. Note in particular the varia-
tion in the generation step for the intervened input;
some use generative modelling for counterfactual
examples, while we use cheaper linear probes.

The only other work in which interventional
methods have been applied to natural logic is
Geiger et al. (2021): a similar problem setting is
considered, but at a finer granularity. Our work
focuses more on the summarised abstract notion
of context monotonicity as a single feature, rather
than the intermediate tree nodes that determine its
final monotonicity profile. The interventions used
in this work are vector interchange interventions;
partial representations from transformed inputs are
used, as opposed to direct manipulations of the
encoded vectors.

6 Conclusion and Future Work

Our expiremental setting has shown significant lim-
itations of amnesic probing in high-dimensional
settings where there are few label classes (and con-
sequently fewer dimension modified), even if these
classes are strongly detectable. Our results point
out that it is misguided to concluded that a given
feature is not used when post-amnesic-intervention
downstream performance fails to drop, especially
in our example amnesic probing studies of a) the
gold donwstream feature label and b) the compos-
ite of two labels that jointly determine the entail-
ment label. This may be due to a dimension/rank
confounder variable and high redundancy of in-
formation in the representations. It remains to be
checked whether high performance in the random
control directions corresponds to strong alignment
with these probe-selected directions: we propose
an analysis of the dot products with the fixed set
of probe-selected dimensions, which indicates a
shared directionality measure (0 for orthogonal vec-
tors and 1 for codirectional ones).
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Intervention Tested Effect

Requires Intermediate  Intervention Linked to

. Domain
Labels Concept Interpretation

Feature Characterisation

Amnesic Probing / INLP (Elazar et al., 2020) Debiasing / Feature Removal Downstream Classifier Accuracy Lincar Classifier Yes No Language Modelling
CausaLM: Causal Model Explanation Re-Training Model Copy Text representation-based individual ~ Retrained Base ‘ ) )
Through Counterfactual Language Models %" & 2021 | £ 6 unterfactual Representation  treatment effect (TReITE) Model Yes Yes Sentiment Analysis
Explaining Classifiers ) ) " . "
(Goyal et al., 2019) Generative Modeling Average Causal Effect Measure VAE Yes Yes Vision Classification

with Causal Concept Effect
Concept Activation Vectors (TCAV) (Kim et al., 2018) Value Shift in Vector Direction

Latent Space Explanation (Gat et al., 2021)
by Intervention

VAE Input Discretization
and Reconstruction

Meaningfully Debugging Model Mistakes
Using Conceptual Counterfactuals

Weighted Combination of

Abid 1., 2022
(Abid etal, 2022) Concept Vectors

Custom Gradient Sensitivity Measure ~ Linear Classifier Yes Yes

Reconstruction Quality VAE No

Difference Between Concept
Addition and Removal Effect

Vision Classification

Qualitative Judgement

(Vision Only) ision Classification

Linear Classifier Yes Yes Vision Classification

Table 2: Related Work on Latent Concept Interventions

In summary: we have introduced a modification
of the amnesic probing paradigm which we call
mnestic probing which uses the same INLP pro-
cess but considers the opposite intervention: using
the union of projection rowspaces to keep only the
directions the probes have identified to be mod-
elling the target information. This strategy presents
results that are more aligned with theoretical ex-
pectations (in the NLI case), possibly because we
are now able to make comparisons in a lower rank
setting.

7 Limitations

A key limitation of the mnestic probing strategy is
that as one reconstructs the original representation
one dimension at a time, information content is
naturally due to increase: as such, no mnestic prob-
ing result can be viewed in isolation, but should be
used as a comparative study. Preferably, various
randomized selections of linear subspaces with the
same number of dimensions should be included as
baselines input representations. Furthermore, we
mention two some additional caveats: firstly, the
probing strategies used here to identify the infor-
mative semantic subspaces in question are always
linear; relevant information may be present non-
linearly. However, as with amnesic probing, we
discount any non-linearly encoded information as
the final model classifcation layer is linear and thus
cannot exploit this information. Lastly, probing for
subspaces which are informative of target auxiliary
features may always include correlated features in
the resulting subspaces; this must always be taken
into account when drawing conclusions from mnes-
tic/amnesic probing.
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Probing Accuracy after Amnesic Intervention (On
Insertion Relation Label)
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(a) Lexical Relation Probing Performance During Iterative
Amnesic Intervention Process

Probing Accuracy after Amnesic Intervention (On
Monotonicity Label)
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(c) Context Monotonicity Probing Performance During Itera-
tive Amnesic Intervention Process
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(b) Downstream Performance On NLI_XY After Amnesic
Intervention (Removing Lexical Relation Information)
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(d) Downstream Performance On NLI_XY After Amnesic
Intervention (Removing Context Monotonicity Information)

Figure 8: Single Feature Amnesic Probing

Probing Accuracy after Amnesic Intervention (On
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(a) Probing Performance On NLI_XY After Composite Label
Amnesic Intervention
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(b) Downstream Performance On NLI_XY After Composite
Label Amnesic Intervention

Figure 9: Composite Feature Label Amnesic Probing
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Probing Accuracy after Amnesic Intervention (On Gold

Label)
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(a) Probing performance On NLI_XY after entailment label

amnesic intervention.
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(b) Downstream performance on NLI_XY after entailment

label amnesic intervention.

Figure 10: Sanity Check: Entailment Gold Label Amnesic Probing
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